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a b s t r a c t

In this paper we apply the newly developed method of particular solutions (MPS) and one-stage

method of fundamental solutions (MFS-MPS) for solving fourth-order partial differential equations. We

also compare the numerical results of these two methods to the popular Kansa’s method. Numerical

results in the 2D and the 3D show that the MFS-MPS outperformed the MPS and Kansa’s method.

However, the MPS and Kansa’s method are easier in terms of implementation.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

During the past two decades, radial basis functions (RBFs) have
played an important role in the development of meshless
methods for solving partial differential equations [2,3,8,10].
Kansa’s method [10] is a well-known meshless method using
RBFs. Due to its simplicity and effectiveness, Kansa’s method has
become very popular in the area of science and engineering.
Meanwhile, another important development using RBFs is the
extension of the method of fundamental solutions (MFS) for
solving inhomogeneous equations [8,11]. In this approach, RBFs
have been used to approximate the particular solution of the
given governing equation. As a result of the approximate
particular solution, the original inhomogeneous equation has
been converted to a homogeneous equation. The MFS or other
boundary methods are used to solve this homogeneous solution.
This is a two-stage numerical scheme. In [13], a numerical
comparison of these two approaches can be found where the
numerical accuracy of these two approaches are similar. However,
Kansa’s method has the advantage of being able to solve
partial differential equations with variable coefficients while the
two-stage MFS cannot.

Recently, a one-stage numerical scheme using the MFS and
RBFs has been proposed to further improve the MFS for solving
partial differential equations with variable coefficients [1,17]. In
this one-stage approach, the fundamental solution and the
particular solution using RBFs have been used as two basis
functions to directly approximate the given partial differential
ll rights reserved.
equation. The one-stage numerical scheme is called the MFS-MPS.
One important aspect of this one-stage approach is that the MFS is
capable of solving PDEs with variable coefficients. Thus
competitive to Kansa’s method. Followed by this development,
two independent research groups [12,18] proposed to further
improve the one-stage MFS by omitting the basis function of
fundamental solution and using the particular solution of RBFs
based basis function only to approximate the differential
equation, this particular solution satisfied the boundary
conditions. This numerical scheme is called the MPS. The MPS is
somewhat similar to Kansa’s method. As we shall see, when the
radial basis functions r2n�1 are used, then the MPS and Kansa’s
method become identical. On the other hand, fourth-order partial
differential equations are often encountered in many science and
engineering problems [4,5,16], such as image processing for noise
removal, ice formation [14], high-order plate theory, and some
systems involving several second order elliptic equations. By the
Hörmander operator decomposition technique [9], these coupled
systems, such as a multiple porosity system or a multilayered
aquifer system [6,7], can be reduced to a single higher order
partial differential equations. It is meaningful to have a fair
comparison between Kansa’s method and newly developed
MFS-MPS and MPS. The work in this paper is considered with
fourth-order differential equations.

The organization of the paper is as follows. In Section 2, the
type of partial differential equations with various kinds of
boundary conditions is listed. In Section 3, we briefly introduce
the method of particular solutions. In Section 4, we introduce the
one-stage MFS-MPS. In Section 5, for completeness, we briefly
introduce Kansa’s method. In Section 6, we compare the three
meshless methods for their accuracy and ease of implementation.
In Section 7, we draw conclusions from the comparisons.

www.elsevier.com/locate/enganabound
dx.doi.org/10.1016/j.enganabound.2010.03.004
mailto:chenwen@hhu.edu.cn
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2. Governing equations

For simplicity, we first consider the 2D case. We note that the
formulation in this section can be easily extended to the 3D case.
Let O�R2. We consider the following differential equation:

D2uðx,yÞþaðx,yÞ
@uðx,yÞ

@x
þbðx,yÞ

@uðx,yÞ

@y
þgðx,yÞuðx,yÞ ¼ f ðx,yÞ ðx,yÞAO,

ð1Þ

with Dirichlet boundary condition

uðx,yÞ ¼ gðx,yÞ ðx,yÞA@O, ð2Þ

and normal boundary condition

@uðx,yÞ

@n
¼ h1ðx,yÞ � n ðx,yÞA@O, ð3Þ

or Laplace boundary condition

Duðx,yÞ ¼ h2ðx,yÞ ðx,yÞA@O, ð4Þ

where D2 denotes the biharmonic operator, D denotes the Laplace
operator and @=@n is the normal derivative on the boundary @O, a,
b, g, f, g, h1, and h2 are given functions. O ¼O [ @O is the
computational domain.
3. The method of particular solutions

