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Abstract In this paper, we present a combined homotopy interior-point method for
a general multiobjective programming problem. The algorithm generated by this
method associated to Karush—-Kuhn—Tucker points of the multiobjective program-
ming problem is proved to be globally convergent under some basic assumptions.
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1 Introduction

We consider the following multiobjective programming problem:

(MOP) min f(x),
sit.  gx) =0,
h(x) =0,

where f = (fi, fao.... f)T : R" — RP, g = (g1.82, ..., 8m)" : R* — R™ and
h=(hi,ho,...,h)T : R — RS are twice continuously differentiable functions.

It is well known that, if x is an efficient solution of (MOP), under some constraint
qualifications [Kuhn and Tucker constraint qualification (see [1]) or Abadie constraint
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qualification (see [2])], then the following Karush—Kuhn—Tucker (KKT) condition at
x for (MOP) holds (see [3, 4]):

Vfx)A+Vgx)u + Vh(x)v =0,

Ugx)=0,

where A € Ri \{0},u e R, v eR*, and U = diag{uy, us, ..., u,}. We say that x is
a KKT point of (MOP) if it satisfies the KKT condition.

Since the remarkable papers of Kellogg et al. [5] and Chow et al. [6] have been
published, more and more attention has been paid to the homotopy method. As a
globally convergent method, the homotopy method (or path-following method) now
becomes an important tool for numerically solving nonlinear problems including non-
linear mathematical programming and complementary problems (see [7, 8]).

In 1988, Megiddo [9] and Kojima et al. [10] discovered that the Karmakar interior
point method was a kind of path-following method for solving linear programming.
Since then, the interior path-following method has been generalized to convex pro-
gramming, and becomes one of the main method for solving mathematical program-
ming problems. Among most interior methods, one of the main idea is numerically
tracing the center path generated by the optimal solution set of the so-called logarith-
mic barrier function. Usually, the strict convexity of the logarithmic barrier function
or nonemptiness and boundedness of the solution set [11, 12] is needed. In 1997,
Lin, Yu and Feng [13] presented a new interior point method—combined homotopy
interior point method (CHIP method)—for convex nonlinear programming without
such assumptions. Subsequently, Lin, Li and Yu [14] generalized the CHIP method
to general nonlinear programming where, instead of the convexity conditions, they
used a more general normal cone condition.

Recently Lin, Zhu and Sheng [15] generalized the CHIP method to convex multi-
objective programming with only inequality constraints,

(CMOPI) min  f(x),

st. gx) 20,

Instead of (CMOP1), they considered an associated nonconvex nonlinear scalar opti-
mization problem in the variables (x, A) as following:

(CMOP2())) min AT f(x),
st. gx) =0,
p
ri=1,

A 20, xeR",
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and constructed the following homotopy mapping:

[(1— 1) (VA + Vex)z) +1(x —x9)7]
(1 =0(f @) +w) —ye+1(A—210)

H(t’wosw): I_Zf’:l }‘-i )
Zg(x) —17%(x")
i Wi —tW0r0 ]
where Z := diag{zi1, ..., zn}, W :=diag{w1, ..., w,}, for solving the KKT system
(CMOP2(1)),

V f(0)A + Vg(x)z =0,
fx) —ye—w=0,

p
1= 3 =0,
i=1

Zg(x)=0, g(x)=0, z=0,
Wi=0, A=0, w=>0.

The purpose of this paper is to generalize the combined homotopy interior point
method to the general multiobjective programming problem (MOP). The paper is
organized as following. In Sect. 2, we recall some notations and preliminaries results,
and we construct a new combined homotopy mapping which is related directly to the
KKT system of (MOP) and is much simpler than that one given in [15]. In Sect. 3,
we prove the existence and convergence of a smooth homotopy path from almost any
interior initial point ° to a solution of the KKT system of (MOP) under so-called
normal cone condition of constraints. A numerical algorithm is given. In Sect. 4, we
relax the boundedness condition concerning the feasible set and obtain a similar result
for the convex multiobjective program problem.

