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Abstract

The main problem in cellular automata modeling dérostructure formulation is the dependence of the
crystal shape on the orientation of the principawgh axis. This problem has been recently solved b
using point automata concept [1, 2] instead ofdbkular automata concept and the use of the random
mesh. The temperature field in the random nodesban recently calculated using the finite diffeen
method, and the random mesh solution has beendmkein the randomly chosen nodes of the regular
mesh. In this paper we investigate the performafidt&’o meshless methods that can be directly used o
randomly distributed node arrangements. The taeldased on the developments in [3, 4].

Keywords: local radial basis function, diffusion equation, meshless method.

1. Introduction problem with the analytical solution as a functarthe
node distribution (uniform, non-uniform), time step

Consider a connected and bounded donfaimvith length and multiquadrics free parameters.

boundaryl” occupied by a substance, governed by the

heat diffusion equation 2. Governing equations
aT _
'DCE_DEQKDT) (1) For simplicity, we assess the performance of the

where p, ¢, k, T, t stand for density, specific heat meshless methods by simple dimensionless diffusion

thermal conductivity, temperature, and time. Weequatlon
o7 2

seek the solution of the above equation providatlttie T _
initial value of the temperature and the Dirichlet0t ) )
boundary conditions are known. During the last twé€fined on the domai2 with the boundaryl”. The
decades the meshless methods have been develapedi@iial data at timet =t, are given by

applied to solve engineering and material sciencqa(p,to):T ,pOQOT. )
problems [5-8]. More recently, various localize - O

meshless methods have been developed [3-4, 9-r11](.j-|-i-he It3)|r|_c_rllle§ E(:undua rry condition is given by 4)
this paper, two local meshless methods are compareép’_ T e 0_,p i

for solving heat diffusion equations. These meshles 1iMme stepping method is one of the popular
methods will later be applied to dendritic growtbdal. methods for o_btaln_lng nu_merlcal _solutlons of time-
The first method, the explicit local RBF collocatio dependent partial differential equations. L&t be the
method was first introduced for solving time depemd time step length andt,=nAt,n=0 the time
problems in 2006 by Sarler et al in [3], the nu@ri discretisation. FotO(t .t ], let £00[0,1] and

results are accurate and efficient for small tieps .+ _+

used. The second method, the local multiquadrig—:—", 0T = &0°T +(1-¢) 07Ty, (5)
approximation was developed for solving Poissonot At )

equation in 2003 by Lee et al in [4] which can kterd 'I_'rher_:_(Z) can be written as

to the modified Helmholtz equations. We compareghe ! ~ 1, _ _

two local meshless methods for the Dirichlet jump At EDT+(1 f)DZTO' ©)
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By simplifying the above equation, we obtain The coefficients a,, are determined by collocation

(1-AtE0°)T =[ 1+At(1- &) 07T, . (7) N
There are two special cases, To (pk(' 'm)) - nz; Wi (pk(' 'm)) 1 (13)
‘= 0, Explicit Method, for pyj 0@ M=1,2,...,N .. It can be written as
1 Implicit Method N
If &£=0, then (7) can be written as Toctm =21 Wi 1 @s M=1,2,.., N (14)
n=1
T =T, + MO, (8)  with the matrix element¥_ of the matrix, ¥ defined
This is called explicit time stepping method thagg
calculates the temperatures at a later time udieg t _
temperatures at the current time. P = 1P (pk“ ’m))' (15)
If £=1, (7) can be rearranged as following We determine the coefficientsr, by inverting the
(1-AtO*)T =T, (9) matrix ¥ (ie. ¥, ¥=1)
which is the case of implicit time stepping methbet LA
finds a solution by solving an equation involvingtt 19 =2~ Wam Tkm) (16)
m=1

the current state of the system and the later one. L
which implies that for pd,Q

To(p) :‘z‘zwk(l,n)(p)lw;:an((l,m)' (17)

n=1m=1

In this paper we investigate the performance of thehe gperation of the spatial partial differentiglecator
two meshless methods that can be directly impleewent = o, temperature can be expressed as

on randomly distributed nodes: the explicit locamR

3. Thetwo localized meshless methods

N N
collocation method (ELRBFCM) and the implicit local =T, (p) :Zzz%(m)(p)|wﬁr1nT0k(|,m): (18)
RBF  collocation method (ILRBFCM). The n=1m=1
multiquadrics radial basis functions have been uged for p0,Q . Let = =07, the operation of the Laplacian
the interpolation in both approaches. on temperature at initial time at the global point

p,0T,(p) , is obtained. As a result, every quantity in
(8) is known except the temperature at poiny,