In the formulation of the MPS [12,18], the main idea is to
rewrite (1) in the system as follows:

D2uðx,yÞ ¼ R x,y,u,
@u

@x
,
@u

@y

� �
ðx,yÞAO, ð5Þ

where

R x,y,u,
@u

@x
,
@u

@y

� �
¼�aðx,yÞ

@uðx,yÞ

@x
�bðx,yÞ

@uðx,yÞ

@y
�gðx,yÞuðx,yÞþ f ðx,yÞ:

ð6Þ

By keeping the biharmonic operator on the left-hand side as a
main differential operator, the other terms have been moved to
the right-hand side and treated as part of the forcing term. The
right-hand side function is approximated by the radial basis
functions as follows:

R x,y,u,
@u

@x
,
@u

@y

� �
¼
Xn

j ¼ 1

ojfðrjÞ, ð7Þ

where rj ¼ Jðx,yÞ�ðcj,tjÞJ, (cj, tj), j¼1, 2,y,n are called the centers
or trial points, and (xj, yj), j¼1, 2,y,n are the centers. Note that
oj,j¼ 1,2, . . . ,n are the undetermined coefficients to be
determined.

By repeating integration of radial basis function fðrÞ,

D2FðrÞ ¼fðrÞ, ð8Þ

the particular solution FðrÞ of biharmonic operator with
right-hand side RBF fðrÞ is obtained. Then, the exact solution
can be approximated by

ûðx,yÞ ¼
Xn

j ¼ 1

ojFðrjÞ: ð9Þ

Thus,

@ûðx,yÞ

@x
¼
Xn

j ¼ 1

oj

@FðrjÞ

@x
,

@ûðx,yÞ

@y
¼
Xn

j ¼ 1

oj

@FðrjÞ

@y
,

D2ûðx,yÞ ¼
Xn

j ¼ 1

ojfðrjÞ:

Thus, let {(xj,yj)}j¼1
n be n distinct collocation points in O of which

fðxj,yjÞg
ni

j ¼ 1 are interior points and fðxj,yjÞg
n
j ¼ niþ1 are boundary

points. The biharmonic system with the normal boundary
condition can be represented by a linear system

Xn

j ¼ 1

oj fjþa
@Fj

@x
þb

@Fj

@y
þgFj

� �
ðriÞ ¼ f ðxi,yiÞ, i¼ 1,2, . . . ,ni,

Xn

j ¼ 1

ojFjðriÞ ¼ gðxi,yiÞ, i¼ niþ1, . . . ,n,

Xn

j ¼ 1

oj

@Fj

@n
¼ h1ðxi,yiÞ � n, i¼ niþ1, . . . ,n: ð10Þ

By solving this linear system, fojg
n
j ¼ 1 can be obtained.

Next, we need to find the closed-form of the particular solution
F in (8). In the 2D case,

(a) fðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2
p

, by direct integration, we have

CðrÞ ¼
4c2þr2

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2

p
�

c3

3
lnðcþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2

p
Þ, ð11Þ

where

DCðrÞ ¼fðrÞ: ð12Þ

Since

DFðrÞ ¼
@

r@r

@FðrÞ
@r

� �
¼CðrÞ,

by direct integration,

FðrÞ ¼�
7

60
c4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2

p
þ

2

45
c2ðr2þc2Þ

3=2
þ

1

225
ðr2þc2Þ

5=2

þ
2c2�5r2

60
c3lnðcþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2

p
Þþ

1

12
r2c3�

c5

5
lnðrÞ

þ
c5

30
lnð2cÞ�

1

12
c5þc1, ð13Þ

where c1 is a constant. In (13), we notice that there is a singular
term lnðrÞ. Since DlnðrÞ ¼ 0, we have D2lnðrÞ ¼ 0. This implies

