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Abstract: This paper focuses on the comparative study of global and local mesh-
less methods based on collocation with radial basis functions for solving two di-
mensional initial boundary value diffusion-reaction problem with Dirichlet and
Neumann boundary conditions. A similar study was performed for the boundary
value problem with Laplace equation by Lee, Liu, and Fan (2003). In both global
and local methods discussed, the time discretization is performed in explicit and
implicit way and the multiquadric radial basis functions (RBFs) are used to inter-
polate diffusion-reaction variable and its spatial derivatives. Five and nine nodded
sub-domains are used in the local support of the local method. Uniform and non-
uniform space discretization is used. Accuracy of global and local approaches is
assessed as a function of the time and space discretizations, and value of the shape
parameter. One can observe the convergence with denser nodes and with smaller
time-steps in both methods. The global method is prone to instability due to ill-
conditioning of the collocation matrix with the increase of the number of the nodes
in cases N ≈ 3000. On the other hand, the global method is more stable with re-
spect to the time-step length. Numerical tests with and without noise are conducted
based on the methodology proposed in Younga, Fana, Hua, and Atluri (2009). The
results show larger stability of the local versions of the method in comparison with
the global ones. The accuracy of the local method is comparable with the accuracy
of the global method. The local method is more efficient because we solve only
a small system of equations for each node in explicit case and a sparse system of
equations in implicit case. Hence the local method represents a preferable choice
to its global counter part.
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1 Introduction

The use of radial basis functions (RBFs) in the numerical solution of partial dif-
ferential equations (PDEs) has gained popularity in the engineering and science
community as it is meshless and can readily be extended to multidimensional prob-
lems. The motivation for the comparative study of the Global Radial Basis Function
Collocation Method (GRBFCM) with the Local Radial Basis Function Collocation
Method (LRBFCM) is to broaden understanding of the behavior of meshless meth-
ods in various applications keeping in view the difficulties that may occur during
their use. In recent years RBFs have been extensively used in different context Buh-
mann (2003); Atluri (2004); Atluri and Shen (2002); Atluri, Liu, and Han (2006)
and emerged as a potential alternative in the field of numerical solution of PDEs.

The radial basis functions interpolation was introduced in Hardy (1971), to approxi-
mate two-dimensional geographical surfaces based on scattered data. Kansa (1990)
derived GRBFCM based on multiquadrics RBFs, for the meshless numerical solu-
tion of PDEs. This idea was extended later on by Golberg, Chen, and Karur (1996).
The existence, uniqueness, and convergence of the RBFs approximation was dis-
cussed by Micchelli (1986), Madych and Nelson (1990), and Franke and Schaback
(1998). The importance of shape parameter c in the MQ method was elaborated by
Tarwater (1985). Micchelli (1986) has proved that for distinct interpolation points,
the system of equations obtained by this method is always solvable. The authors
Siraj-ul-Islam, Haq, and Ali (2009); Siraj-ul-Islam, Haq, and Uddin (2009); Ali,
Siraj-ul-Islam, and Haq (2009) have very recently used the GRBFCM to obtain
meshless numerical solution of the nonlinear coupled PDEs.

Contrary to the mesh based methods like the FEM, FVM and FDM, meshless meth-
ods use a set of uniform or random points which are not necessarily interconnected
in the form of a mesh. Due to this advantageous feature, meshless methods have
got increased prominence since mesh generation in multi-dimensional problems is
a non-trivial task. The benefits of meshless approximation by the RBFs is some-
how over shadowed by the dense and ill-conditioned matrix, especially in the large
scale simulations. The non-singularity of the RBF’s interpolation matrix depends
on the shape parameter and the size of the domain. In the GRBFCM the collo-
cation matrix is constructed by taking into consideration the whole domain. This
limits the applicability of the GRBFCM to solve large scale problems. Many reme-
dies like point collocation, local symmetric weak form and local boundary-integral-
equation formulation, domain decomposition by Mai-Duy and Tran-Cong (2002),
multi-grid approach and compactly supported RBFs by Chen, Ganesh, Golberg,
and Cheng (2002) have been suggested in the literature to circumvent this prob-
lem. These approaches result in a substantial complication of the original sim-
ple method on one hand with a very limited advantages on the other hand. Var-
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ious localized meshless methods such as Lee, Liu, and Fan (2003); Liu (2003);
Shu, Ding, and Yeo (2003); Šarler and Vertnik (2006) have been successfully used
in many practical problems for localization of the domain size while maintaining
simplicity of the RBF approach. The LRBFCM was first introduced for diffusion
problems in Šarler and Vertnik (2006). The results in the paper show accuracy
and efficiency. Many authors have applied the LRBFCM to more complex prob-
lems such as convection-diffusion problems with phase-change Vertnik and Šarler
(2006), continuous casting Vertnik, Založnik, and Šarler (2006), solid-solid phase
transformations Kovačevič and Šarler (2005) , heat transfer and fluid flow Šarler
(2005), Navier Stokes equations Divo and Kassab (2007), etc. The main idea of
the LRBFCM is the collocation on overlapping sub-domains of the whole domain.
The overlapping sub-domains drastically reduce the collocation matrix size at the
expense of solving many small matrices with the dimension of the number of nodes
included in the domain of influence for each node instead of a large collocation
matrix. Circular and rectangular domains are most commonly used in the liter-
ature which can either be overlapping or non-over lapping. Detailed discussions
on meshless methods and their applications to many complex PDEs, industrial and
large-scale problems can be found in Atluri (2004), Fasshauer (2008), Kovačevič
and Šarler (2005); Liu (2003); Vertnik, Založnik, and Šarler (2006); Lorbiecka,
Vertnik, Gjerkeš, Manojlovič, Senčič, Cesar, and Šarler (2009); Šarler, Kosec, Lor-
biecka, and Vertink (2010); Kosec and Šarler (2009); Vertnik and Šarler (2009);
Kosec and Šarler (2010) and the references therein.

