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In this paper, three kinds of explicit local meshless methods are compared: the local method of

approximate particular solutions (LMAPS), the local direct radial basis function collocation method

(LDRBFCM) which are both first presented in this paper, and the local indirect radial basis function

collocation method (LIRBFCM). In all three methods, the time discretization is performed in explicit

way, the multiquadric radial basis functions (RBFs) are used to interpolate either initial temperature

field and its derivatives or the Laplacian of the initial temperature field. The five-noded sub-domains are

used in localization. Numerical results of simple diffusion equation with Dirichlet jump boundary

condition are compared on uniform and random node arrangement, the accuracy and stabilities of these

three local meshless methods are asserted. One can observe that the improvement of the accuracy with

denser nodes and with smaller time steps for all three methods. All methods provide a similar accuracy

in uniform node arrangement case. For random node arrangement, the LMAPS and the LDRBFCM

perform better than the LIDRBFCM.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

During the last two decades the meshless methods have been
developed and effectively applied to solve many engineering and
science problems [1–4]. There are plenty of meshless methods
under development [5–7]. There is a class of meshless methods
that focus on the use of radial basis functions [8], such as radial
basis function collocation method (RBFCM) [9–13]. The radial
basis functions (RBFs) have been first under intensive research in
multivariate data [12] and function interpolation [14]. Kansa used
them for scattered data approximation in [12] and pioneered the
solution of PDEs [13], that is why the method is sometimes called
the Kansa’s method. The key point of the RBFCM or Kansa’s
method for solving the PDEs is the approximation of the fields on
the boundary and in the domain by a set of global approximation
functions. The main advantage of using the RBFCM for solution of
PDEs is its simplicity, applicability to various PDEs, and effective-
ness in dealing with high dimensional problems and complicated
domains. The method has been recently applied to many scientific
and engineering disciplines. It has been used in the heat transport
context in 1998 by Zerroukat et al. [14], in the context of porous
media flow by Šarler et al. [15] in 2000, in the classical De Vahl
ll rights reserved.

o).
Davis natural convection problem [16] by a symmetric and
modified collocation in 2005 by Šarler [17]. The main disadvan-
tage of RBFCM represents the related full matrices that are very
sensitive to the choice of the free parameter in RBFs and difficult
to solve for problems with a large number of unknowns. This is
because the use of the radial basis function interpolation
increases the condition numbers of the related matrices with
increasing number of nodes. This is especially true for bad choice
of data centers and when infinitely smooth basic functions such as
multiquadrics is used with extreme values of their associated
shape parameter. There are several methods to circumvent this
issue such as domain decomposition [18,19], the greedy algo-
rithm [20,21], extended precision arithmetic [22], the improved
truncated singular valued decomposition [23], etc.

One of the possibilities for mitigating computational cost for
large-scale problems is to employ the domain decomposition by
Mai-Duy and Tran-Cong [24], multi-grid approach and compactly
supported RBFs by Chen et al. [25] in 2002, which all represent a
substantial complication of the original simple method. To avoid
fully populated matrices, various localized meshless methods
have been recently developed, such as the local quadrature based
RBF approach by Shu et al. [26] in 2003, local multiquadric
approximation using large sparse matrix by Lee et al. [27], and
other local meshless methods in [28,29]. Among them, the local
RBF collocation method was developed by Šarler and Vertnik [28]
in 2006, the main issue of the local version of the RBFCM is the
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collocation on a sub-set of, in general, overlapping sub-domains,
which drastically reduces the collocation matrix size on the
expense of solving many small matrices with the dimension of the
number of nodes included in the domain of influence for each
node instead of a large collocation matrix. Since the method does
not experience significant accuracy drawback in comparison with
the global version, it has been applied to many complex PDEs,
industrial applications and large-scale problems.