D2
�

c5

5
lnðrÞþ

c5

30
lnð2cÞ�

1

12
c5þc1

� �
¼ 0:

We can remove the singular term and the constant terms in (13),
i.e.,

D2 FðrÞ� �
c5

5
lnðrÞþ

c5

30
lnð2cÞ�

1

12
c5þc1

� �� �
¼fðrÞ:

Hence,

FðrÞ ¼�
7

60
c4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2

p
þ

2

45
c2ðr2þc2Þ

3=2
þ

1

225
ðr2þc2Þ

5=2

þ
2c2�5r2

60
c3lnðcþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2

p
Þþ

1

12
r2c3 ð14Þ

is a particular solution of biharmonic operator using MQ as a
radial basis function. Note that the particular solution is not
unique. We have the freedom to choose any particular solution F
as long as F satisfies (8). It follows that

1

r

@FðrÞ
@r
¼�

7

60

c4ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2
p þ

2c2

15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2

p
þ

1

45
ðr2þc2Þ

3=2
þ

1

6
c3

þ
ð2c2�5r2Þc3

60
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2
p

lnðcþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2
p

Þ
�

c3

6
lnðcþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2

p
Þ: ð15Þ
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Eq. (15) is required in the evaluation of normal derivative on the
boundary.

(b) fðrÞ ¼ r2n�1, we have

FðrÞ ¼
r2nþ3

ð2nþ1Þ2ð2nþ3Þ2
: ð16Þ

In the 3D case, the closed-form of the particular solution F is
not available for f¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2
p

. For fðrÞ ¼ r2n�1, we have

FðrÞ ¼
r2nþ3

ð2nþ1Þð2nþ2Þð2nþ3Þð2nþ4Þ
: ð17Þ

4. The MFS-MPS

In this section, we briefly introduce the one-stage technique of
the newly developed MFS-MPS [1]. Based on the idea that the
solutions of a given partial differential equation can be written as
the sum of a particular solution and its associated homogeneous
solution, we assume the solution of (1)–(4) can be written in the
following form:

ûðx,yÞ ¼
Xni

i ¼ 1

oiFðriÞþ
Xnb

j ¼ 1

mjGðrjÞ, ð18Þ

where FðrÞ is defined the same as (8), and ri ¼ Jðx,yÞ�ðci,tiÞJ. Note
that (ci, ti), i¼1, 2, y, nb are source points on the fictitious
boundary outside the domain. We also observe that

D2GðrÞ ¼ 0, ð19Þ

since ra0. From (18), it follows that

@ûðx,yÞ

@x
¼
Xni

i ¼ 1

oi
@FðriÞ

@x
þ
Xnb

j ¼ 1

mj

@GðrjÞ

@x
,

@ûðx,yÞ

@y
¼
Xni

i ¼ 1

oi
@FðriÞ

@y
þ
Xnb

j ¼ 1

mj

@GðrjÞ

@y
,

Dûðx,yÞ ¼
Xni

i ¼ 1

oiDFðriÞþ
Xnb

j ¼ 1

mjDGðrjÞ,

D2ûðx,yÞ ¼
Xni

i ¼ 1

oifðriÞ:

For instance, for the given differential equation (1) with boundary
conditions (2) and (4), the weights o¼ ½o1 o2 . . .oni

�T and
m¼ ½m1 m2 . . .mnb

�T can be determined by solving the following
linear system:

Xni

j ¼ 1

oj fjþa
@Fj

@x
þb

@Fj

@y
þgFj

� �
ðriÞ

þ
Xnb

j ¼ 1

mj a
@Gj

@x
þb

@Gj

@y
þgGj

� �
ðriÞ ¼ f ðxi,yiÞ, i¼ 1,2, . . . ,ni,

Xni

j ¼ 1

ojFjðriÞþ
Xnb

j ¼ 1

mjGjðriÞ ¼ gðxi,yiÞ, i¼ niþ1, . . . ,n,

Xni

j ¼ 1

ojDFjðriÞþ
Xnb

j ¼ 1

mjDGjðriÞ ¼ h2ðxi,yiÞ, i¼ niþ1, . . . ,n:

Rewriting in matrix notation, we have that

fþaFxþbFyþgF aGxþbGyþgG

F G

DF DG

2
64

3
75 o

m

" #
¼

f

g

h2

2
64

3
75: ð20Þ
In this paper, the main differential operator is D2 and its
fundamental solution is given as follows:

GðrÞ ¼
r2lnðrÞ in 2D,

r in 3D:

(
ð21Þ

For the over-determined system (20), we can obtain all
weights o and m using the least square method. Instead of
finding a particular solution and its associated homogeneous
solution separately, the above formulation allows us to obtain the
solution in one step. Furthermore, such an approach makes it
possible for the MFS to solve elliptic partial differential equations
with variable coefficients.
5. Kansa’s method

Kansa’s method is a well-known meshless method using radial
basis functions. For completeness, we briefly introduce the
method in this section.

Let {(xj,yj)}j¼1
n be n distinct collocation points in O of which

fðxj,yjÞg
ni

j ¼ 1 are interior points and fðxj,yjÞg
n
j ¼ niþ1 are boundary

points.
The main idea of Kansa’s method is to approximate the

solution u by the linear combination of radial basis functions, i.e.,

ûðx,yÞ ¼
Xn

j ¼ 1

ojfjðrÞ, ð22Þ

where fojg
n
j ¼ 1 are coefficients to be determined. From (1), (2) and

(4), we have

Xn

j ¼ 1

oj D2fjþa
@fj

@x
þb

@fj

@y
þgfj

� �
ðriÞ ¼ f ðxi,yiÞ, i¼ 1,2, . . . ,ni,

Xn

j ¼ 1

ojfjðriÞ ¼ gðxi,yiÞ, i¼ niþ1, . . . ,n,

Xn

j ¼ 1

ojDfjðriÞ ¼ h2ðxi,yiÞ, i¼ niþ1, . . . ,n, ð23Þ

which is an over-determined system and the unknowns fojg
n
j ¼ 1

can be obtained by least square method. In general, MQ is one of
the most widely adopted RBFs in Kansa’s method.

Note that the formulation of the MPS and Kansa’s method is
similar. The linear systems (10) and (23) are exactly the same, but
Kansa’s method uses the RBF fðrÞ directly, and the MPS uses the
particular solution of biharmonic operator with chosen right-
hand side RBF. The choice of basis functions for Kansa’s method is
ad hoc. The derivation of the basis function for the MPS is more
rigorous. The MPS evolved from the MFS-MPS but end up similar
to Kansa’s method. In some sense, these methods are closely
related.
6. Numerical results

To make a comparison of the effectiveness among three
numerical methods mentioned in the previous sections, three
numerical examples are given. Through all the numerical tests in
this section, we use the following formula to choose the location
of the source points in the MFS-MPS:

xs ¼ xbþdðxb�xcÞ, ð24Þ

where xs, xb, and xc denote the source, boundary, and central
nodes respectively. d determines how far the source points from
the boundary. The distribution of interpolation points in O,
boundary collocation points on @O, and source points on G are
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shown in Fig. 1. In the rest of the section, ni is denoted as the
number of the interior points and nb the number of boundary
points.

To validate the numerical accuracy, we calculate the following
root mean square errors, RMSE and RMSEx:

e¼ RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

q

Xq

j ¼ 1

ðûj�ujÞ

vuut , ð25Þ

ex ¼ RMSEx¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

q

Xq

j ¼ 1

@ûj

@x
�
@uj

@x

� �vuut , ð26Þ

where q is the number of testing nodes chosen randomly in the
domain. ûj denotes the approximate solution at the j-th node. To
save space we do not show the numerical results of RMSEy since it
is similar to RMSEx.

In the next three examples, we compare the numerical results
in terms of accuracy for solving higher-order elliptic equations
using three different methods discussed in the previous sections.
We use the well-known Golden Section Search Algorithm [15] to
find a reasonable choice of shape parameter c of MQ and an
acceptable d in (24).
Γ

∂Ω

Ω

Fig. 1. Interpolation points (n), boundary collocation points ð�Þ, and source points

ð3Þ on the fictitious boundary.