The explicit and implicit, global and local radial basis function collocation meth-
ods are considered in this paper. These methods are henceforth abbreviated as
GRBFECM (Global Radial Basis Function Explicit Collocation Method), GRBFC-
NCM (Global Radial Basis Function Crank-Nicolson Collocation Method), GRB-
FICM (Global Radial Basis Function Implicit Collocation Method), LRBFECM
(Local Radial Basis Function Explicit Collocation Method), and LRBFICM (Local
Radial Basis Functions Implicit Collocation Method). The structure of the present
paper is organized as follows. In Section 2, we introduce the governing equations
considered in this paper. In Section 3, we discuss the time discretization. In Sec-
tion 4, the global and local meshless methods, the GRBFCM and LRBFCM are
described. Section 5 is devoted to the numerical tests of both methods on the dif-
fusion reaction PDEs with Dirichlet and Neumann’s boundary conditions. At the
end, we draw conclusions of the study.
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2 Governing Equations

Consider the dimensionless form of two dimensional diffusion-reaction equation
defined on domain Ω with boundary Γ

∂u(x, t)
∂ t

= L [u(x, t)]+κu(x, t)+g(x, t), (1)

with initial condition

u(x, t0) = u0,x ∈Ω∪Γ, (2)

and Dirichlet or Neumann boundary conditions

B [u(x, t)] = f (x, t), t0 +4t ≥ t ≥ t0,x ∈ Γ, (3)

where u, t,x = [x,y]tr are the diffusion, time and space variables respectively, tr
represents the transpose, g and f are the known functions of x and t, Γ = ΓD +
ΓN . ΓN and ΓD are Neumann and Dirichlet parts at the boundaries, κ is a real
constant, L is differential operator consisting of first and second-order derivatives
of space variables and B is the first-order differential operator with respect to space
variables in the case of the Neumann boundary conditions and is identity operator
in the case of the Dirichlet boundary conditions.

3 Time Discretization

Let ∆t be the time step size, and t = t(n) = t0 + n∆t be the time discretization. The
time derivative in Eq.(1) is approximated by Euler formula in the following manner

∂u(x, t)
∂ t

=
u(x, t)−u(x, t0)

∆t
. (4)

The parameter θ is used in the time descritization of Eq. (1) as

u(x, t0 +θ ∆t)≈ θu(x, t0 +∆t)+(1−θ)u(x, t0), (5)

g(x, t0 +θ ∆t)≈ θg(x, t0 +∆t)+(1−θ)g(x, t0), (6)

L [u(x, t0 +θ ∆t)]≈ θL [u(x, t0 +∆t)]+(1−θ)L [u(x, t0)] . (7)

Then u(x, t) in Eq. (1) can be approximated as

(1−κ ∆t)u−∆tL u−∆tg = u0 +∆tL u0 +∆tg0, for x ∈Ω (8)

where u = u(x, t0 + θ ∆t),u0 = u(x, t0),g = g(x, t0 + θ ∆t), g0 = g(x, t0), L u =
L u(x, t0 + θ ∆t), L u0 = L u(x, t0), such that t0, u0 and g0 will be updated in
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each time iteration. This is commonly used two-level time stepping strategy that
approximates u(x, t) in Ω from the values given at the initial time t0 and further time
t0 + ∆t. Note that Eq. (8) reduces to the explicit, Crank-Nicolson and fully implicit
method for θ = 0,0.5,1, respectively. In the global cases derived in this paper, we
take θ = 0, 0.5 and 1 whereas in the local RBFs approximation we choose θ = 0, 1.

4 Space discretization

Let {xi}N
1 ∈Ω∪Γ be the space discretization where N = NΩ∪NΓ and N denotes the

total number of points, NΩ denotes number of the interior points and NΓ denotes
the number of boundary points. An introduction of the GRBFICM, GRBFECM,
LRBFICM and LRBFECM is given in Section 4.1 and 4.2.

4.1 GRBFCM

In this approach, the formulation of the problem starts with the representation of u
with RBFs on the entire domain. The derivatives are then calculated by differentia-
tion of the RBF representation. The RBFs approximation for u(x, t) is given in the
following form

u(x, t) =
N

∑
l=1

φ(‖x−xk‖)αl(t), x ∈Ω, (9)

where αl(t), l = 1,2, . . . ,N are the real RBFs coefficients. MQ RBFs are defined as

φ(‖x−xl‖) =
√
‖x−xl‖2 + c2 (10)

where c is the shape parameter. RBFs approximation for the derivatives of u(x, t)
can be represented by

L u(x, t) =
N

∑
l=1

L φ(‖x−xl‖)αl(t). (11)

The coefficients αl(t), l = 1,2, . . . ,N can be found from collocation as,
u(x1, t)
u(x2, t)

...
u(xN , t)



=


φ(‖x1−x1‖) φ(‖x1−x2‖) . . . φ(‖x1−xN‖)
φ(‖x2−x1‖) φ(‖x2−x2‖) . . . φ(‖x2−xN‖)

...
...

...
...

φ(‖xN−x1‖) φ(‖xN−x2‖) . . . φ(‖xN−xN‖)




α1(t)
α2(t)

...
αN(t)

 . (12)
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This can be written in the matrix notation as

u = Φα, (13)

where u = [u(x1, t),u(x2, t), . . . ,u(xN , t)]tr, α = [α1(t),α2(t), . . . ,αN(t)]tr and Φsl =
φ(‖xs−xl‖) is the matrix element of N×N matrix Φ. To represent the approximate
solution of Eqs. (1)-(3) in a single equation at the interior and boundary points, we
define the following domain and boundary indicators:

γ
l
Ω =

{
1, xl ∈Ω,
0, xl 6∈Ω,

γ
l
Γ =

{
1, xl ∈ Γ,
0, xl 6∈ Γ,

(14)

where l = 1,2, . . . ,N. Using Eqs. (9)-(10) in Eqs. (3) and (8) we get

γ
l
Ω

[
(1−κ ∆t)

N

∑
l=1

φ(‖x j− xl‖)αl−θ∆t
N

∑
l=1

L φ(‖x j− xl‖)αl−∆t g(x j, t)

]

+ γ
l
Γ

N

∑
l=1

Bφ(‖x j− xl‖)αl− γ
l
Γ f (xl, t) =

γ
l
Ω

[
u(x j, t0)+∆t(1−θ)

n

∑
l=1

L φ(‖x j− xl‖)α0l +∆t g(x j, t0)

]
+ γ

l
Γ f (xl, t0)