In this paper, we focus on three explicit local collocation
methods for solving heat diffusion equations. The first method is
the localized method of approximate particular solutions (LMAPS)
which is the localized version of the method of approximate
particular solutions (MAPS). The global MAPS was developed for
the variance coefficients elliptic problems in [30], the local
formulation LMAPS will be presented in this paper and applied
to time dependent problems. The second method is the direct
local RBF collocation method (LDRBFCM). It was first introduced
for diffusion problems in [28]. The results in the paper show the
accuracy and efficiency. Many authors apply the LDRBFCM to
more complex problems such as convection-diffusion problems
with phase-change [31], continuous casting [32], solid–solid
phase transformations [33], and Navier–Stokes equations [34],
Darcy flow [35], turbulent flow [36], etc. The third method we are
comparing is the indirect local RBF collocation method (LIRBFCM)
which was introduced in 2002 by Mai-Duy et al. [37] in its global
form. This method was used to approximate derivatives of
original functions and a closed form of original function
approximation can be obtained. The global DRBFCM and IRBFCM
were compared for approximations of function and corresponding
derivatives, the IRBFCM approach yields a superior accuracy with
uniform nodes. In [38], the indirect method with thin plate splines
RBF was studied. We localize the IRBFCM in this paper and apply
it to diffusion equation. Overall, the LMAPS and the LIRBFCM are
new techniques, which are explicit localized version of the MAPS
in [30] and the IRBFCM in [37], respectively. The LDRBFCM was
first introduced in [28] in 2006.

The organization of the paper is as follows. In Section 2, the
governing equation is given. In Section 3, we give a brief
introduction of explicit time stepping strategy, theoretical back-
grounds of the LMAPS, the LDRBFCM, and the LIRBFCM are given.
Extensive numerical comparisons in the sense of the accuracy and
the stability of the three methods for the diffusion equation with
Dirichlet jump boundary condition are given in Section 4 as a
function of the number of nodes, the node distribution (uniform,
non-uniform), and time step length. In Section 5, we draw
conclusions regarding the assessment of the methods used.
Fig. 1. The 11�11 uniform node arrangement and the schematics of the

local domains of influence in interior, at the near boundary and at the corner

using lN¼5.
2. Governing equations

Consider a dimensionless diffusion equation defined on
domain O with boundary G

@T

@t
¼r2T ð1Þ

with initial condition

Tðp,t0Þ ¼ T0, pAO [G ð2Þ

and Dirichlet boundary condition

Tðp,tÞ ¼ TD, tZt0, pAG: ð3Þ

Let Dt be the time step length. We seek the solution T of the
governing Eq. (1) in O at time t0+Dt by assuming the initial
condition (2) and boundary condition (3).
3. The three meshless methods using radial basis functions

In this section we structure the three local meshless methods:
the LMAPS, the LDRBFCM and the LIRBFCM. Time stepping
strategy is one of the most popular methods for obtaining
numerical solutions of time dependent partial differential equa-
tions. For tA(t0,t0+Dt], the time discretization is made by the
following approximation:

@T

@t
�

T�T0

Dt
, r2T �r2T0, ð4Þ

then T in (1) can be approximated as

Tðp,t0þDtÞ � T̂ðp,t0þDtÞ ¼ T0þDtr2T0, pAO [ G: ð5Þ

This is commonly used explicit time stepping strategy that
approximates T(p,t0+Dt) by using entirely the temperatures at the
initial time t0 in O and the boundary condition at t0+Dt on G.

Throughout the paper, the following node notations are used.
The points we choose in O[Gare denoted by pk; k¼1,2,y,N,
where N represents the total number of nodes. The region O [G is
divided into N overlapping sub-domains lO; l¼ 1,2,:::,N. The
schematic of the node distribution with typical sub-domains is
shown in Fig. 1. Each of the sub-domains consists of lN points lp;
that coincide with some of the global points pk; k¼1,2,y,N. There
is a relation between the global and the local point with indexes
on each of the sub-domains: k¼k(l,n). The k(l,n) is a function of
the local sub-domain index l and local index n. It follows that