The local RBF collocation method was applied tok =1,2,--N at t=t,+At, this T(p,) can be
explicit time stepping model in 2006 by Sarler ef3}  cajculated by
The points are denoted hy,;k =1,2,...N . The region

N |N
QOTr is divided into N overlapping subdomains To(pk)+AtZZDZwku,n>(pk)I‘“ernTmam)- (19)

n=1m=1

IQ; l :1_’2’"_"N - The schematics of node_: di_StribUtionThe new values are calculated step by step. Insiéad
with typical influence domains are shown in FigZach  global approach, the collocation is made locallgroa
of the subdomains consists ofN points p,; set of overlapping domains of influence and theetim

n=12,..,N that coincide with some of the globalStepping is performed explicitly. Only small systen

oints b.-k=1.2 . N . There is a relation between theIinear equations with the dimension of the numbker o
P PoK=L2,...N - ) o nodes included in the domain of influence have ¢o b
global and the local point with indexes on eachth&f gqved for each node in this method.

subdomain. This relation ik =k(I,n). The k(I,n) is a
function of the local subdomain indéxand local index 3.21LRBFCM

n. The following is valid
Peam = 1Pl =1,2,..N n=1,2,..,N (10) In the implicit method, we proceed as follows:

The temperature is represented on each of tk|]r‘%)stead of calculating the temperature at currenet

. \ _ step point by point, the temperatures at all ginedes
subdomains by, N RBF's ¢,(p),n=12,..N, and 5o cajculating in one step using global sparséesys

3.1ELRBFCM

their coefficients a,;n=1,2,...,N , i.e. The operation of the spatial partial differentiglecator
N on temperature at final time step is the issue walav

To(P) =X tham (P)10n; PO, Q. (11)  like to investigate, but not at the initial timeegt Thus
n=1

) ) o ) the RBF representation of temperature on each ef th
The operation of the spatial partial differentiglecator g phdomains becomes

= (which can stand for example far*, O, or /dn;) NN .

on temperature can be expressed as T(p.) = Z;le‘/’k(l,n) (Pu) Wi Tka.m- (20)
N n=1m=:

=T, (p) = Z[zwk“ n)(p)]lan; pOd,Q. (12) For p,0,Q, the operation of the spatial partial

n=t differential operator= on temperature can be written as



B NN . as in [11] is introduced to alleviate the diffigulbf

ZT(Pe) = 22 =i (P) 1 Wi Tamy- (21) choosing shape parameter in multiquadrics. The
. neLmeL . . normalization of the influence domain is perforngd

Using (9) and the boundary conditions we can wfiee scaling the distance in botlt and y directions, the

following system of equations for each point . ) .
pil=12,..N, kI=12,.N non-scaled and scaled radial two dimension RBF

NN with corresponding 0%y are listed below. We use
Yo Z[l—AtDZ M//mJ W Team scaled RBF in all numerical results of the pregepter.

n:le:lN 1. Non-scaled RBF
+Y7 ZZ Wi LIJ;rlnTk(I,m) = YQlToQI + Y‘I')ITDFI ; (22) Yxy)= \/(X_ Xc)2 +(y- yc)z +c? (28)

n=1 m=1
X=x%)*+(y-y,)*+2c?
where DZI/I(X, Y): ( C)z (y yC)z 2\15 (29)
_(opOQ, _[o;pOr®, (=% +(y=¥)*+¢?)

Yo (p)= 1poa, 7 (p)= L pOr®. (23)  where(x., y,) is the center of RBR .
The sparse system of (22) can be written in a matri 2. Scaled RBF
form WX, y)=x2+y?+c? (30)
N

YT =T;1=12..N 24 X2+ Yy o ol 2)1S
20T =T = 2 4 D%u(x,y):[ L ey e e
where e e

NN where  X'=(X=X)/ X0 Y= (Y= Y)Y e @Nd
W, =Yy [1—AtD2|(//|n]|qJ;,}1d<(|'m)i Xomo YmaxFEPrESENt the maximum distances along each
n=1m=1 . . . . . .
NN (25) coordlnlateI d_|rect|orr11|n the local gomaln of ;‘nflnenln A