(15)

for j = 1, . . . ,N, and 0 ≤ θ ≤ 1 and α0l (where α0l is value of αl at t0) will be
updated in each of the time iteration. The above linear system of equations can be
written in matrix notation as

Φα = b, (16)

where α = [α1(t),α2(t), . . . ,αN(t)]tr, b = [b1,b2, . . . ,bN ]tr. We determine the coef-
ficients α by inverting Φ

α = Φ
−1b (17)

which implies that

αs =
N

∑
l=1

Φ
−1
sl bl, s = 1,2, . . . ,N, (18)

where Φ
−1
sl denotes the matrix element of the matrix Φ

−1. The matrices Φ and b
are defined as,

Φsl = γ
l
Ω [(1−κ ∆t)φ(‖xs− xl‖)αl−θ∆tL φ(‖xs− xl‖)αl−∆t g(xs, t)]

+ γ
l
ΓBφ(‖xs− xl‖)αl− γ

l
Γ f (xl, t),

bs = γ
s
Ω [u(xs, t0)+∆t (1−θ)φ(‖xs− xl‖)α0l +∆t g(xs, t0)]+ γ

s
Γ f (xs, t0),
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where s, l = 1,2, . . . ,N. The diffusion-reaction variable u, at the next time t0 + ∆t
and position x, can be approximated in the following form,

u(x, t) =
N

∑
l=1

φ(‖x−xl‖)αl, x ∈Ω. (19)

4.2 LRBFCM

In order to reduce the size of the dense matrices arising from the global scheme,
we use a local meshless scheme instead of the GRBFCM as discussed in the last
section. For each x j ∈ Ω∪ Γ, j = 1,2, . . . ,N we choose m nearest neighboring
points contained in the sub-domain jΩ =

{
jxl
}m

l=1, where l denotes the local in-
dexing for each collocation point x j being center of jΩ instead of the whole do-
main. The schematic diagram of 11 × 11 uniform node distribution, and a num-
ber of sub-domains of influence containing five points, i.e. m = 5, at the inte-
rior, near the boundary and corner points are shown in Fig. 1(left) and the overlap-
ping sub-domains are shown in Fig. 1(right). To approximate u(x, t) through the

j�
i�

Figure 1: (left) Scheme of 11 × 11 uniform nodes, sub-domains of influence in the
interior, near boundary and corner points using m = 5, (right) Scheme of overlap-
ping sub-domains.

LRBFECM, consider collocation on the sub-domain jΩ = { jxl}m
l=1, j = 1, . . . ,N

instead of the whole domain Ω. The diffusion variable u can be approximated on
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each sub-domain in the following form,

u( jx, t) =
m

∑
l=1

φ(‖ jx− jxl‖) jαl, jx ∈ jΩ. (20)

It follows that for j = 1,2, . . . ,N,

L u( jx, t) =
m

∑
l=1

L φ(‖ jx− jxl‖) jαl, (21)

Bu( jx, t) =
m

∑
l=1

Bφ(‖ jx− jxl‖) jαl = f ( jx, t). (22)

The coefficients jαl are determined by collocation in the following form

γ
s
Ω

m

∑
l=1

φ(‖ jxs− jxl‖) jαl + γ
s
Γ

m

∑
l=1

Biφ(‖ jxs− jxl‖) jαl

= γ
s
Ω [u( jxs, t0)+g( jxs, t0)]+ γ

s
Γ f ( jxs, t0), (23)

where s = 1,2, . . . ,m, γs
Ω

and γs
Γ

are defined in the last section. The above linear
system can be written in matrix notation as

jΦ jα = jb, (24)

where jα = [ jα1, jα2, . . . , jαm]tr, jb = [ jb1, jb2, . . . , jbm]tr is the right-hand side of
Eq. (23). The matrices jΦ and jb are defined as

jbs = γ
s
Ω (u( jxs, t0)+g( jxs, t0))+ γ

s
Γ f ( jxs, t0),

jΦsl = γ
s
Ωφ(‖ jxs− jxl‖)+ γ

s
ΓBiφ(‖ jxs− jxl‖), s, l = 1,2, . . . ,m,

where jΦ = [ jΦsl] ∈ Rm×m. We determine the coefficients jα by inverting jΦ

jα = jΦ
−1

jb (25)

which implies that

jαs =
m

∑
l=1

jΦ
−1
sl jbl, s = 1,2, . . . ,m, (26)

where jΦ
−1
sl denotes the matrix element of the matrix jΦ

−1. The diffusion-reaction
variable u can be approximated for θ = 0 at interior point x j by using Eq. (21) in
Eqs. (8) in the following form:

u(x j, t) =
u(x j, t0)+∆tg(x j, t0)+∆t ∑

m
s=1 L φ(‖x j− jxs‖)∑

m
l=1 jΦ

−1
sl jbl

1−κ ∆t
. (27)
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For boundary point x j, from Eq. (20) we have

u(x j, t) =
m

∑
s=1

φ(‖x j− jxs‖)
m

∑
l=1

jΦ
−1
sl jbl. (28)

This completes the formulation of the LRBFECM. The formulations are similar for
the GRBFECM and LRBFECM but the global method involves inversion of a full
matrix during one time step, but the local method inverts N small m×m matrices
through entire time period considered.

In the case of LRBFICM, we use Eqs. (8), (20)–(22) to get RBFs approximation
corresponding to θ = 1 at nodal points x j ∈Ω, j = 1, . . . ,N in the following form

γ
l
Ω

[
(1−κ ∆t)u(x j, t)−∆t

m

∑
s=1

L φ(‖x j− jxs‖)
m

∑
l=1

jΦ
−1
sl u( jxl, t)

]

+ γ
l
Γ

N

∑
l=1

Bφ(‖x j− jxs‖)
m

∑
l=1

jΦ
−1
sl u( jxl, t)

= γ
l
Ω [u(x j, t0)+∆tg(x j, t)]+ γ

l
Γ f (x j, t)

(29)

Note that {{ jxl}m
k=1, j = 1,2, . . . ,N} = {x j}N

j=1, Eq. (29) leads to a linear system
of N equations with N unknown {u(x j, t)}N

j=1 with all entries in each row are equal
to zero except those related to the sub-domain. This leads to N×N sparse system
which can be solved by an efficient sparse matrix solver.