Pkðl,nÞ ¼ lP; l¼ 1,2,. . .,N, n¼ 1,2,. . ., lN : ð6Þ

For convenience, in this paper we will only focus on 2D case;
i.e., for pAO,

p¼ ðx,yÞ: ð7Þ

3.1. Involved RBFs

In all the methods in this paper, the types of radial basis
functions can be chosen as needed, but the corresponding
differentiations and integrations are needed. They can be easily
obtained by hand or by symbolic mathematical software. In this
paper, we use the following multiquadrics (MQ) RBF:

cðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2

p
ð8Þ

in 2-D and the corresponding related functions are listed below.
For the LMAPS, the derivation of particular solution can be

found in [40]

fðrÞ ¼ 1
9 ð4c2þr2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2

p
�1

3c3 ln
�

cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2

p �
: ð9Þ
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For the LDRBFCM, by direct differentiation we have

jðrÞ ¼r2cðrÞ ¼
r2þ2c2

ðr2þc2Þ
1:5
: ð10Þ

For the LIRBFCM [24],

jxxðpÞ ¼

ZZ
cð:p�pc:Þdxdx

¼
1

6
ððx�xcÞ

2
�2ðy�ycÞ

2
�2c2Þðr2þc2Þ

1=2

þ
1

2
ðx�xcÞ ðy�ycÞ

2
þc2

h i
ln ðr2þc2Þ

1=2
þðx�xcÞ

h i
, ð11Þ

jyyðpÞ ¼
ZZ

cðJp�pcJÞdydy

¼
1

6
ððy�ycÞ

2
�2ðx�xcÞ

2
�2c2Þðr2þc2Þ

1=2

þ
1

2
ðy�ycÞ ðx�xcÞ

2
þc2

h i
ln ðr2þc2Þ

1=2
þðy�ycÞ

h i
: ð12Þ

3.2. LMAPS

In this approach, the formulation of the problem starts with
the representation of the Laplacian of the original function (initial
temperature field) with RBFs, the original function is then
obtained by integration. Assume that

r2T0ðpÞ ¼
XlN

n ¼ 1

cðJp�pkðl,nÞJÞlan; pA lO, ð13Þ

where c is a RBF and J�J is the Euclidean norm. For RBF
cð:p�pc:Þ with the center pc¼(xc,yc), we denote

r¼ Jp�pcJ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xcÞ

2
þðy�ycÞ

2
q

: ð14Þ

Note that in 2-D case due to the symmetry of RBFs

r
2
ðcðrÞÞ ¼

1

r

d

dr
r

dðcðrÞÞ
dr

� �
, ð15Þ

Then the inverse of Laplacian on RBF c(r) is

fðrÞ ¼
Z

1

r

Z
rcðrÞdr dr, ð16Þ

wherer2f(r)¼c(r). Note that the integration of (16) has to be
treated with care. There are two arbitrary constants to be
determined. In some cases such as MQ, one has to choose these
two arbitrary constants in such a way to cancel the singularities
[40]. The function f(r) is called a particular solution for Laplacian
operator r2 with respect to the RBF c(r). The Laplacian on
temperature T0(p) is then integrated to yield an expression for the
original function:

T0ðpÞ ¼
XlN

n ¼ 1

fðJp�pkðl,nÞJÞlan ð17Þ

The unknown coefficients lan, n¼1, 2,y, lN are determined by
collocation

T0ðpkðl,mÞÞ ¼
XlN

n ¼ 1

fðJpkðl,mÞ�pkðl,nÞJÞlan, pkðl,mÞA lO, m¼ 1,2,:::, lN :

ð18Þ

The system of equations can be written in a matrix vector
notation

lT ¼ lU la; lUmn ¼f Jpkðl,mÞ�pkðl,nÞJ
� �

, lTðmÞ ¼ T0ðpkðl,mÞÞ, ð19Þ

where la ¼ ½la1 la2� � �
lN
an�

T and lUmn is the entry element of the
matrix of lU at m row and n column. The coefficient la can be
represented by inverting system (19)

la ¼ lU
�1

lT: ð20Þ

By taking into account the expressions for the calculation of
the coefficients la the indirect collocation representation of
function T0(p) on subdomain lO can be expressed as