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

x

Fig. 2. The computational domain (left) and profile
Example 1. We consider the following partial differential
equation:

D2uðx,yÞþx2y3uðx,yÞþycosðyÞ
@u

@x
ðx,yÞþsinhðxÞ

@u

@y
ðx,yÞ ¼ f ðx,yÞ ðx,yÞAO,

uðx,yÞ ¼ sinðpxÞcoshðyÞ�cosðpxÞsinhðyÞ ðx,yÞA@O,

@u

@n
ðx,yÞ ¼ gðx,yÞ � n ðx,yÞA@O,

where f(x,y) and g(x,y) are generated from the following analytical
solution:

uðx,yÞ ¼ sinðpxÞcoshðyÞ�cosðpxÞsinhðyÞ ðx,yÞAO: ð27Þ

The computational domain is bounded by Cassini curve which is

defined by the following parametric equation:

@O¼ fðx,yÞjx¼ rcosy,y¼ rsiny, 0ryr2pg, ð28Þ

where

r¼
�

cosð3yÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�sin2

ð3yÞ
q �1=3

: ð29Þ

The computational domain and profile of the exact solution in

the extended domain are depicted in Fig. 2. We choose 256 testing

points for the evaluation of RMSE and RMSEx. In Tables 1 and 2,

we compare the results of RMSE and RMSEx for three different

methods using MQ. We observe that the MFS-MPS performs one

order of magnitude better than the MPS and Kansa’s method.

There is little difference between the MPS and Kansa’s method.

Moreover, the accuracy is improving quickly as increasing the

number of interior and boundary nodes.

RMSEx is one order of magnitude less accurate than the RMSE as

shown in the table. In particular, if we replace MQ by the basis

functions fðrÞ ¼ r2n�1, then the MPS is identical to Kansa’s
of the solution in the extended domain (right).

Table 1
Results of RMSE for MPS, MFS-MPS, and Kansa’s method using MQ.

(ni,nb) MPS MFS-MPS Kansa’s method

e c e c d e c

(60,30) 1.36E�3 1.46 2.13E�3 3.17 9.55 1.33E�3 3.27

(126,60) 8.21E�4 0.71 1.24E�4 2.13 5.05 8.46E�4 2.23

(208,90) 3.51E�4 0.62 1.38E�4 1.45 7.21 7.09E�4 1.07

(310,120) 2.30E�4 0.40 7.17E�5 1.00 3.63 6.98E�4 0.93

(406,150) 2.29E�4 0.45 7.04E�5 1.28 3.85 7.09E�4 0.69

(507,180) 3.35E�4 0.31 6.25E�5 1.06 3.82 7.12E�4 0.59
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Table 2
Results of RMSEx for MPS, MFS-MPS, and Kansa’s method using MQ.

(ni,nb) ex

MPS MFS-MPS Kansa’s method

(60,30) 5.71E�3 9.67E�3 5.52E�3

(126, 60) 4.33E�3 7.18E�4 3.10E�3

(208,90) 2.83E�3 7.78E�4 2.50E�3

(310,120) 2.51E�3 5.18E�4 2.38E�3

(406,150) 4.62E�3 4.46E�4 2.79E�3

(507,180) 3.06E�3 4.26E�4 3.00E�3

Table 4

RMSE and RMSEx for the MPS using different orders of RBF fðrÞ ¼ r2n�1 and

different numbers of interior and boundary points.

n ni¼310, nb¼120 ni¼406, nb¼160

e ex e ex

1 6.54E�3 3.70E�2 3.78E�3 1.91E�2

2 8.35E�4 4.73E�3 4.53E�4 1.71E�3

3 4.45E�4 3.51E�3 6.78E�4 4.71E�3

4 3.42E�4 1.94E�3 3.35E�4 2.13E�3

Table 3

Results of RMSE and RMSEx using RBF fðrÞ ¼ r5.