4.3 Continuity of the methods

In the global methods (GRBFCM), the global continuity of function and its deriva-
tives is assured. However, in the local methods (LRBFCM), the global continuity
of the function is assured but not of its derivatives. The overlapping sub-domains
jΩ cover the whole domain Ω such that Ω = ∪ jΩ and ∩ jΩ 6= /0, j = 1,2 . . . N.
The continuity of the LRBFCM at the same nodal points that belong to different
sub-domains behaves as

ui(xk, t) = u j(xk, t) if xk ∈ iΩ∩ jΩ for i 6= j = 1,2, . . . ,N. (30)

L [ui(xk, t)] 6= L [u j(xk, t)] if xk ∈ iΩ∩ jΩ for i 6= j = 1,2, . . . ,N. (31)

Function values in the points which belong to several sub-domains are the same.
However, the derivative at the point depends on the sub-domain from which the
RBFs coefficients are calculated.



136 Copyright © 2010 Tech Science Press CMES, vol.59, no.2, pp.127-154, 2010

5 Numerical results

Throughout this section, we investigate the performance of the global and local
RBFCM that can both be implemented on evenly or randomly distributed nodes.
The computer program has been coded in MATLAB. Three kinds of errors, abso-
lute errors, maximum absolute error and root mean squared error

Labs = |u(x j, t)− û(x j, t)|, j = 1,2, . . . ,N,

L∞ = max Labs,

Lrms =

[
1
N

N

∑
j=1
|u(x j, t)− û(x j, t)|2

]1/2

are considered in this paper. u(x j, t) and û(x j, t) in the above equations represent
exact and numerical solutions of the given partial differential equation, respectively.
The random nodes are generated from the uniform nodes through the following
transformation

x j = x j + crandηrmin (32)

where x j is coordinate of node x j = (x j,y j), crand is a random number between 0
to 1, rmin denotes the minimum distance among different uniform points, η stands
for a displacement factor. The η = 0.15 is chosen in this paper, the uniform nodes
are used if not stated otherwise. A scaling technique similar to the one introduced
in Šarler and Vertnik (2006) is used to alleviate the difficulty of choosing different
values of shape parameter in MQ RBFs. The scaling parameter r0 is the maximum
nodal distance in the sub-domain

r0 =
N

max
j=1

m
max
k=1

√
‖ jxk−x j‖2. (33)

The parameter c in all RBFs and corresponding derivatives are replaced by cr0.
Hence, a large shape parameter of the MQ RBF can be used in the numerical
implementation. Scaling of the shape parameter is performed to make Multi-
quadric (MQ) RBFs approximation insensitive to various dimensions of the do-
mian. Thus, the LRBFCM is less sensitive with respect to the shape parameter
unlike the GRBFCM. The number of nodes in each sub-domain is chosen as m = 5
and m = 9 in one case in the LBRFICM. For numerical validation, the following
following examples are considered.

5.1 Numerical Results for GRBFCM

In this section we investigate the performance of the GRBFCM in explicit, im-
plicit and Crank-Nicolson’s implementation. The method is applied on two bench-
mark problems Jang (2007) (Ex. 1), Nie, Wana, Zhang, and Liu (2008) (Ex. 2) with
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Dirichlet and Neumann boundary conditions. The numerical results of the GRBFC-
NCM, GRBFICM and the GRBFECM are presented in Figs. 2–10 and Tabs. 1–10.

Example 1. Consider the non-dimensional form of a two-dimensional problem

∂u
∂ t

=
[

2x+1
x+ y+1

]
∂ 2u
∂x2 +

[
2y+1

x+ y+1

]
∂ 2u
∂y2 + cos(2x+2y+ t)+8sin(2x+2y+ t),

(34)

where xa ≤ x ≤ xb,ya ≤ y ≤ yb, t ≥ 0, xa = ya = t0 = 0 and xb = yb = 1, with the
initial condition

u(x,y, t0) = sin(2x+2y)+ exp(x+ y) (35)

and subject to the boundary condition

u(xa,y, t) = sin(2y+ t)+ exp(y+2t),
u(x,ya, t) = sin(2x+ t)+ exp(x+2t),
u(xb,y, t) = sin(2y+ t +2)+ exp(y+2t +1),
u(x,yb, t) = sin(2x+ t +2)+ exp(x+2t +1).

The analytical solution is given by

u(x,y, t) = sin(2x+2y+ t)+ exp(x+ y+2t). (36)
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Figure 2: GRBFCNCM, Exact versus Numerical solution, Ex. 1, t = 0.1, ∆t =
10−3, c = 0.37, y = 0,0.1,0.2, . . . ,0.9,1.0, 21×21 nodes.
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Figure 3: GRBFCNCM, Labs, Ex. 1, t = 0.1, ∆t = 10−3, c = 0.37, 21×21 nodes.
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Figure 4: GRBFCNCM, Numerical solution, Ex. 1, t = 0.1, ∆t = 10−3, 21× 21
nodes.
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Figure 5: GRBFCNCM, L∞ error norm versus time, Ex. 1, t = 0.1, ∆t = 10−3,
c = 0.95, 11×11 nodes.
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Table 1: GRBFCNCM, L∞ and Lrms, Ex. 1, t = 0.1, 11×11 nodes.

∆t = 10−4 ∆t = 10−3 ∆t = 10−2

c L∞ Lrms L∞ Lrms L∞ Lrms

0.50 1.04×10−3 4.32×10−4 1.01×10−3 4.41×10−4 1.30×10−3 6.77×10−4

0.80 1.27×10−4 5.63×10−5 1.39×10−4 8.08×10−5 1.23×10−3 5.01×10−4

0.85 9.10×10−5 4.17×10−5 1.33×10−4 6.94×10−5 1.24×10−3 4.98×10−4

0.90 3.70×10−5 3.35×10−5 1.29×10−4 6.26×10−5 1.24×10−3 4.96×10−4

0.95 1.55×10−5 1.14×10−5 1.26×10−4 5.72×10−5 1.27×10−3 4.79×10−4

0.99 div div 1.22×10−4 5.33×10−5 1.24×10−3 4.93×10−4

Table 2: GRBFICM, L∞ and Lrms, Ex. 1, t = 0.1, 11×11 nodes.