T0ðpÞ ¼
XIN

n ¼ 1

XIN

m ¼ 1

fðJp�pkðl,nÞJÞlU
�1
mnT0ðpkðl,mÞÞ ð21Þ

Then the operation of the Laplacian on temperature T0(p) at
initial time at the global point p on sub-domain lO, r2T0ðpÞ, can
be expressed as

r2T0ðpÞ ¼
XlN

n ¼ 1

XlN

m ¼ 1

cðJp�pkðl,nÞJÞlU
�1
mn T0ðpkðl,mÞÞ ð22Þ

As a result, every quantity in (5) is known except the
temperature at point pk k¼ 1,2,. . .,N at t¼t0+Dt, and it can be
calculated by

T̂ðpk,t0þDtÞ ¼ T0ðpkÞþDt
XlN

n ¼ 1

XlN

m ¼ 1

cðJpk�pkðl,nÞJÞlU
�1
mn T0ðpkðl,mÞÞ:

ð23Þ

This completes the formulation of the LMAPS.

3.3. LDRBFCM

In this approach, the formulation of the problem starts with
the representation of initial conditions with RBFs. The derivatives
are then calculated by differentiation of the RBF representation.
Assume that the temperature is represented on each of the sub-
domains by lN RBF’s cðJp�pkðl,nÞJÞ and la,n¼ 1,2,. . .,lN; i.e. ,

T0ðpÞ ¼
XlN

n ¼ 1

cðJp�pkðl,nÞJÞlan, pA lO: ð24Þ

It follows that

r2T0ðpÞ ¼
XlN

n ¼ 1

r2cðJp�pkðl,nÞJÞlan, pA lO: ð25Þ

The coefficients la are determined by collocation

T0ðpkðl,mÞÞ ¼
XlN

n ¼ 1

cðJpkðl,mÞ�pkðl,nÞJÞlan, pkðl,mÞA lO, m¼ 1,2,:::, lN :

ð26Þ

This can be written as

lT ¼ lWla, ð27Þ

with the matrix element lWmn of the matrix lW denoted as

lWmn ¼cðJpkðl,mÞ�pkðl,nÞJÞ: ð28Þ

We determine the coefficients la by inverting the matrix lW
(i,e. lW

�1
lW ¼ lI)

la ¼ lW
�1

lT ð29Þ

with the matrix element ðlW
�1
Þmn of the matrix lW

�1 denoted as

lW
�1
mn , which implies that for pA lO

T0ðpÞ ¼
XlN

n ¼ 1

XlN

m ¼ 1

cðJp�pkðl,nÞJÞlW
�1
mn T0ðpkðl,mÞÞ, ð30Þ

and

r
2T0ðpÞ ¼

XlN

n ¼ 1

XlN

m ¼ 1

r
2cðJp�pkðl,nÞJÞlW

�1
mn T0ðpkðl,mÞÞ: ð31Þ

Let f(r)¼r2c(r). Then the operation of the Laplacian on
temperature at initial time at the global point p,r2T0ðpÞ is



Fig. 2. The 51�51 uniformly distributed nodes on the left, and the randomly

distributed nodes with random displacement factor e¼0.2 on the right.

G. Yao et al. / Engineering Analysis with Boundary Elements 35 (2011) 600–609 603
obtained as

r2T0ðpÞ ¼
XlN

n ¼ 1

XlN

m ¼ 1

jðJp�pkðl,nÞJÞlW
�1
mn T0ðpkðl,mÞÞ: ð32Þ

As a result, every quantity in the right hand side of (5) is
known except the temperature at point pk, k¼1,2,y,N at
t¼t0+Dt, and it can be calculated by

T̂ðpk,t0þDtÞ ¼ T0ðpkÞþDt
XlN

n ¼ 1

XlN

m ¼ 1

jðJpk�pkðl,nÞJÞlW
�1
mn T0ðpkðl,mÞÞ:

ð33Þ

This completes the formulation of the LDRBFCM.

3.4. LIRBFCM

In the indirect RBF collocation method, the formulation of the
problem starts with the representation of the second derivatives
of the original function (initial temperature field) with RBFs, the
original function is then obtained by integration. In 2D case,
suppose the original function is the initial temperature field
T0(x,y), and its partial derivatives @2T0ðx,yÞ=@x2and @2T0ðx,yÞ=@y2

are to be approximated. To illustrate the procedure, the detail of
IRBFCM to obtain @2T0ðx,yÞ=@x2is described as follows: assume the
second partial derivate of T0(x,y)with respect to the variable x¼x,y
is first approximated in terms of RBFs, i.e.

