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Abstract  
 

The main problem in cellular automata modeling of microstructure formulation is the dependence of the 
crystal shape on the orientation of the principal growth axis. This problem has been recently solved by 
using point automata concept [1, 2] instead of the cellular automata concept and the use of the random 
mesh. The temperature field in the random nodes has been recently calculated using the finite difference 
method, and the random mesh solution has been picked out in the randomly chosen nodes of the regular 
mesh. In this paper we investigate the performance of two meshless methods that can be directly used on 
randomly distributed node arrangements. The tools are based on the developments in [3, 4]. 
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1. Introduction 
 

Consider a connected and bounded domain Ω  with 
boundary Γ  occupied by a substance, governed by the 
heat diffusion equation                

( )
T

c k T
t

ρ ∂ = ∇⋅ ∇
∂

                                                      (1) 

where ρ , c , ,k  T , t  stand for density, specific heat, 

thermal conductivity, temperature, and time. We        
seek the solution of the above equation provided that the 
initial value of the temperature and the Dirichlet 
boundary conditions are known. During the last two 
decades the meshless methods have been developed and 
applied to solve engineering and material science 
problems [5-8]. More recently, various localized 
meshless methods have been developed [3-4, 9-11]. In 
this paper, two local meshless methods are compared 
for solving heat diffusion equations. These meshless 
methods will later be applied to dendritic growth model. 
The first method, the explicit local RBF collocation 
method was first introduced for solving time dependent 
problems in 2006 by Šarler et al in [3], the numerical 
results are accurate and efficient for small time steps 
used. The second method, the local multiquadric 
approximation was developed for solving Poisson 
equation in 2003 by Lee et al in [4] which can be extend 
to the modified Helmholtz equations. We compare these 
two local meshless methods for the Dirichlet jump 

problem with the analytical solution as a function of the 
node distribution (uniform, non-uniform), time step 
length and multiquadrics free parameters.  
 
2. Governing equations 
 

For simplicity, we assess the performance of the 
meshless methods by simple dimensionless diffusion 
equation 

2T
T

t

∂ = ∇
∂

 (2) 

defined on the domain Ω  with the boundary Γ .  The 
initial data at time 0t t=  are given by 

0 0( , ) , .T t T= ∈Ω ∪ Γp p   (3) 
The Dirichlet boundary condition is given by 

0, , ,( ) Dt t tT T ≥ ∈ Γ=p p  (4)                                    
Time stepping method is one of the popular 

methods for obtaining numerical solutions of time-
dependent partial differential equations. Let t∆  be the 
time step length and , 0nt n t n= ∆ ≥  the time 

discretisation. For 1( , ],n nt t t−∈  let [0,1]ξ ∈  and 

( )2 2 20
0, 1 ,

T TT
T T T

t t
ξ ξ−∂ = ∇ = ∇ + − ∇

∂ ∆
 (5) 

Then (2) can be written as 

( )2 20
01 .

T T
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t
ξ ξ− = ∇ + − ∇

∆
                                (6) 



 

By simplifying the above equation, we obtain 

( )2 2
0(1 ) 1 1 .t T t Tξ ξ − ∆ ∇ = + ∆ − ∇                        (7) 

There are two special cases,  

0, Explicit Method,

1, Implicit Method.ξ
=   

If 0,ξ =  then (7) can be written as  
2

0 0.T T t T= + ∆ ∇                                                  (8) 
This is called explicit time stepping method that 
calculates the temperatures at a later time using the 
temperatures at the current time.  

If 1,ξ =  (7) can be rearranged as following   
2

0(1 )t T T− ∆ ∇ =                                                  (9) 
which is the case of implicit time stepping method that 
finds a solution by solving an equation involving both 
the current state of the system and the later one.   
 
3. The two localized meshless methods 
 

In this paper we investigate the performance of the 
two meshless methods that can be directly implemented 
on randomly distributed nodes: the explicit local RBF 
collocation method (ELRBFCM) and the implicit local 
RBF collocation method (ILRBFCM). The 
multiquadrics radial basis functions have been used in 
the interpolation in both approaches. 