(ni, nb) MPS MFS-MPS

e ex e ex d

(60,30) 4.85E�2 1.98E�1 3.54E�3 1.64E�2 9.55

(126,60) 4.57E�3 3.54E�2 6.04E�4 3.76E�3 3.89

(208,90) 1.46E�3 1.12E�2 1.47E�4 9.82E�4 3.89

(310,120) 4.45E�4 3.51E�3 1.51E�4 9.84E�4 4.03

(310,160) 5.19E�4 3.97E�3 1.59E�4 1.01E�3 4.00

(406,120) 5.99E�4 3.98E�3 1.66E�4 1.07E�3 4.10

(406,160) 6.78E�4 4.71E�3 1.35E�4 8.75E�4 4.50

(507,160) 7.03E�4 4.67E�3 1.63E�4 1.04E�3 4.43

(507,200) 4.40E�4 3.20E�3 3.64E�4 2.34E�3 3.08
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method. In Table 3, we use fðrÞ ¼ r5 and observe that the MFS-

MPS performs slightly better than the MPS. For the MPS as shown

in Table 3, we do not have to worry about finding a good shape

parameter and the location of the source points since the MFS is

not required in the solution process.

In Table 4, we show the RMSE and RMSEx for the MPS using

fðrÞ ¼ r2n�1 for various order of n. There is a clear difference in

accuracy between n¼1 and 2 and little improvement when n42.

Example 2. Next, we consider the following convection–diffusion
equation:

D2uðx,yÞþxyuðx,yÞþ2ysinx
@u

@x
ðx,yÞ�ycosx

@u

@y
ðx,yÞ ¼ f ðx,yÞ ðx,yÞAO,

uðx,yÞ ¼ ysinxþxcosy ðx,yÞA@O,

Duðx,yÞ ¼ gðx,yÞ ðx,yÞA@O,

where f(x,y) and g(x,y) are generated from the following analytical
solution:

uðx,yÞ ¼ ysinxþxcosy ðx,yÞAO: ð30Þ
The domain is bounded by the following peanut shape parametric
curve:

@O¼ fðx,yÞjx¼ rcosy,y¼ rsiny,0ryr2pg,

where

r¼
�

cosð2yÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:1�sin2

ð2yÞ
q �

:

The profiles of the computational domain and the exact solution
in the extended domain are shown in Fig. 3.

In Tables 5 and 6, we show the results of the RMSE and RMSEx

using MQ for different numbers of points both in the domain and

on the boundary for three methods: the MPS, MFS-MPS, and

Kansa’s method. It shows that the number of interior points and

boundary collocation points has little effect on the accuracy of the

solution. We notice that with small number of interior and

boundary points, we can achieve high accuracy. Similar to the

results in Example 1, the MFS-MPS consistently outperforms the

MPS and Kansa’s method. We also observe that the MPS performs

one order of magnitude better than Kansa’s method in the

evaluation of RMSE and RMSEx.

Example 3. In this example, we consider the three dimensional
problem

D2uþauþb
@u

@x
þg @u

@y
þd

@u

@z
¼ f ðx,y,zÞ ðx,y,zÞAO,

u¼ 1
120ðx

5þy5þz5Þ ðx,y,zÞA@O,

Du¼ gðx,y,zÞ ðx,y,zÞA@O,

where

a¼ sinhðxÞcosðyÞsinðzÞ,

b¼ x3sinðyÞez,

g¼�cosðxÞcoshðyÞcosðzÞ,

d¼ 1
20exsinðyÞtanðzÞ:

The non-homogeneous terms f(x,y,z) and g(x,y,z) are generated
from the following analytical solution:

uðx,y,zÞ ¼ 1
120ðx

5þy5þz5Þ ðx,y,zÞAO: ð31Þ

Let

RðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosð2yÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:1�sin2

ð2yÞ
qr

:

The surface of the computational domain is represented by
following parametric equation:

rðy,fÞ ¼ RðyÞcosðyÞiþRðyÞsinðyÞcosðfÞjþRðyÞsinðyÞsinðfÞk, ð32Þ

where yA ½0,pÞ,fA ½0,2pÞ. The profile of the domain is shown in
Fig. 4.

In this example, 82 uniform grids are chosen as testing nodes

for calculating the RMSE, RMSEx, and RMSED, where

RMSED ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

q

Xq

j ¼ 1

ðDûðxj,yj,zjÞ�Duðxj,yj,zjÞÞ
2

vuut : ð33Þ

Furthermore, we choose r2n�1 as the basis functions. In this case,

the MPS and Kansa’s method are identical. Hence, in this example

we only compare the results of the MPS and MFS-MPS. From

Table 7, we choose r5 as the basis function with various number of

interior and boundary points. The accuracy is increasing quickly

as increasing the number of collocation nodes, but becomes stable
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Fig. 3. The profiles of the computational domain (left) and the solution in the extended domain (right).