@2T0ðpÞ

@x2
¼
XlN

n ¼ 1

cðJp�pkðl,nÞJÞlan, pA lO: ð34Þ

Assume

jxx
kðl,nÞðpÞ ¼

ZZ
cðJp�pkðl,nÞJÞdxdx: ð35Þ

Note that jxx
kðl,nÞin (35) is no longer a radial basis function. The

original temperature field can be given by

T0ðpÞ ¼
XlN

n ¼ 1

jxx
kðl,nÞðpÞlan, pA lO, ð36Þ

The coefficients la are determined by collocation

T0ðpkðl,mÞÞ ¼
XlN

n ¼ 1

jxx
kðl,nÞðpkðl,mÞÞlan, pkðl,mÞA lO, m¼ 1,2,:::,lN :

ð37Þ

This can be written as a lN � lN linear system

lT ¼
xx
l U la, ð38Þ

with the element .xxl Umn. of the matrix xx
l U defined as

xx
l Umn ¼j

xx
kðl,nÞðpkðl,mÞÞ, lT0ðmÞ ¼ T0ðpkðl,mÞÞ, m¼ 1, � � � , lN ; ð39Þ

where m¼1,y,lN. By taking into account the expressions for the
calculation of the coefficients la the indirect collocation repre-
sentation of function T0(p) on subdomain lO can be expressed as

T0ðpÞ ¼
XlN

n ¼ 1

XlN

m ¼ 1

jxx
kðl,nÞðpÞ

xx
l U�1

mn T0ðpkðl,mÞÞ ð40Þ

The spatial second derivative of T0(p) on subdomain lO can be
expressed as

@2T0ðpÞ

@x2
¼
XlN

n ¼ 1

XlN

m ¼ 1

cðJp�pkðl,nÞJÞ
xx
l U�1

mn T0ðpkðl,mÞÞ: ð41Þ

Thus, the second partial derivative of T0(x,y) with respect to the
variable x and y can be approximated as

@2T0ðpÞ

@x2
¼
XlN

n ¼ 1

XlN

m ¼ 1

cðJp�pkðl,nÞJÞ
xx
l U�1

mn T0ðpkðl,mÞÞ,
@2T0ðpÞ

@y2
¼
XlN

n ¼ 1

XlN

m ¼ 1

cðJp�pkðl,nÞJÞ
yy
l U�1

mn T0ðpkðl,mÞÞ: ð42Þ

The operation of the Laplacian on temperature at initial time at
the global point p,r2T0ðpÞ, is obtained as

r
2T0ðpÞ ¼

@2T0ðpÞ

@x2
þ
@2T0ðpÞ

@y2

¼
XlN

n ¼ 1

XlN

m ¼ 1

cðJp�pkðl,nÞJÞð
xx
l U�1

mnþ
yy
l U�1

mn ÞT0ðpkðl,mÞÞ, ð43Þ

As a result, every quantity in the right hand side of (5) is
known except the temperature at point pk, k¼1,2,y,N at
t¼t0+Dt, and it can be approximated as

T̂ðpk,t0þDtÞ ¼ T0ðpkÞþDt
XlN

n ¼ 1

XlN

m ¼ 1

cðJpk�pkðl,nÞJÞð
xx
l U�1

nm

þ
yy
l U�1

nm ÞT0ðpkðl,mÞÞ: ð44Þ

This completes the formulation of the LIRBFCM.
4. Numerical results

Through this section, we investigate the performance of the
three explicit local meshless methods that can be implemented on
evenly or randomly distributed nodes. The computer program has
been coded in double precision using GNU Fortran compiler. All
numerical results have been run on an Intel Core 2 2.66 GHz 64
bits computer.

The similar multiquadrics scaling technique as in [39] is
introduced to alleviate the difficulty of choosing shape parameter
in multiquadrics. The scaling parameter r0 is the maximum nodal
distance in the sub-domain

r0 ¼ max
1r i,jr lN

rij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi�xjÞ

2
þðyi�yjÞ

2
q

, pi ¼ ðxi,yiÞ, pj ¼ ðxj,yjÞA lO:

ð45Þ

The parameter c in all RBFs and corresponding derivatives and
integrations are replaced by cr0. Hence, a large shape parameter of
multiquadrics RBF can be used in the numerical implementation,
in this paper c¼100 is used.