∆t = 10−4 ∆t = 10−3 ∆t = 10−2

c L∞ Lrms L∞ Lrms L∞ Lrms
0.50 1.06×10−3 4.20×10−4 1.17×10−3 3.69×10−4 3.64×10−3 1.71×10−3

0.80 1.42×10−4 4.71×10−5 3.74×10−4 1.72×10−4 3.79×10−3 1.88×10−3

0.85 1.09×10−4 3.31×10−5 3.76×10−4 1.77×10−4 3.80×10−3 1.89×10−3

0.90 div div 6.45×10−4 2.74×10−4 3.80×10−3 1.90×10−3

0.95 8.24×10−5 2.48×10−5 3.80×10−4 1.81×10−4 5.70×10−2 1.43×10−2

0.99 div div div div 3.81×10−3 1.91×10−3

Table 3: GRBFECM, L∞ and Lrms, Ex. 1, t = 0.1, 11×11 nodes.

∆t = 10−4 ∆t = 10−3 ∆t = 10−2

c L∞ Lrms L∞ Lrms L∞ Lrms

0.50 1.03×10−4 4.45×10−4 8.60×10−4 6.12×10−4 div div
0.80 1.15×10−4 7.30×10−5 6.51×10−4 3.16×10−4 div div
0.85 8.85×10−5 5.90×10−5 6.44×10−4 3.07×10−4 div div
0.90 div div 6.39×10−4 3.01×10−4 div div
0.95 div div 6.36×10−4 2.98×10−4 div div
0.99 div div 6.38×10−4 2.98×10−4 div div

Table 4: GRBFCNCM, L∞ and Lrms, Ex. 1, t = 0.1, with different sets of nodes.

c N ∆t L∞ Lrms

0.90 11×11 10−4 7.55×10−5 3.13×10−5

0.38 21×21 10−4 7.00×10−5 2.70×10−5

0.15 41×41 10−4 1.12×10−4 3.58×10−5

0.10 55×55 10−4 1.34×10−4 6.96×10−5

0.10 100×100 – div div
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Table 5: GRBFICM, L∞ and Lrms, Ex. 1, t = 0.1, with different sets of nodes.

c N ∆t L∞ Lrms

0.90 11×11 10−4 8.24×10−5 2.48×10−5

0.38 21×21 10−4 1.17×10−4 3.38×10−5

0.15 41×41 10−4 1.35×10−4 2.96×10−5

0.10 55×55 10−4 1.29×10−4 3.14×10−5

0.10 100×100 – div div

Table 6: GRBFECM, L∞ and Lrms, Ex. 1, t = 0.1, with different sets of nodes.

c N ∆t L∞ Lrms

0.8 11×11 10−4 1.15×10−4 9.28×10−5

0.3 21×21 10−4 2.35×10−4 1.03×10−4

0.1 41×41 10−4 div div
0.1 55×55 – div div

Example 2. Consider the non-dimensional form of a linear diffusion-reaction equa-
tion

∂u
∂ t

= 0.2
[

∂ 2u
∂x2 +

∂ 2u
∂y2

]
+0.1u, xa ≤ x≤ xb,ya ≤ y≤ yb, t ≥ t0 (37)

with the initial condition

u(x,y, t0) = cos(x)+ sin(y) (38)

and subject to the boundary conditions

u(x,ya, t) = u(x,yb, t) = exp(−0.1 t)cos(x),
∂u(xa,y, t)

∂x
=

∂u(xb,y, t)
∂x

= 0,

where xa = ya = t0 = 0 and xb = yb = 2π .
Exact solution of the above equation is given by

u(x,y, t) = exp(−0.1t)(cos(x)+ sin(y)). (39)

Accuracy of the GRBFCNCM and GRBFICM is shown as a function of different
time step lengths, number of nodes in Tabs. 1, 2, 4, 7 and 9 for examples 1 and
2. The performance of GRBFCNCM is marginally better than GRBFICM. It is
clear from these tables that when the time step restriction eases the accuracy is
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Figure 6: The GRBFCNCM, Numerical solution, Ex. 2, t = 0.1, ∆t = 10−4, c =
1.99, 21×21 nodes.
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Figure 7: The GRBFCNCM, Lrms errors verses time, Ex. 2, t = 0.1, ∆t = 10−3,
c = 2.1, 21×21 nodes.

Table 7: The GRBFCNCM, L∞ and Lrms, Ex. 2, t = 0.1, 11×11 nodes.

∆t = 10−4 ∆t = 10−3 ∆t = 10−2

c L∞ Lrms L∞ Lrms L∞ Lrms

3.20 2.21×10−2 5.79×10−3 2.21×10−2 5.78×10−3 2.21×10−3 5.78×10−3

3.00 8.99×10−3 2.48×10−3 8.99×10−3 2.48×10−3 8.96×10−3 2.47×10−3

2.99 8.33×10−3 2.46×10−3 3.33×10−3 2.45×10−3 8.31×10−3 2.45×10−3

2.80 2.06×10−2 5.23×10−3 2.05×10−2 5.23×10−3 2.06×10−2 5.23×10−3

2.00 7.53×10−2 2.48×10−2 7.53×10−2 2.48×10−2 7.51×10−2 2.48×10−2

1.50 1.02×10−1 3.64×10−2 1.02×10−1 3.64×10−2 1.02×10−1 3.63×10−2

reasonably good in the case of the GRBFICM. However when the coefficient matrix
size exceeds 60×60 the solution diverges. The numerical results of the GRBFECM
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Figure 8: GRBFCNCM, Labs, Ex. 2, t = 0.1 c = 0.1, ∆t = 10−3, 31×31 nodes.
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Figure 9: The GRBFCNCM, approximate verses analytical solutions, Ex. 2, t =
0.1, ∆t = 10−3, c = 10, m = 9, y = π/15,2π/15, . . . ,14π/15, 31×31 nodes.

Table 8: The GRBFICM, L∞ and Lrms, Ex. 2, t = 0.1, 11×11 nodes.