2 Some Definitions and Properties

Let R", and R’} , denote the nonnegative and positive orthant of R", respectively.
For any two vectors y = (y1, ¥2, ..., ¥») and z = (21, 22, ... » Z») in R", we use the
following conventions:

y=z, ffyi=z,i=12,...,n
vz, iffyi<z,i=12,....m
y<z, iffyi<zi,i=1,2,...,nm;
y<z, iffy;<zi,andy#z, i=1,2,...,n.
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Suppose that f = (f1, f2, ... fp)T :R" > RP, g =(g1,82,....8m) : R" —
R™and h = (hy, ha, ..., hs)T : R" — R are twice continuously differentiable func-
tions. Let

Q={xeR": g(x) <0, h(x) =0},
Q={xeR":g(x) <0},

14
A++={xeRﬂ+:in=1},

i=1
I:={1,2,....m}, J:={1,2,...,5},
and let
I(x):={iel:gi(x)=0}

denote the index set of the active inequality constraints at a given point,
xeQ={xeR":g(x)<0,h(x)=0}.

In the literature, solutions for a multiobjective programming problem are referred
to variously as efficient, Pareto-optimal, and nondominated solutions. In this paper
we shall refer to a solution of a multiobjective programming problem as an efficient
solution.

Definition 2.1 A point x € Q is said to be an efficient solution to problem (MOP) if
there is no y €  such that f(y) < f(x) holds.

Definition 2.2 (See [16]) Let C C R” be a closed subset and let xg € C. A vector
v € R" is called a strict normal vector to C at xo, if (v, y — xp) <0, for all y — xg
andyeC,i.e.,

limsup(v, y — xo) <0.
y=xp
yeC\{xq}

We denote by ﬁc (x0) the set of strict normal vectors to C at xg.

Lemma 2.1 (See [16]) Let x € Q. If the vectors {Vgi(x),i € I(x), Vhj(x),jelJ}
are linearly independent, then

No@x) = { D uiVgi () + > i Vhj(x).u; =0.i € I(x),v e RS}.
iel(x) jed
The following three basic conditions are commonly used in the literature:

(A1) € is nonempty and bounded;

(A2) Vx € Q, the vectors {Vgi(x),i € I(x), Vhj(x), j € J} are linearly indepen-
dent;

(A3) Vx € Q, (x + Ng(x)} N Q = (x}.
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Observe that the normal cone condition (A3) is a generalization of the convexity,
i.e., if Q is a convex set, then the condition (A3) is satisfied automatically. In the case
when (MOP) is convex, we can relax condition of the bounded feasible set; see the
fourth section for more details.

Let x € Q be a KKT point of (MOP). Then, there exist A € RY \ {0}, u € R,
v € R*, and U =diag{uy, us, ..., uy} such that

VI x)A+Vgx)u + Vh(x)v =0,
Ug(x)=0.

Since A > 0, without loss of generality we can assume that _©_, A; = 1. Our aim is
to find w = (x, A, u, v) € Q x Rfrm x RS such that

V f()A + Vg(x)u + Vh(x)y =0, (1a)

Ug(x) =0, (1b)
P

1— in =0. (1c)
i=1

‘We construct a homotopy as follows

(1= W(VFEOA+ Vegu) + Vax)v + mlx — x0)
Hw, o, ) = D) - 5) =% @
(A== 37 hde — p(.—20)
where 00 = (x%, 10, u%,09) e Q x ATF xR, x {0}, e=(1,1,....,DT e R?, 0=
(r, A, u,0) € 2 x RET™ x R and € [0, 1].
When p = 1, the homotopy equation (2) becomes

Vhx)v +x —x°=0, (3a)
h(x) =0, (3b)
Ug(x) —U%(x") =0, (3c)
r—20=0. (3d)

__ By Lemma 2.1 and the condition (A3), (3a) implies that Vi(x)v +x = x0e{x+
Ng(x)} N Q = {x}. Hence v =% =0 by the condition (A3). Since 2(x% < 0 and
x = x0, (3c) implies that u = u°. Thus @ = °. That is, the equation H (w, »°,1) =0
with respect to w has only one solution & = .