For both uniform and non-uniform node arrangement, we
leave out the corner points for simplicity. The profile of 51�51
uniformly distributed nodes is shown on the left of Fig. 2. The
random nodes are generated from the uniform nodes through the
following transformation:

xi ¼ xiþcrandermin, ð46Þ
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where xi is coordinate of node pi¼(xi,yi), crand is a random
number between 0 to 1, rmin denotes the minimum distance
among different uniform points, e stands for a displacement
factor. The profile of 51�51 randomly distributed nodes with
displacement factor e¼0.2 is shown on the right of Fig. 2. Larger
displacement factor generates increasingly random node arrange-
ment. The parameter lN stands for the number of points in the
local sub-domain: lN¼5 is used throughout this paper, Dh stands
for the minimum distance among the given nodes.

Example. Let domain O be unit square [�0.5,0.5]2. Consider
diffusion equation

@T

@t
ðx,y,tÞ ¼r2Tðx,y,tÞ, ðx,yÞAO, t40, ð47Þ

with initial condition

Tðx,y,0Þ ¼ 1, ðx,yÞAO [ G ð48Þ
Fig. 3. The analytical temperatures at time t¼1
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Fig. 4. Errors as a function of size of time step at
and Dirichelt jump boundary condition

Tðx,y,tÞ ¼ 0, ðx,yÞAG,t40: ð49Þ

The analytical temperature is given by [41]

Tðx,y,tÞ ¼
16

p2
Tanaðx,tÞTanaðy,tÞ ð50Þ

with x¼x,y,

Tanaðx,tÞ ¼
X1
i ¼ 0

ð�1Þiexp½�ð2iþ1Þ2p2t�cos½ð2iþ1Þpx�
2iþ1

: ð51Þ

The absolute error, the maximum absolute error and
the average error of the numerical solution at time t are
defined as

Tabs ¼ 9T̂ðpk,tÞ�Tðpk,tÞ9, k¼ 1,2,. . .,N,

Tmax ¼ max
1rkrN

9T̂ðpk,tÞ�Tðpk,tÞ9,
0�3, t¼10�2and t¼10�1 from left to right.
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Tavg ¼
1

N

XN

k ¼ 1

9T̂ðpk,tÞ�Tðpk,tÞ9, ð52Þ

where T̂ and T stand for numerical and analytical solutions,
respectively. Fig. 3 shows the profiles of the analytical solutions at
t¼0.001, 0.01 and t¼0.1. At t¼0.001, the temperature field
experiences big jump near boundary area, and this is very
challenging and interesting state to approximate. When t¼0.01,
the temperature fields become smother. The accuracy of
approximations at this time appears higher.

Fig. 4 shows the accuracy of the solution as a function of the time
step length. The average errors and maximum absolute errors are
calculated on 51�51 evenly distributed nodes at t¼0.001, 0.01 and
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0.1. For the short times t¼0.001 and t¼0.01, all three methods
represent the same accuracy on both average and maximum errors,
and the errors can be significantly improved when changing the
time step length from 10�4 to 10�5. For longer times such as t¼0.1,
all errors are extremely small, and there is no much difference
among these three methods. On the other hand, when we decrease
the size of the time steps to 10�6, the errors of all three methods are
not decreasing anymore. This is because for further decrease of the
error, also space discretization needs to be refined.

Fig. 5 shows the stability of these methods with respect to the
minimum distance among the given nodes, where in this figure the
size of time steps is chosen as Dt¼10�5, and time t¼0.001, 0.01 and
0.1. One can observe the improvement of the accuracy with denser
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nodes using all three methods. Therefore, all methods give very close
accuracy except when the time is larger. As we see from Fig. 4, for
t¼0.1, the LDRBFCM gives slightly larger errors than the LMAPS and
the LIRBFCM, but there is no meaningful difference among the
results since all the errors are very small.