∆t = 10−4 ∆t = 10−3 ∆t = 10−2

c L∞ Lrms L∞ Lrms L∞ Lrms

3.20 2.21×10−2 5.78×10−3 2.21×10−2 5.78×10−3 2.20×10−3 5.78×10−3

3.00 8.99×10−3 2.48×10−3 8.99×10−3 2.48×10−3 8.96×10−3 2.47×10−3

2.99 8.33×10−3 2.46×10−3 3.33×10−3 2.45×10−3 8.31×10−3 2.45×10−3

2.80 2.06×10−2 5.23×10−3 2.05×10−2 5.23×10−3 2.06×10−2 5.23×10−3

2.00 7.53×10−2 2.48×10−2 7.53×10−2 2.48×10−2 7.51×10−2 2.48×10−2

1.50 1.02×10−1 3.64×10−2 1.02×10−1 3.64×10−2 1.02×10−1 3.63×10−2

are shown in Tabs. 3 and 6. Excellent agreement of exact versus numerical solution
is shown in Figs. 2, 3, 6. Absolute errors are shown in Fig. 3 and 8. In Figs. 5
and 7, L∞ errors are shown converging as the solution advances in time. Overall
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Figure 10: Noisy data, Ex. 1, t = 0.1, Lrms, 11×11 uniform nodes, (left) GRBFCM,
, c = 0.95, (right) LBRFCM , c = 100.

Table 9: The GRBFCNCM, L∞ and Lrms, Ex. 2, t = 0.1, different sets of nodes.

c N ∆t L∞ Lrms

2.99 11×11 10−4 8.34×10−3 2.46×10−3

1.50 21×21 10−4 6.57×10−2 1.48×10−2

0.50 41×41 10−4 8.17×10−2 1.37×10−2

0.50 55×55 10−4 7.92×10−2 1.19×10−2

0.50 100×100 – div div

Table 10: The GRBFICM, L∞ and Lrms, Ex. 2, t = 0.1, different sets of nodes.

c N ∆t L∞ Lrms

2.99 11×11 10−4 8.34×10−3 2.46×10−3

1.5 21×21 10−4 6.58×10−2 1.48×10−2

0.50 41×41 10−4 8.18×10−2 1.37×10−2

0.50 55×55 10−4 7.95×10−2 1.20×10−2

0.50 100×100 – div div

performance of the GRBFCNCM and GRBFICM is better than the GRBFECM as
the later one suffers from small time step restriction in addition to ill-conditioning
of the global collocation matrix. In terms of stability, the GRBFCNCM is better
than the GRBFICM and GRBFCEM.
Next we consider Ex. 1 with initial noisy data as proposed in Younga, Fana, Hua,
and Atluri (2009) as follows:

u(x,y,0) = (1+ kλ )sin(2x+2y)+ exp(x+ y). (40)
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The boundary conditions can be extracted from the analytical solution

u(x,y, t) = (1+ kλ )sin(2x+2y+ t)+ exp(x+ y+2t), (41)

where −1 ≤ λ ≤ 1 are uniformly distributed random numbers generated through
Matlab command rand and k is the amplitude of noise level. In the present case we
consider the range

[
10−8,10−2

]
for the noise level k with the initial profile given

in the Eq. (40). Comparison of Lrms corresponding to the GRBFECM, GRBFICM
and GRBFCNCM for different time steps varying from 10−2 to 10−5 is shown in
Fig. 10 (left). From these results it can be concluded that the initial perturbations
do not produce instabilities when solution marches into final time.

Next section is focused on numerical results obtained form local meshless methods
implemented on a local domain instead of the whole set of points as discussed in
the previous section.

5.2 Numerical Results for LRBFCM

In this section numerical results of the LRBFCM corresponding to examples 1 and
2 are presented in their explicit and implicit formulations. The numerical results
corresponding to examples 1 and 2 of LRBFECM and LRBFICM are shown in
Figs. 10-18 and Tabs. 11-21.
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Figure 11: LRBFECM on the left and LRBFICM on the right, Ex. 1, t = 0.1, ∆t =
10−5, 11×11 nodes.

In Figs. 11-12 maximum absolute errors of the LRBFECM and LRBFICM as well
as numerical versus approximate solution are shown for different values of time
and time step lengths. In Tabs. 11-17 L∞ and Lrms errors of both the LRBFECM
and LRBFICM are shown as a function various values of t, ∆t and nodal den-
sity. It is observed from these tables that the LRBFICM can tolerate comparatively
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Figure 12: LRBFECM on the left and LRBFICM on the right, analytical ver-
sus approximate solution, Ex. 1, t = 0.1, ∆t = 10−3, m = 5, c = 100,, y =
0,0.1,0.2, . . . ,0.9,1.0, 11×11 nodes.
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Figure 13: Left GRBFCM and LRBFCM (m = 5, c = 100,), Lrms errors, Ex. 1,
t = 0.1, ∆t = 10−3, right GRBFCM and LRBFCM, different values of c, 11× 11
nodes.

Table 11: LRBFECM, L∞ and Lrms, Ex. 1, 11×11 nodes.

∆t = 10−5 ∆t = 10−4 ∆t = 10−3

t Lrms L∞ Lrms L∞ Lrms L∞

10−3 1.97×10−5 3.01×10−5 1.92×10−5 2.97×10−5 1.56×10−5 2.66×10−5

10−2 1.74×10−4 2.92×10−4 1.70×10−4 2.87×10−4 1.33×10−4 2.53×10−4

10−1 8.17×10−4 1.62×10−3 7.91×10−4 1.57×10−3 5.43×10−4 1.17×10−3

large time step length where as the performance of the LRBFECM is very good at
small time, small time step lengths and denser nodes. The computational cost of
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Table 12: LRBFICM, L∞ and Lrms, Ex. 1, 11×11 nodes.