As u =0, H(w, ®°, 1) =0 turns to problem (la—lc). For a given w
H(w, o°, 1) as H o (w, ). The zero-point set of H o is

0. rewrite

H '(0)={(0.n) € QxR xRS x (0.1]:  H(w. 0", p)=0}.

Since H(’, . 1) =0, we have H ' (0) # 0.
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Let us recall some basic definitions and results from differential topology. For the
definitions of C" differential manifold, submanifold, and C” differential manifold
with boundary, we refer the reader to [17, 18]. Clearly €2 is a n-dimensional differ-
ential manifold, 2 is a (n — s)-dimensional differential manifold and 2 x ]R‘fjrm X

R® x (0, 1] is a manifold with boundary €2 x ]Ri:m x R x {1}.

Definition 2.3 Let M, N be differential manifolds with dimN = p andlet H : M —
N be a differentiable mapping. If

ank[aH(x)i| =p, VxeH '(y),
X

we say that y € N is aregular value of H and x € M is a regular point. Given a curve
I' ¢ H'(y), if every x € I' is a regular point, then we say that I is a regular path.

Lemma 2.2 (Parametric Form of the Sard Theorem on a Manifold with Boundary)
Let A and N be differential manifolds of dimension q and p, respectively, and let M
be a m-dimensional differential manifold with boundary. Suppose that F : A x M —
N is a C" mapping, where r > max{0, m — p}. If 0 € N is a regular value of F and
oF, then for almost all A € A, 0 is a regular value of F) = F (A, -) and 0 F), where
oF, 0F), denote the restriction of F and F) to A x 0M and M, respectively.

This lemma is a special case of the transversality theorem (Theorem 5.7 in [18]).

Lemma 2.3 (Inverse Image Theorem; See [17, 18]) Suppose that M is an m-
dimensional C" differential manifold with boundary, N is a p-dimensional C” differ-
ential manifold, r > 1, and F : M — N is a C" map. If ¢ € N is a regular value of
F and 3F, then either S = F~! (q) is empty or a (m — p)-dimensional submanifold,
and

aS=SNaoM.

Lemma 2.4 (Classification Theorem of One-Dimensional Manifold with Bound-
ary; See [17]) Each connected part of a one-dimensional manifold with boundary
is homeomorphic either to a unit circle or to a unit interval.

3 Main Results

In this section, we shall present the main results of the paper.

Theorem 3.1 Suppose that 2 # ) and condition (A3) hold. Then for almost all initial
points 0¥ € @ x AT x R% ., x {0}, O is a regular value of H o and Ha;l (0) consists

of some smooth curves. Among them, a smooth curve, say I' o, starts from (a)o, 1).
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Proof For any (o, ®°, u) € H~1(0),

O(x) —pl 0 0

OH (.. 1) Vh(x) 0 0 0

300, x0.29.u0) | UVe(x) —plOVe(x®) 0 —pudiag(g(x®)
0 0 ul 0

where

p m s

Q(x)=(1—p) (Z MVIF)+ Y uVig, (x)) + > Vihi(x) + .
i=1 j=1 k=1

Because x, x° €  and € (0, 1], by the regularity condition (A3), we obtain that

dH (v, o, p)

rank| —M——
[8(-x1 -xo’ )"0’ MO)

:|:n+p—l—m+s.

0H (w, wo, ) BH(w,wo,l)
3w, @, p) and 3(w,w0)

that is, 0 is a regular value of H and 9 H. By Lemma 2.2, for almost all 0’ € Q x
ATT xR, x {0}, 0is aregular value of H,o. By Lemma 2.3, HL;)] (0) consists of

Thus both the Jacobian matrices are of full row rank,

some smooth curves. Since H (a)o, @, 1) =0, there must be a smooth curve, denoted
by I' 0, that starts from (@9, 1). O

wo’

Theorem 3.2 Let Q # ) and let Assumption (A2) hold. For a given o° € Q x ATT x
R, xR, if 0 is a regular value of H, then the projection of the smooth curve T o
on the A component is bounded.