Fig. 6 shows the absolute errors of the temperature at time
t¼0.0001, 0.001, 0.01 and t¼0.1 at cross section (0, y), where
y¼[�0.5, 0.5]. At the time t¼0.001 a very challenging
temperature state occurs where the temperature experiences
jump near boundary and is difficult to approximate. As we expect,
the absolute errors near boundary nodes are much larger than at
the center nodes. All errors using the three methods are very
small at this time. The errors at central area are increasing as a
function of time, and the errors at near boundary area are
decreasing. For t¼0.01 and 0.1, the errors near boundary nodes
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are smaller, there are two reasons: the analytical temperature
field becomes smoother, and the temperature at the center point
is higher than at the boundaries. Overall, the accuracy of all three
methods is approximately the same.

In Fig. 7 we show the profiles of the average errors and
maximum absolute errors as a function of time using three
methods with 51�51 evenly distributed nodes, where Dt¼10�5.
We compare the errors based on the given interior nodes at time t

from 0 to 0.1. The errors are decreasing as t becomes larger. One
can observe numerically the LMAPS and the LIRBFCM methods
give slightly better accuracy than the LDRBFCM when t is larger,
but practically there is no difference. When the time is small, all
three methods perform practically the same.

Fig. 8 shows the profiles of the average errors and the
maximum errors which were obtained on 51�51 non-uniform
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nodes with different displacement factors e¼0.01, 0.1, 0.2. A
larger e generates increasingly random nodes which gives
different numerical behaviors. For e¼0.01, the errors of the
LIRBFCM and the LDRBFCM are slightly increased compared with
the evenly distributed node arrangement, but for larger e, the
LIRBFCM diverges very quickly.

Figs. 9 and 10 represent the absolute errors using these three
explicit methods for time t¼0.001, 0.01 and 0.1 where the errors
are calculated on 51�51 evenly distributed nodes and on 51�51
non-uniformly distributed nodes with e¼0.2. The results are
obtained based on both kinds of nodes. For the smaller time, all
errors show the same accuracy and the errors at the corner points
are relatively large since the neighbor of the corner points
includes only two boundary nodes in the evenly distributed
node arrangement. For non-evenly distributed nodes, the
LDRBFCM and the LMAPS perform much better than the LIRBFCM.

All the methods are made locally over a set of overlapping sub-
domains and the time stepping is performed in an explicit way, the
radial basis function collocation techniques are used in sub-domains,
small systems of linear equations have to be solved in each time step
for each node and associated sub-domain. The LIRBFCM takes much
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Fig. 9. The approximate temperature field at t ¼ 10�3 , 10�2 , 10
longer CPU time compared with other two methods since the partial
derivatives of original temperature fields on each direction are
needed, which requires two inverse matrices at each time step. The
matrix on the left-hand side of five-noded small system is
symmetric, non-negative. Due to the difficulty of obtaining closed-
form particular solutions for complicated operator and multi-
dimensional space, the LMAPS may not be available for MQ.
However, in this case, other radial basis functions such as
polyharmonic splines can be selected as the basis function. The
integrations of RBFs on each direction in the domain are needed for
the LIRBFCM, which also yields higher order integrations that may
not be available for some RBFs, but the LDRBFCM can always be used
by direct differentiations of the RBFs. Thus, the LDRBFCM can be
considered as a preferable choice in general case.
5. Conclusions

The present paper represents one of the rare publications
where different meshless methods are compared at the same test.
Three kinds of localized meshless methods were compared for
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Dirichlet jump problem for diffusion equation based on both
evenly and non-evenly node distributions: the LMAPS, the
LDRBFCM and the LIRBFCM. The LDRBFCM interpolates analytical
function using RBFs, the LIRBFCM interpolates the second
derivatives of analytical function using RBFs, and the LMAPS
interpolate the Laplacian of analytical function using RBFs. The
numerical performances of all methods show high accuracy and
the improvement of the accuracies with denser nodes and the
smaller time step length. On the other hand, the LMAPS and the
LIRBFCM give slightly better results for larger time and even node
distribution. For non-even node arrangement problems, the
LMAPS and the LDRBFCM are more stable.
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