∆t = 10−4 ∆t = 10−3 ∆t = 10−2

t Lrms L∞ Lrms L∞ Lrms L∞

10−3 2.76×10−3 1.01×10−2 2.94×10−3 9.93×10−3 – –
10−2 1.99×10−2 6.73×10−2 1.98×10−2 6.64×10−2 1.97×10−2 6.16×10−2

10−1 5.44×10−2 1.59×10−1 5.46×10−2 1.60×10−1 5.55×10−2 1.62×10−1

Table 13: LRBFECM, L∞ and Lrms, Ex. 1, 21×21 nodes.

t = 10−3 t = 10−2 t = 10−1

∆t Lrms L∞ Lrms L∞ Lrms L∞

10−5 5.24×10−6 7.44×10−6 4.57×10−5 7.22×10−5 2.13×10−4 4.08×10−4

10−4 4.74×10−5 7.01×10−6 4.10×10−5 6.78×10−5 1.86×10−4 3.61×10−4

10−3 7.51×10−6 2.03×10−5 5.30×10−5 1.39×10−4 div div

Table 14: LRBFICM, L∞ and Lrms, Ex. 1, 21×21 nodes.

t = 10−3 t = 10−2 t = 10−1

∆t Lrms L∞ Lrms L∞ Lrms L∞

10−4 3.13×10−3 1.08×10−2 2.15×10−2 6.94×10−2 5.75×10−2 1.68×10−1

10−3 3.15×10−3 1.03×10−2 2.13×10−2 6.82×10−2 5.77×10−2 1.68×10−1

10−2 – – 1.98×10−2 6.06×10−2 5.85×10−2 1.70×10−1

Table 15: LRBFECM L∞ and Lrms, Ex. 1, different number of nodes.

∆t = 10−5 t = 10−3 t = 10−2

N Lrms L∞ Lrms L∞

11×11 1.97×10−5 3.01×10−5 1.74×10−4 2.92×10−4

21×21 4.81×10−6 7.44×10−6 4.57×10−5 7.22×10−5

41×41 1.29×10−6 1.72×10−6 1.12×10−5 1.71×10−5

101×101 1.21×10−7 1.69×10−7 1.03×10−6 1.64×10−6

Table 16: LRBFICM, L∞ and Lrms, Ex. 1, different number of nodes.

∆t = 10−2 t = 10−2 t = 10−1 t = 100

N Lrms L∞ Lrms L∞ Lrms L∞

11×11 1.97×10−2 6.16×10−2 5.55×10−2 1.62×10−1 7.62×10−2 1.75×10−1

21×21 1.98×10−2 6.06×10−2 5.85×10−2 1.70×10−1 8.05×10−2 1.78×10−1

41×41 1.97×10−2 5.96×10−2 5.99×10−2 1.70×10−1 8.27×10−2 1.78×10−1

101×101 1.96×10−2 5.90×10−2 6.07×10−2 1.70×10−1 8.39×10−2 1.78×10−1
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Table 17: LRBFICM, L∞ and Lrms, Ex. 1, different number of nodes.

∆t = 10−3 t = 10−3 t = 10−2 t = 10−1

N Lrms L∞ Lrms L∞ Lrms L∞

11×11 2.94×10−3 9.93×10−3 1.98×10−2 6.64×10−2 5.46×10−2 1.60×10−1

21×21 3.15×10−3 1.03×10−2 2.13×10−2 6.82×10−2 5.77×10−2 1.68×10−1

41×41 3.20×10−3 1.04×10−2 2.19×10−2 6.96×10−2 5.92×10−2 1.68×10−1

101×101 3.21×10−3 1.03×10−2 2.23×10−2 6.97×10−2 6.02×10−2 1.69×10−1

the LRBFICM is greater than the LRBFECM as the later needs solution of N×N
sparse matrix at each time iteration. In Fig. 13, the Lrms errors are shown as a func-
tion of the number of uniform interpolation nodes and the shape parameter using
the GRBFECM, GRBFCNCM, GRBFICM, LRBFECM and LRBFICM. The local
methods work for larger amount of nodes and larger range of the shape parameter,
but the global methods perform more accurate with smaller number of nodes when
the shape parameter is chosen properly.
Comparison of Lrms for the LRBFECM, LRBFICM corresponding to Ex. 1 with
noisy initial data given in Eq. (40) with different values of noise levels mentioned
earlier and different time steps varying from 10−2 to 10−5 is shown in Fig. 10
(right). The LRBFECM and LRBFICM maintain their stability at the advance time
levels for the whole range of noise introduced in the initial data. Performance of
LRBFCM is more stable than GRBFCM for the whole range of k.
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Figure 14: LRBFECM, Labs, Ex. 2, t = 0.1, ∆t = 10−3, m = 5,c = 100, 21× 21
nodes. on the left and random nodes on the right.

The numerical results of Ex. 2 produced through the LRBFICM and LRBFECM
are shown Figs. 14-16 and Tabs. 18-21. In Figs. 14, a comparison of absolute errors
of the LRBFECM for uniform and non-uniform nodes is shown. In the case of non-
uniform nodes the behavior of absolute errors is comparatively more oscillatory and
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Figure 15: LRBFICM, Labs, Ex. 2, t = 0.1, ∆t = 10−3, m = 9, c = 10, 31× 31
nodes.
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Figure 16: LRBFICM, approximate versus analytical solutions, Ex. 2, t = 0.1, ∆t =
10−3, c = 10,, m = 9, y = π/15,2π/15, . . . ,14π/15, 31×31 nodes.

Table 18: LRBFECM, L∞ and Lrms, Ex. 2, m = 5, 11×11 and 21×21 nodes.

N = 11×11 t = 10−3 t = 10−2 t = 10−1

∆t Lrms L∞ Lrms L∞ Lrms L∞

10−3 9.33×10−3 2.43×10−2 8.96×10−3 2.43×10−2 1.25×10−2 2.64×10−2

10−4 9.33×10−3 2.43×10−2 8.96×10−3 2.43×10−2 1.25×10−2 2.64×10−2

10−5 9.33×10−3 2.43×10−2 8.96×10−3 2.43×10−2 1.25×10−2 2.64×10−2

N = 21×21 t = 10−3 t = 10−2 t = 10−1

10−3 4.47×10−4 1.60×10−3 1.25×10−3 2.68×10−3 1.28×10−2 2.67×10−2

10−4 4.48×10−4 1.60×10−3 1.25×10−3 2.68×10−3 1.28×10−2 2.67×10−2

10−5 4.48×10−4 1.60×10−3 1.25×10−3 2.68×10−3 1.28×10−2 2.67×10−2

large than the uniform nodes. In Figs. 15, a comparison of absolute errors of the
LRBFICM is shown. It is clear from this figure that the errors are maximum near
the boundaries where the Neumann boundary condition are specified. In Fig. 16 a
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Figure 17: Left: GRBFICM and LRBFICM (m = 5, c = 100), Lrms errors, Ex. 2,
t = 0.1, ∆t = 10−3. Right: GRBFICM and LRBFICM, different values of c, 11×11
nodes.
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Figure 18: LRBFICM, LRBFECM and GRBFCNCM, GRBFICM, GRBFECM left
Ex. 1, right Ex. 2, Lrms, different sets of nodes.