Proof Suppose that the conclusion does not hold. Since (0,1] is bounded, there exists
a sequence (o, i)}y C I" ,0 such that,

te = e A5 = +o0, k= 0.

From the homotopy equation (2), we have

P
(1 —uk)(l —in‘)e—uk(xk —9)=0. @)
i=1
That is,
| Dm0 Xa]
— Mk 1
M=) YA
I — g 2 iz A
- , +u| | =0 5)
1 — pg Mo+ (=) 3 2f 2
L i#zp
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Let
I={j€ll,2,....p}: lim A’;zoo}.

—>00

The hypothesis implies I # . Since puy — 4 € [0, 1] and 2K >0, it follows that the
second part in the left-hand side of some equation of (5) tends to infinity as k — +o0,
but the first and third parts are bounded. This is a contradiction. Thus the projection
of the smooth curve I' o on the A component is bounded. g

Theorem 3.3 (Boundedness) Let Assumptions (A1-A3) hold. Then, for a given o° €
Qx ATT x RT_ x R*, if 0 is a regular value of H,p, then T o is a bounded curve.

Proof Assume that I' o is an unbounded curve. Then, by the boundedness of £ and
Theorem 3.2, there exists a sequence (&%, )} C I" 0 such that,

Ko x* = e A A 1R V) = oo,k — o
From the homotopy equation (2), we have
(1 — u) (VL O + Ve R uk) + VR, + e (xf —x% =0, (6)
h(x*) =0, @)
U* x g(x*) — miU° x g(x%) =0. (8)
Let

Iz(x*)z{jeJ: lim o} = oo ,13(x*)={jel: lim uf = oo,
k— 00 k— 00

If Ir(x*) # @, rewrite (6) as

(1—uk)[Vf<xk>Ak+ > uﬁ-%(xﬂ

JEB (")

+ [Vh(xk)vk +(—m) Y ubvg; (xk)i| +uF=x%=0. (9
jer)

It follows from (8) that I3(x™) C I(x*). Since Ir(x™) # ¢ and (A2) holds, the
second part in the left-hand side of (9) tends to infinity as k — oo, but the other two
parts are bounded, this is impossible. Thus />(x*) = #. We can assume that vF —
v*(k — 00). At the same time we have I3(x™*) # .

(i) When . = 1, rewrite (6) as

VAV + D (1= Vg () + 2k —x”
Jel(x*)

:(1_,%)[— > u’;ng(xk)—Vf(xk)x"+x"—x°].
JE1G*)
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Let k£ — o0; since (A2) holds, the above equation becomes

x* + Z lim [(1 = pub Ve, (x*) + Vh(x*w* =x% € Q. (10)
je](x*)k_)oo

From the normal cone condition (A3), (10) implies that x* = x. This is impossible.
(i) When u, € [0, 1), we rewrite (6) as

(l—uk>[Vf(xk>Ak+ > ui‘-%(x")}

JEI3(x*)

+ VAW + (=) Y Whve; )+t —x% =0, D
Jel(x*)

From the fact that A%, vk, u]J‘. (j & I3(x*)) are bounded, w4 € [0, 1), and I3(x*) C
I(x*), by (A2), the third part in the left-hand side in (11) tends to infinity as k — oo,
but the other three parts are bounded, this is also impossible. Therefore, I' o is a
bounded curve. O

Theorem 3.4 (Convergence of the Method) Let Assumptions (A1-A3) hold. Then,
foralmost all 0° € Q@ x AT+ x R, xR®, the zero-point set Ha;)l (0) of the homotopy
map (2) contains a smooth curve I ;o C Q x Rf_er x (0, 1], which starts from (@, 1).
As i — 0, the limit set T x {0} C Q x Rf_m x {0} of T o0 is nonempty and every
point in T is a solution of (2).