+YP T our calculations, the given nodes are chosen as the

r nz;,;'w'”' nm ek m) centers of the RBFs.
T=v. T2 +y°T" (26) The absolute error, maximum error and average

| Ql 'o r'o

error of the numerical solution at tirteare defined as

and Kronecker delta
Tabs(pk):|T(pklt)_Tana(pk1t)|1 k=112r" 1N ! (32)

1 k=i,
& -{0; K#i @7 T =maT @ 1) T @ 1), k=12,.N (33
For the local RBF collocation method, the only+ _~- 1 _
. . ! . T.,.=> —[T(p.,t)-T A, k=12,.. N, (34
geometrical data needed is the local configurabbn 2 ;Nl (P:t) (P )l (34)

nodes that fall within its influence domain. ThewhereT and T, stand for numerical and analytical

temperatures at a later time step at all given siate .
obtained in one step by inverting a sparse syswra. solution, N represents the total number of gll nodes, the
new values are simultaneously calculated. Thishes { errors are evaluated_on the random and u_nlformsnode
main difference to the ELRBECM. For both uniform and non-uniform node
arrangement, we leave out the corner points for
simplicity. The profile of 51 by 51 uniformly digbuted
nodes is shown in Fig.1. The random nodes are
It is clear that implicit methods require solving a generated from the uniform nodes through the fdtigw

equation system, and they are more difficult t(grarlsformatlon
numerically implement. Implicit methods are used® = Pi % Cana€Tmin: (35)
because many problems arising in real life aré. e where p, is coordinate of nodep=(p,), C.. IS a

use of_an explicit_method for such cases requirgsndom number between -1 to 1, denotes the
impractically small time stepé\t to obtain the stable . . . . . .

. .~ minimum distance among different uniform points,
result. For such problems, to achieve the giVell - ds for a displacement factas=0.15.025. and
accuracy, it takes much less computational timegjsisa s fora |_sp aceme gc 0*_7' e a
an implicit method with larger time steps, eveninigk 0-32 aré used in the numerical implementations. The
into account that one needs to solve an equaticheof Profiles of 51 by 51 randomly distributed nodeshwit
form (9) at each time step. Whether one shouldawse different displacement factor are shown in Fig.3-6r

explicit or implicit method depends upon the probie larger displacement factor, the nodes are generated

3.2 Discussion of both methods

be solved at hand. randomly. . . e .
Example. Consider the following diffusion equation
4. Numerical results %_I(X, vt =0T (x,y,t), (x,y)O0Q,t>0, (36)

Through this section, we numerically compare twavith initial condition :
localized meshless methods which are introducetién T(x,y,t)=0, (x,y)dr t> 0, (37)
last section. The similar multiquadrics scalinggique and boundary condition:



T(x,y,00=1, ,y)dQor. (38) approximate. As we expect, the absolute errors near

The analytical solutiorT (x, y,t) is given as [12] boundary nodes are relatively larger than the cente
16 nodes when the time is small. Fig.15 shows thelateso
T(x, y,t)=FTana(X,t)Tm(y,t) (39) errors of the temperature at time=102 at cross

section (0,y), where y{O[-0.5,0.5] using both

. : methods . The errors at central area are increasirg

T (f,t)=z(_1) expk (2 + 177t Jeos[(2+ 1€ Jiag) function of time, and the errors at near boundasaa

o = 2i+1 are decreased as we expect since the analytical

where foré = x,y,

The unit square domaif-0.5,0.5f with uniformly and temperature field is smoother. Fig.16 shows thelabs
randomly distributed nodes is considered. ThEMOrs for t=10". The maximum errors appear at the
parametem stands for the number of points in the locafenter since the temperature at the center point is
domain of influenceAt stands for the size of each timelighest and the temperature field is smoother asvsh
step, Ax stands for the minimum distance among th

iy Figure 8.
given nodes, the shape parameter of multiquadias R Fig.17 shows accuracy of the solution as a function
c is chosen as a constant. The numerical results are

of the size of time step. The average errors and
obtained on uniformly and randomly distributed mode || Amum errors are calculated on 51 by 51 uniformly

which are generated using (35). Fig.6-8 shows ttfistibuted nodes att=10". The shape parameter
profiles of the analytical solutions &t 107,102 10", ¢ =50, and the number of points in the local domain of

Fig.9-10 show the average errors and the maXimumfluence is 5. The explicit method performs slight