 
3.1 ELRBFCM 
 

The local RBF collocation method was applied to 
explicit time stepping model in 2006 by Šarler et al [3]. 
The points are denoted by ; 1,2,...,k k N=p . The region 

Ω ∪ Γ  is divided into N  overlapping subdomains 
; 1,2,...,l l NΩ = . The schematics of node distribution 

with typical influence domains are shown in Fig.1. Each 
of the subdomains consists of l N  points ;l np  

1,2,...,ln N=  that coincide with some of the global 

points ; 1,2,...,k k N=p . There is a relation between the 

global and the local point with indexes on each of the 
subdomain. This relation is ( , )k k l n= . The ( , )k l n  is a 

function of the local subdomain index l  and local index 
n . The following is valid  

( , ) ; 1,2,..., , 1,2,..., .k l n l n ll N n N= = =p p                 (10) 
The temperature is represented on each of the  
subdomains by l N  RBF's ( ), 1,2,...,l n n Nψ =p , and 

their coefficients ; 1,2,...,nl ln Nα = , i.e.  

( ) ( )0 ( , )
1

; .
l N

k l n l n l
n

T ψ α
=

= ∈ Ω∑p p p                         (11) 

The operation of the spatial partial differential operator 
Ξ  (which can stand for example for 2∇ , ∇ , or / Γ∂ ∂n ) 

on temperature can be expressed as 

( ) ( )0 ( , )
1

; .
l N

k l n l n l
n

T ψ α
=

 Ξ = Ξ ∈ Ω ∑p p p                 (12) 

The coefficients l nα  are determined by collocation 

( ) ( )0 ( , ) ( , ) ( , )
1

,
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k l m l k l n k l m l n
n

T ψ α
=

=∑p p                       (13) 

for ( , ) ; 1,2,...,l lk l m m N∈ Ω =p . It can be written as 

0 ( , )
1

; 1,2,...,
l N

k l m l mn l n l
n

T m Nα
=

= Ψ =∑                     (14) 

with the matrix element l mnΨ  of the matrix lΨ  defined 
as  

( )( , ) ( , ) .l mn l k l n k l mψΨ = p                                              (15) 

We determine the coefficients l nα  by inverting the 

matrix lΨ  (i,e. 1
l l l

− =Ψ Ψ I )  

1
( , )

1

l N

l n l nm k l m
m

Tα −

=

= Ψ∑                                           (16) 

which implies that for l∈ Ωp    

( ) ( ) 1
0 ( , ) 0 ( , )

1 1

.
l lN N

k l n l nm k l m
n m

T Tψ −

= =

= Ψ∑∑p p                         (17)    

The operation of the spatial partial differential operator 
Ξ  on temperature can be expressed as 

( ) ( ) 1
0 ( , ) 0 ( , )

1 1

,
l lN N

k l n l nm k l m
n m

T Tψ −

= =

Ξ = Ξ Ψ∑∑p p                (18) 

for l∈ Ωp . Let 2Ξ = ∇ , the operation of the Laplacian 

on temperature at initial time at the global point 
p , 2

0( )T∇ p , is obtained. As a result, every quantity in 

(8) is known except the temperature at point ,kp  

1,2,k N= ⋯  at 0 ,t t t= + ∆  this ( )kT p  can be 
calculated by 

( )2 1
0 ( , ) 0 ( , )

1 1

( ) .
l lN N

k k l n k l nm k l m
n m

T t Tψ −

= =

+ ∆ ∇ Ψ∑∑p p             (19) 

The new values are calculated step by step. Instead of 
global approach, the collocation is made locally over a 
set of overlapping domains of influence and the time 
stepping is performed explicitly. Only small system of 
linear equations with the dimension of the number of 
nodes included in the domain of influence have to be 
solved for each node in this method.   
 
3.2 ILRBFCM 

 
In the implicit method, we proceed as follows: 

instead of calculating the temperature at current time 
step point by point, the temperatures at all given nodes 
are calculating in one step using global sparse system.  
The operation of the spatial partial differential operator 
on temperature at final time step is the issue we would 
like to investigate, but not at the initial time step. Thus 
the RBF representation of temperature on each of the 
subdomains becomes 

( ) ( ) 1
( , ) ( , )

1 1

.
l lN N

k l k l n k l nm k l m
n m

T Tψ −

= =

= Ψ∑∑p p                       (20) 

For ,lk ∈ Ωp  the operation of the spatial partial 

differential operator Ξ  on temperature can be written as 
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( , ) ( , )
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= =

Ξ = Ξ Ψ∑∑p p                  (21) 