Fig. 4. Peanut-shape computational domain.

Table 5
RMSE of the MPS, MFS-MPS, and Kansa’s method using MQ with corresponding

parameters c and d.

(ni,nb) MPS MFS-MPS Kansa’s method

e c e c d e c

(25,20) 7.03E�5 6.41 3.97E�5 5.34 3.87 1.15E�3 6.17

(86,40) 1.71E�5 4.37 3.67E�6 2.37 3.80 2.16E�4 4.53

(145,60) 2.04E�5 3.99 1.19E�6 4.00 4.59 9.46E�4 4.58

(190,80) 1.51E�5 3.86 1.77E�6 3.29 3.24 5.21E�4 4.18

(250,100) 2.63E�5 4.39 1.52E�6 4.00 5.28 6.01E�4 3.73

(293,120) 5.49E�5 4.71 2.02E�6 3.14 3.64 9.62E�4 5.96

Table 6
RMSEx of the MPS, MFS-MPS, and Kansa’s method using MQ.

(ni,nb) ex

MPS MFS-MPS Kansa’s method

(25,20) 3.74E�4 2.52E�4 2.96E�3

(86,40) 1.03E�4 2.54E�5 1.84E�3

(145,60) 1.28E�4 1.20E�5 3.19E�3

(190,80) 1.14E�4 1.18E�5 3.48E�3

(250,100) 1.56E�4 1.28E�5 2.11E�3

(293,120) 3.26E�4 1.45E�5 5.26E�3

Table 7
RMSE and RMSEx obtained by different number of interpolation nodes and the

order of RBFs is n¼3.

(ni, nb) MPS MFS-MPS

e ex e ex d

(42,24) 2.99E�3 1.07E�2 5.14E�4 2.58E�3 1.89

(128,60) 1.43E�3 6.63E�3 9.70E�5 2.10E�3 1.90

(232,98) 1.09E�4 2.44E�4 5.88E�5 1.50E�3 1.65

(350,144) 7.43E�5 1.52E�4 5.36E�5 2.89E�3 2.72

(538,220) 5.06E�5 1.68E�4 6.78E�5 1.70E�3 2.23

(632,300) 5.09E�5 1.60E�4 5.10E�5 2.09E�3 2.03

Table 8
RMSE and RMSEx obtained using different order of RBFs, where ni¼538, nb¼220.

RMSE RMSEx

MPS MFS-MPS MPS MFS-MPS

r5 5.06E�5 6.78E�5 1.68E�4 1.70E�3

r7 5.03E�5 5.17E�5 1.61E�4 1.44E�3

r9 4.95E�5 4.58E�5 1.51E�4 6.63E�4

r11 5.37E�5 5.00E�5 1.90E�4 1.95E�3
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after enough large amount of nodes is used. Such an attractive

feature is very desirable in the numerical computation. The

results in Table 8 are produced using 538 interior points and 220

boundary points. We observe little difference using different basis

functions.

7. Conclusions

In this paper we make a comparison among three meshless
methods using radial basis functions. The one-stage MFS-MPS was
recently developed, and then followed by the MPS. In these two
approaches, the particular solution and/or the fundamental solu-
tion are required for solving partial differential equations. The third
method is Kansa’s method which is well known in the meshless
literature. In all the numerical comparisons shown in the last
section, the MFS-MPS performs the best, followed by the MPS and
then Kansa’s method. On the other hand, it is interesting to note
the ranking of easiness in implementation of these three methods
is reversed. The MFS-MPS requires the fundamental solution and
derivation of the particular solution. The determination of the
optimal source location is not trivial. Both the MFS-MPS and the
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MPS require the closed-form of the particular solution using RBFs.
However, not all the closed-form of the particular solution is
available. For instance, the closed-form of the particular solution
using MQ for the 3D case in Example 3 is not available. Hence,
Kansa’s method is the easiest method in term of numerical
implementation.
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