. L AR .. _better when the size of time step is small, but the
errors using both explicit and implicit methods twit implicit method is unconditionally stable. With gar
different shape parameters. We observe that bet%erp o y
accuracy can be achieved using explicit method witf"e Steps such ad0-,10°, the explicit method
larger shape parameterOn the other hand, the implicit diverges. On the other hand, the decrease of tieeadi
method usingc =100 gives increasing errors when theth® time step, the errors of both methods are not
time is longer. This is due to the increase of ilfécreasing anymore since the machine round ofsgrror
conditioning of the sparse matrix. This means that Which means that implicit method is more stable.
explicit method performs better with a large ramje _ F19-18 shows the stability of these two methods
shape parameters. In the all of following numerica/ith respect to the minimum of distance between the
results, the shape parameter 50 will be used. given nodes, where in this figure the size of tsteps is

In Fig.11 we show the profiles of the average errocchosen asAt=10", and timet=10°, n=5, ¢=50.
and maximum errors using both methods with 51 by 52ne can observe the improvement of the accurady wit
uniform nodes. Then=5 stands for the number of denser nodes using both methods, therefore, theiexp
points in local domain of influence, the time stapis Method shows better stability for denser nodes.

chosen asl0°. We compare the errors based on given Fig.19-30 represents the absolute errors using
interior node at timet from 0 to 0.1. One can observe€Xplicit method and implicit method fot =107,10°

the explicit method gives better accuracy than the=10", where the errors are calculated on 51 by 51
implicit method when the time is small, but thisnist uniformly distributed nodes in Fig.19-24, and ontiil
the case when time becomes large. Note that wreen il non-uniformly distributed nodes in Fig.25-30r&é
shape parameteris 50, as we have seen from Figure 8,

the explicit method outperforms the implicit method

using larger shape parameter. In order to achibee t Table 1. The lists of the average errors and the
same accuracy as implicit method, we can simply maximum errors using explicit method and implicit
increase the value of the shape paranteter method, where 51 by 51 random nodes with 0.35,
Fig.12-13 shows the profiles of the average errors c=50, n=5 At=10°.
and the maximum errors which were obtained on 51 A — —
. _ : i verage Explicit Implicit
51 non-uniform nodes, where=0.15 is used in Fig. Time Method Method
11, £=0.25is used in Fig.12. Tab.1 shows the average 1.0E-4 4.7432E3 5. 7891E3
and maximum errors at tim&0™®,10°,10% and 10 1.0E-3 5.8723E-3 6.1825E-3
for 51 by 51 randomly distributed nodes using 0.35. 1.0E-2 1.3029F-2 1.3088E-2
A larger £ generates increasingly random nodes which 1.0E-1 9.9629E-3 9.9458E-3
gives slightly different numerical behaviors. The aximurr Explicit Implicit
stability of both methods is similar for random eed Time Method Method
Fig.14 shows the absolute errors of the temperature  1.0-4 2.7092F-1 2.6438I-1
at time t=10° and at cross section(0,y), where 1.0E-3 8.9737L-2 9.0123E-2
y[[-0.5,0.5] using both methods. This is a very 1.0E-2 4.9142t-2 4.9152¢-2
challenging temperature state where the temperature 1.0E-1 2.5140F-2 2.5098F-2

keeps jumping near boundary and is difficult to
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Figure 1: The 11 by 11 uniform node arrangemedt anFigure 4: The 51 by 51 randomly distributed nodéh
the schematics of the local domain of influencagsi random displacement factor 0.25.
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Figure 9: Comparison of the effect of shape paranget
using explicit method. The errors as a functiotirog
are calculated on 51 by 51 uniform nodes with 5,

At=10".
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Figure 10: Comparison of the effect of shape patame

c using implicit method. The errors as a functibtiroe

are calculated on 51 by 51 uniform nodes using5,
At=10".
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Figure 11: The errors as a function of the metlaods
time with 51 by 51 uniform nodes usimg=50, n=5,
At=107°.
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Figure 12: The errors as a function of the metlaoub
time with 51 by 51 random nodes usiag=0.15,
c=50, n=5, At=10".
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Figure 13: The errors as a function of the metlaoub
time with 51 by 51 random nodes using
£=0.25,c=50, n=5, At =10°.
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Figure 14: The absolute errors watdirectionfor
x=0.0, At=107, with 51 by 51 uniform nodes and
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Figure 15: The absolute errors watdirection for
x=0.0, At=107, with 51 by 51 uniform nodes and
n=5, ¢=50, att=102.
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Figure 16: The absolute errors atdirection for
x=0.0, At =107 with 51 by 51 uniform nodes and
n=5, ¢=50, att=10"
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Figure 17: The errors as a function of size of tstep
with 51 by 51 uniform node arrangement with
At=10°, n=5, ¢=50, t=107.
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Figure 18: The errors as a function minimum node
distance withAt =10°, n=5, c=50, t =107,



Absolute Errors Using Explicit Method

Figure 19: The absolute errors using explicit mdtho
with 51 by 51 uniform nodes, wherk =10°, n=5,
c=50, t=103.