Using (9) and the boundary conditions we can write the 
following system of equations for each point 

; 1,2,...,l l N=p , , 1,2,...,k l N=  
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where  
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The sparse system of (22) can be written in a matrix 
form 

1
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N
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i
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=
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where  
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0 ,l D l
l l l DT T TΩ Γ

Ω Γ= ϒ + ϒ                                           (26) 

and Kronecker delta 

 
1; ,

0; .ki

k i

k i
δ

=
=  ≠                                                        (27) 

For the local RBF collocation method, the only 
geometrical data needed is the local configuration of 
nodes that fall within its influence domain. The 
temperatures at a later time step at all given nodes are 
obtained in one step by inverting a sparse system. The 
new values are simultaneously calculated. This is the 
main difference to the ELRBFCM. 

 
3.2 Discussion of both methods 

 
It is clear that implicit methods require solving an 

equation system, and they are more difficult to 
numerically implement. Implicit methods are used 
because many problems arising in real life are stiff. The  
use of an explicit method for such cases requires 
impractically small time steps t∆  to obtain the stable 
result. For such problems, to achieve the given 
accuracy, it takes much less computational time using 
an implicit method with larger time steps, even taking 
into account that one needs to solve an equation of the 
form (9) at each time step. Whether one should use an 
explicit or implicit method depends upon the problem to 
be solved at hand.   

 
4. Numerical results 

 
Through this section, we numerically compare two 

localized meshless methods which are introduced in the 
last section. The similar multiquadrics scaling technique 

as in [11] is introduced to alleviate the difficulty of 
choosing shape parameter in multiquadrics. The 
normalization of the influence domain is performed by 
scaling the distance in both x  and y  directions, the 

non-scaled and scaled radial two dimension RBF ψ  

with corresponding 2ψ∇  are listed below. We use 

scaled RBF in all numerical results of the present paper.  
1. Non-scaled RBF 

2 2 2( , ) ( ) ( )c cx y x x y y cψ = − + − +                  (28) 

      
2 2 2

2
2 2 2 1.5

( ) ( ) 2
( , )

(( ) ( ) )
c c

c c

x x y y c
x y

x x y y c
ψ − + − +∇ =

− + − +
     (29)                     

where ( , )c cx y  is the center of RBF ψ .  
2. Scaled RBF 

2 2 2( , ) ' 'x y x y cψ = + +                             (30)                           

( )
2 2 2 2

1.52 2 2 2
2 2
max max

' '
( , ) ' '

x c y c
x y x y c

y x
ψ

− + +∇ = + + +   (31)                  

 where max max' ( ) / , ' ( ) /c cx x x x y y y y= − = −  and 

max max,x y represent the maximum distances along each 
coordinate direction in the local domain of influence. In 
our calculations, the given nodes are chosen as the 
centers of the RBFs. 

The absolute error, maximum error and average 
error of the numerical solution at time t  are defined as  

( ) ( , ) ( , ) , 1,2, , ,abs k k ana kT T t T t k N= − =p p p …     (32) 

max max ( , ) ( , ) , 1,2,..., ,k ana kT T t T t k N= − =p p    (33)

1

1
( , ) ( , ) , 1,2, , ,

N

avg k ana k
k

T T t T t k N
N=

= − =∑ p p …   (34) 

where T  and anaT  stand for numerical and analytical 

solution, N  represents the total number of all nodes, the 
errors are evaluated on the random and uniform nodes.  

For both uniform and non-uniform node 
arrangement, we leave out the corner points for 
simplicity. The profile of 51 by 51 uniformly distributed 
nodes is shown in Fig.1. The random nodes are 
generated from the uniform nodes through the following 
transformation  

min ,i i randc rε= +p p                                                     (35) 

where ip  is coordinate of node ( )i=p p , randc  is a 

random number between -1 to 1, minr denotes the 

minimum distance among different uniform points, ε  
stands for a displacement factor; 0.15,ε = 0.25, and 
0.35 are used in the numerical implementations. The 
profiles of 51 by 51 randomly distributed nodes with 
different displacement factor are shown in Fig.3-5. For 
larger displacement factor, the nodes are generated more 
randomly.  
Example.  Consider the following diffusion equation 

2( , , ) ( , , ), ( , ) , 0,
T

x y t T x y t x y t
t

∂ = ∇ ∈Ω >
∂

            (36) 

with initial condition : 
( , , ) 0, ( , ) , 0,T x y t x y t= ∈ Γ >                            (37) 

and boundary condition: 



 

( , ,0) 1, ( , ) .T x y x y= ∈Ω ∪ Γ                             (38) 
The analytical solution ( , , )T x y t  is given as [12] 

2

16
( , , ) ( , ) ( , )ana anaT x y t T x t T y t

π
=                                (39) 

where for , ,x yξ =  
2 2

0

( 1) exp[ (2 1) ]cos[(2 1) ]
( , ) .