Table 19: LRBFICM, L∞ and Lrms, Ex. 2, 21×21, m = 9, 31×31 nodes.

N = 21×21 t = 10−3 t = 10−2 t = 10−1

∆t Lrms L∞ Lrms L∞ Lrms L∞

10−2 – – 5.08×10−4 2.19×10−3 5.96×10−4 2.63×10−3

10−3 4.99×10−4 2.13×10−3 5.07×10−4 2.19×10−3 5.87×10−4 2.68×10−3

10−4 4.99×10−4 2.13×10−3 5.05×10−4 2.24×10−3 6.73×10−4 3.10×10−3

N = 31×31 t = 10−3 t = 10−2 t = 10−1

10−2 – – 1.03×10−4 5.42×10−4 1.52×10−4 7.66×10−4

10−3 9.79×10−5 5.15×10−4 1.03×10−4 5.42×10−4 1.54×10−4 7.68×10−4

10−4 9.79×10−5 5.15×10−4 1.04×10−4 5.42×10−4 1.58×10−4 7.69×10−4
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Table 20: LRBFECM, L∞ and Lrms, Ex. 2, ∆t = 10−3 with different sets of nodes.

m = 5 t = 10−3 t = 10−2 t = 10−1

N Lrms L∞ Lrms L∞ Lrms L∞

11×11 9.33×10−3 2.43×10−2 8.96×10−3 2.43×10−2 1.25×10−2 2.64×10−2

21×21 4.47×10−4 1.60×10−3 1.25×10−3 2.68×10−3 1.28×10−2 2.67×10−2

41×41 1.29×10−4 2.68×10−4 1.32×10−3 2.68×10−3 1.31×10−2 2.67×10−2

101×101 1.34×10−4 2.70×10−4 1.34×10−3 2.70×10−3 1.33×10−2 2.69×10−2

Table 21: LRBFICM, L∞ and Lrms, Ex. 2, ∆t = 10−3, with different sets of nodes.

m = 9 t = 10−3 t = 10−2 t = 10−1

N Lrms L∞ Lrms L∞ Lrms L∞

11×11 9.88×10−3 3.10×10−2 9.43×10−3 3.06×10−2 1.44×10−2 3.43×10−2

21×21 4.99×10−4 2.13×10−3 5.07×10−4 2.19×10−3 5.87×10−4 2.68×10−3

31×31 9.79×10−5 5.15×10−4 1.03×10−4 5.42×10−4 1.54×10−4 7.68×10−4

41×41 4.42×10−5 3.13×10−4 5.25×10−5 3.42×10−4 1.87×10−4 5.60×10−4

51×51 3.31×10−5 2.57×10−4 6.18×10−5 4.64×10−4 3.71×10−4 9.66×10−4

101×101 1.42×10−4 1.78×10−3 1.30×10−3 4.73×10−3 1.25×10−2 3.54×10−2

comparison of exact versus numerical solution for various values of y is shown. In
Fig. 17, the Lrms errors are shown as a function of the number of uniform interpo-
lation nodes and the shape parameter using the GRBFECM, GRBFCNCM, GRB-
FICM, LRBFECM and LRBFICM for Ex. 2. In Fig. 18, the Lrms errors are shown
as a function of the number of uniform interpolation nodes and the shape parameter
using the GRBFECM, GRBFCNCM, GRBFICM, LRBFECM and LRBFICM for
both examples 1 and 2. It is clear form these figure that performance of the global
methods is more sensitive to the shape parameter and the accuracy getting worse
as the number of nodal points are increased. Like the example 1, the local methods
work for larger amount of nodes and larger range of the shape parameter in this
case as well. Global methods perform more accurate with smaller number of nodes
when the shape parameter is chosen properly.

In Tabs. 18-21 the L∞ and Lrms errors are shown as a function of different time
step lengths at various times and different number of uniform nodes for both the
LRBFECM and LRBFICM. It is clear from these tables that the numerical results
do not improve when time step length is decreased for comparatively large time.
For the denser nodes, the accuracy is improving for shorter time, and small time
step length but not for longer time and large time step lengths. The denser dis-
cretization yields higher accuracy at shorter time.



A Comparative Study of Global and Local Meshless Methods 151

6 Conclusions

In this paper we presented and compared truly meshless global and local approaches
based on the MQ RBFs for solving two dimensional diffusion-reaction PDEs. The
LRBFCM is different from traditional the GRBFCM in the sense that it is a pure
local procedure. Based on the study presented in the previous sections, we summa-
rize the outcomes as follows:

i The GRBFCM uses nodes from the whole domain simultaneously while the
LRBFCM needs local configuration of the nodes falling in the domain of
influence.

ii The LRBFCM approach is less sensitive to the shape parameter than the
GRBFCM

iii Both versions of meshless techniques (GRBFCM and LRBFCM) produce
stable results for initial data with and without noise in the specified range of
parameters k, c and ∆t. The LRBFECM and LRBFICM perform more stable
than their counter parts the GRBFECM, GRBFCNCM and GRBFICM for
large values of k.

iv The GRBFCNCM, GRBFICM and the LRBFICM are less sensitive to the
time step size than its counter parts the GRBFECM and the LRBFECM.

v The GRBFCNCM, is more stable in terms of sensitivity to the shape param-
eter c than the GRBFICM and GRBFECM.

vi Computational cost of the local version is considerably smaller than the
global one as it requires only solution of a small system of the same size
as the number of nodes in the domain of influence.

vii The matrix resulting from the LRBFICM is sparse with all entries in each
row zero except those related to the sub-domain.

viii For small systems both the GRBFCM and LRBFCM can be used but for
large problems the LRBFCM is the only preferable choice.

ix The study of Lee, Liu, and Fan (2003) has been extended and confirmed for
time dependent PDEs.
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