Absolute Errors Using Implicit Method

Figure 20: The absolute errors using implicit metho
with 51 by 51 uniform nodes usinf =10°, n=5,
c=50, t=10".

Absolute Errors Using Explicit Method

Figure 21: The absolute errors using explicit mdtho
and implicit method with 51 by 51 uniform nodesngsi
At=10"°, n=5, ¢=50, t=1072.

Absolute Errors Using Implicit Method

Figure 22: The absolute errors using implicit metho
with 51 by 51 uniform node arrangement using
At=10°, n=5, ¢=50, t=107.

Absolute Errors Using Explicit Method

Figure 23: The absolute errors using explicit mdtho
with 51 by 51 uniform nodes anfit =10°, n=5,
c=50, t=10".
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Figure 24: The absolute errors using implicit metho
with 51 by 51 uniform nodes usinft =10, n=
c=50, t=10".
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Figure 25: The absolute errors using explicit métho ~ Figure 28: The absolute errors using implicit metho

with 51 by 51 random nodes usig= 0.35, At =107, with 51 by 51 random node arrangement, where
n=>5 ¢=50, t=103. £=0.35At=10°, n=5, ¢=50, t=107.
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Figure 26: The absolute errors using implicit metho ~ Figure 29: The absolute errors using explicit rodth

with 51 by 51 random node arrangement, where with 51 by 51 random node arrangement using
£=0.35, At=10°, n=5, ¢=50, t=10>. £=0.35,At=10°, n=5, ¢c=50, t=10"
Absolute Errors Using Explicit Method Absolute Errors Using Implicit Method

0.5 . 0.5 0.03
0.02
> 0 X > 0
0.01
J ) 0
08’5 o 05 35 0 05
X X

Figure 27: The absolute errors using explicit métho ~ Figure 30: The absolute errors using implicit metho

with 51 by 51 random node arrangement using with 51 by 51 random node arrangement, where
£=0.35, At=10"°, n=5, c=50, t=102. £=0.35 At=10°, n=5, ¢=50, t=10"



time fieldst =10°,102 ,10* are graphed for both kinds in the IMPOL d.d. Aluminium Industry, Slovenia. The
financial support from EU is kindly acknowledged.
In addition, the second and the fourth author would
like to acknowledge the financial support withinGsL
S bilateral project “Advanced Meshless Methods”.

of nodes. For the shorter time such Bs107°, the
errors at the corner points are relatively largesithe
neighbor of the corner points includes two boundar
nodes in the uniform node arrangement, whic
decreased the accuracy. For non-uniformly distefut
nodes, both methods have slightly different, anel ”heferences
error fields are not symmetric as uniformly distitied

nodes. [1] Lorbiecka A. Z., and Sarler BRoint Automata

The computer program has been coded i —_— ) .
FORTRAN with double precision. The computationa ethod for Prediction of CGrain Structure in the

cost of both methods is primarily dependent on tw
factors: the computational time of each time stefirtd
the approximate temperatures at all given nodepteen eds., Leoben: ASMET, Austria, 2009, pp. 192-197

by R, and the number of time steps. Total time cost 2] .I,_orbiecka. A 7 ’and éaéler B.,I\/Ieshless Poir.1t
can be represented big (in. The computational costs Automata Method for ’S mulation of Der,1dritic Growth,

of explicit method and implicit method at each tistep ook of apstracts, 5th ICCES International Sympwsiu

using 101 by 101 random node arrangements &g peshless and Other Novel Computational Methods,
0.0560r  and  0.1120+0.37201r  seconds, agyri S. N. and Sarler, B. eds., Ljubljana, Sloi

respectively, where 0.1120 is the time for setur®p yniversity of Nova Gorica, 2009, pp. 8.

matrix in implicit method which does not change af3] Sarler B., Vertnik R.,Meshfree Explicit Local
different time step. The implicit method takes muclRadial Basis Function Collocation Method for Diffusion
longer time than explicit method at each time stfi, proplems, Computers and Mathematics  with
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