2 1

i

ana
i

i t i
T t

i

π πξξ
∞

=

− − + +=
+∑ (40) 

The unit square domain 2[ 0.5,0.5]− with uniformly and 
randomly distributed nodes is considered. The 
parameter n  stands for the number of points in the local 
domain of influence, t∆  stands for the size of each time 
step, x∆  stands for the minimum distance among the 
given nodes, the shape parameter of multiquadrics RBF 
c  is chosen as a constant. The numerical results are 
obtained on uniformly and randomly distributed nodes 
which are generated using (35). Fig.6-8 shows the 
profiles of the analytical solutions at 3 2 110 ,10 ,10t − − −= . 

Fig.9-10 show the average errors and the maximum 
errors using both explicit and implicit methods with 
different shape parameters. We observe that better 
accuracy can be achieved using explicit method with 
larger shape parameter c. On the other hand, the implicit 
method using 100c =  gives increasing errors when the 
time is longer. This is due to the increase of ill 
conditioning of the sparse matrix. This means that the 
explicit method performs better with a large range of 
shape parameters. In the all of following numerical 
results, the shape parameter 50c =  will be used.   

In Fig.11 we show the profiles of the average errors 
and maximum errors using both methods with 51 by 51 
uniform nodes. The 5n =  stands for the number of 
points in local domain of influence, the time step t∆  is 

chosen as 510− . We compare the errors based on given 
interior node at time t  from 0 to 0.1. One can observe 
the explicit method gives better accuracy than the 
implicit method when the time is small, but this is not 
the case when time becomes large. Note that when the 
shape parameter c is 50, as we have seen from Figure 8, 
the explicit method outperforms the implicit method 
using larger shape parameter. In order to achieve the 
same accuracy as implicit method, we can simply 
increase the value of the shape parameter c.     

Fig.12-13 shows the profiles of the average errors 
and the maximum errors which were obtained on 51 by 
51 non-uniform nodes, where 0.15ε =  is used in Fig.      
11, 0.25ε =  is used in Fig.12. Tab.1 shows the average 

and maximum errors at time 4 3 210 ,10 ,10− − −  and 110−  
for 51 by 51 randomly distributed nodes using 0.35ε = . 
A larger ε  generates increasingly random nodes which 
gives slightly different numerical behaviors. The 
stability of both methods is similar for random nodes.    

Fig.14 shows the absolute errors of the temperature 
at time 310t −=  and at cross section (0, )y , where 

[ 0.5,0.5]y ∈ −  using both methods. This is a very 
challenging temperature state where the temperature 
keeps jumping near boundary and is difficult to 

approximate. As we expect, the absolute errors near 
boundary nodes are relatively larger than the center 
nodes when the time is small. Fig.15 shows the absolute 
errors of the temperature at time 210t −=  at cross 
section (0, )y , where [ 0.5,0.5]y ∈ −  using both 
methods . The errors at central area are increasing as a 
function of time, and the errors at near boundary area 
are decreased as we expect since the analytical 
temperature field is smoother. Fig.16 shows the absolute 
errors for 110t −= . The maximum errors appear at the 
center since the temperature at the center point is 
highest and the temperature field is smoother as shown 
in Figure 8.    

Fig.17 shows accuracy of the solution as a function 
of the size of time step. The average errors and 
maximum errors are calculated on 51 by 51 uniformly 
distributed nodes at 210t −= . The shape parameter 

50,c =  and the number of points in the local domain of 
influence is 5. The explicit method performs slightly 
better when the size of time step is small, but the 
implicit method is unconditionally stable. With larger 
time steps such as 2 110 ,10− − , the explicit method 
diverges. On the other hand, the decrease of the size of 
the time step, the errors of both methods are not 
decreasing anymore since the machine round of errors, 
which means that implicit method is more stable.   

Fig.18 shows the stability of these two methods 
with respect to the minimum of distance between the 
given nodes, where in this figure the size of time steps is 
chosen as 510t −∆ = , and time 310t −= , 5,n =  50c = . 
One can observe the improvement of the accuracy with 
denser nodes using both methods, therefore, the explicit 
method shows better stability for denser nodes.  

Fig.19-30 represents the absolute errors using 
explicit method and implicit method for 3 210 ,10t − −=  

110t −= , where the errors are calculated on 51 by 51 
uniformly distributed nodes in Fig.19-24, and on 51 by 
51 non-uniformly distributed nodes in Fig.25-30. Three 

 
 

Table 1. The lists of the average errors and the 
maximum errors using explicit method and implicit 

method, where 51 by 51 random nodes with 0.35,ε =  
50,c =  5,n =  510 .t −∆ =  

        Average 
Time 

Explicit 
Method 

Implicit 
Method 

1.0E-4 4.7432E-3 5.7891E-3 
1.0E-3 5.8723E-3 6.1825E-3 
1.0E-2 1.3029E-2 1.3088E-2 
1.0E-1 9.9629E-3 9.9458E-3 

        Maximum 
Time 

Explicit 
Method 

Implicit 
Method 

1.0E-4 2.7092E-1 2.6438E-1 
1.0E-3 8.9737E-2 9.0123E-2 
1.0E-2 4.9142E-2 4.9152E-2 
1.0E-1 2.5140E-2 2.5098E-2 

 



 

Figure 1:  The 11 by 11 uniform node arrangement and 
the schematics of the local domain of influence using 

n=5. 
 
 

 
Figure 2:  The 51 by 51 uniformly distributed nodes. 

 
 
 
 

 
 

Figure 3:  The 51 by 51 randomly distributed nodes with 
random displacement factor 0.15.ε =  

 

 
Figure 4:  The 51 by 51 randomly distributed nodes with 

random displacement factor 0.25.ε =  
 
 

 
Figure 5:  The 51 by 51 randomly distributed nodes with 

random displacement factor 0.35.ε =  
 
 
 
 

 

Figure 6: The analytical temperatures at time 310 .t −=  

 
 



 

  
 
 
Figure 7: The analytical temperatures at time 210t −= . 

 
 
 

 
 
Figure 8 : The analytical temperatures at time 110t −= . 

 
 

 

Figure 9: Comparison of the effect of shape parameter c 
using explicit method. The errors as a function of time 
are calculated on 51 by 51 uniform nodes with 5,n =  

510 .t −∆ =  

 

Figure 10: Comparison of the effect of shape parameter 
c using implicit method. The errors as a function of time 
are calculated on 51 by 51 uniform nodes using 5,n =  

510 .t −∆ =  

 

 

Figure 11: The errors as a function of the methods and 
time with 51 by 51 uniform nodes using 50,c =  5,n =  

510 .t −∆ =  

 

 

Figure 12: The errors as a function of the methods and  
time with 51 by 51 random nodes using 0.15,ε =   

50,c =  5,n =  510 .t −∆ =  



 

 

Figure 13: The  errors as a function of the methods and 
time with 51 by 51 random nodes using 

0.25,ε = 50,c =  5,n = 510 .t −∆ =  

 

 

Figure 14: The absolute errors at y  direction for 
0.0,x =  510 ,t −∆ =  with 51 by 51 uniform nodes and 

5,n =  50c =  at 310 .t −=  

 

 

Figure 15: The absolute errors at y  direction for 
0.0,x =  510 ,t −∆ =  with 51 by 51 uniform nodes and 

5,n =  50,c =  at 210 .t −=  

 

 

Figure 16: The absolute errors at y  direction for 
0.0,x =  510t −∆ =  with 51 by 51 uniform nodes and 

5,n =  50,c =  at 110 .t −=  

 
 

 

Figure 17: The errors as a function of size of time step 
with 51 by 51 uniform node arrangement with 

510 ,t −∆ =  5,n =  50,c =  210 .t −=  

 
 

 

Figure 18: The errors as a function minimum node 
distance with 510 ,t −∆ =  5,n =  50,c =  310 .t −=  



 

 

Figure 19: The absolute errors using explicit method  
with 51 by 51 uniform nodes, where 510 ,t −∆ =  5,n =  

50,c =  310 .t −=  

 

 
Figure 20: The absolute errors using implicit method 
with 51 by 51 uniform nodes using 510 ,t −∆ =  5,n =  

50,c =  310 .t −=  
 

 

Figure 21: The absolute errors using explicit method 
and implicit method with 51 by 51 uniform nodes using 

510 ,t −∆ =  5,n =  50,c =  210 .t −=  

 
Figure 22: The absolute errors using implicit method 

with 51 by 51 uniform node arrangement using 
510 ,t −∆ =  5,n =  50,c =  210 .t −=  

 

 

Figure 23: The absolute errors using explicit method 
with 51 by 51 uniform nodes and 510 ,t −∆ =  5,n =  

50,c =  110 .t −=  

 

 

Figure 24: The absolute errors using implicit method 
with 51 by 51 uniform nodes using 510 ,t −∆ =  5,n =  

50,c =  110 .t −=  

 



 

 

Figure 25: The absolute errors using explicit method 
with 51 by 51 random nodes using 0.35,ε = 510 ,t −∆ =  

5,n =  50,c =  310 .t −=  

 
 

 

Figure 26: The absolute errors using implicit method 
with 51 by 51 random node arrangement, where 

0.35,ε =  510 ,t −∆ =  5,n =  50,c =  310 .t −=  

 

 

Figure 27: The absolute errors using explicit method 
with 51 by 51 random node arrangement using 

0.35,ε =  510 ,t −∆ =  5,n =  50,c =  210 .t −=  

 
Figure 28: The absolute errors using implicit method 

with 51 by 51 random node arrangement, where 
0.35,ε = 510 ,t −∆ =  5,n =  50,c =  210 .t −=  

 
 

 
 Figure 29: The absolute errors using explicit method 

with 51 by 51 random node arrangement using 
0.35,ε = 510 ,t −∆ =  5,n =  50,c =  110 .t −=  

 

 
Figure 30: The absolute errors using implicit method 

with 51 by 51 random node arrangement, where 
0.35,ε =  510 ,t −∆ =  5,n =  50,c =  110 .t −=  



 

time fields 3 2 110 ,10 ,10t − − −=  are graphed for both kinds 

of nodes. For the shorter time such as 310t −= , the 
errors at the corner points are relatively large since the 
neighbor of the corner points includes two boundary 
nodes in the uniform node arrangement, which 
decreased the accuracy. For non-uniformly distributed 
nodes, both methods have slightly different, and the 
error fields are not symmetric as uniformly distributed 
nodes. 

The computer program has been coded in 
FORTRAN with double precision. The computational 
cost of both methods is primarily dependent on two 
factors: the computational time of each time step to find 
the approximate temperatures at all given node, denoted 
by R , and the number of time steps m. Total time cost 
can be represented by R m.⋅  The computational costs 
of explicit method and implicit method at each time step 
using 101 by 101 random node arrangements are 
0.0560 m⋅  and 0.1120+0.3720 m⋅  seconds, 
respectively, where 0.1120 is the time for setup sparse 
matrix in implicit method which does not change at 
different time step. The implicit method takes much 
longer time than explicit method at each time step, but 
implicit method works fine with larger size of time step 

t∆ , by the inverse proportion relationship between t∆  
and m  the computational time of implicit method can 
be less than explicit method if t∆  is chosen large 
enough. 

 
5. Conclusions 
 

Two kind of localized meshless methods were 
compared for Dirichlet jump problem for diffusion 
equation: ELRBFCM and ILRBFCM. The ELRBFCM 
is made locally over a set of overlapping domains of 
influence and the time stepping is performed in an 
explicit way, small systems of linear equations have to 
be solved in each time step for each node and associated 
domain of influence. The ILRBFCM is performed in an 
implicit way and resultant matrix is large sparse matrix 
which is solved by sparse system package Y12MA (for 
more detailed discussion, see [13]). The numerical 
results show high accuracies and the improvement of 
the accuracies with denser nodes and the smaller time 
step length for both methods. On the other hand, 
ELRBFCM performs best with small time step and 
larger range of shape parameters for shorter time, but 
ILRBFCM gives better results for longer time and 
converges even with large time step length. For random 
node arrangement problems, both methods perform with 
similar accuracy with small time step length. Our 
ongoing research is focused on inclusion of the phase-
change effect to the present simple diffusion equations.   
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