Proof By Theorem 3.1 and Theorem 3.3, the existence of I o is obtained. It remains
to show that the limit set T x {0} C € x ]Rffm x {0} of "0 is nonempty as . — 0.
By Lemma 2.4, I' o is diffeomorphic to a unit circle or the unit interval. Since I' o is
a bounded curve, if we let the variable s be the arclength of I' o, then the parametric
form of T o is

wo’

(w(s), u(s)), 0=s=s0, (@(0), 1(0) = (@, 1).

It is clear that the unit tangent vector £0 = (£, €))7 € R1 TP+ of T o at (¥, 1)
satisfies

DH (0’ 1)£° =0,

where S? € Rrtptmts ég € R. Because

I 0 0 Vh(x% VfOL0 — Vg (xO)u®
o Vh(Y 0 0 0 0
DHp(w", 1) =
U'Vg(x%) 0 diag(gx®) 0 —-U%(x9)
0 —1I 0 0 0
= (M, M»),
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where M| € Rttptmts)x@tptm+s) pr, e Rr+PHMES | and because M, is nonsin-
gular and M, # 0,

M 'm

s°=<1+||Mr'M2||2>—%< ‘ 2) and £ # 1.

Thus I' o is not tangent to the plane u =1 at (0%, 1). Because the equation
H(w, ", 1) = 0 has only one solution w = Y, it follows that I' 0 cannot be dif-
feomorphic to a unit circle, but a unit interval. Thus it has a limit point while © — 0,
we assume that (&, 1) is a limit point. Then (&, ji) in 3(Q2 x Riim x RS x (0, 1]).
In fact, if (o, 1) € Ql:=Q x Rf_—:_m x R* x (0, 1), since 0 is a regular value of H o :
Q! — R*PTMES and (@, 1) € H(:Ol (0), the Jacobian matrix of H at (, i) is of full
row rank. By the implicit function theorem, I' o can be extended at (w, it). This con-
tradicts the fact that (o, ft) is a limit point of I' 0. Let (o, i) = (x, A, i, v, ji). Then
(w, 1) € 0(21 x Rf,’rim x R* x (0, 1]) and only the following three case are possible:
(a) (@, 1) € Q1 x RET" xRS x {1};

(b) (@, 1) € 9(2 x ]Rﬁim) x R* x (0, 1);

©) (@, 1) € Q1 x RET" xRS x {0).

Because the equation H(w, ®°,1) =0 has only one solution w = @Y, the case (a)
is impossible.

In case (b), we first prove that u & 9RY | .

Indeed, if there exists jo € I such that u;, = 0, then there exists a sequence
(o, ui)} C "0 such that u’}o — 0. Since g, (x¥) is bounded, we have

u]jc-ogjo(xk) —0, k— o0.
Moreover, from (8),
ukgjo (") = e gjo (%) — ) gjy (%) < 0. k — oo,

This is a contradiction. B B

Second, we show that A & 8]Ri o In fact, if A € SRi ., then there exists a se-
quence {(of, uf)} C I",0 such that )‘I;‘o — A jo = 0(k — o0) for some jo. Noticing
that 37, A2 = 1 and from (4), it follows that

P
P — ) + (prk — p — x) YA + i =0.

i=1
As k — oo, since uy € (0, 1), the above equation implies that Zf’zl X,- = 1. Take the
Joth equation of (4),

P
(1 —Mk)<1 —ZA?) — (W, = 25) =0. (12)
i=1
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As k — oo we see that A’;O — )‘90 =0.But Al ¢ ]Rﬁ - this gives the desired contra-
diction.

Hence we obtain that there exists a sequence { (F, ur)} C I',o such that
gj(x") — 0 for some j € I, and hence u’;gj(xk) — 0. From (8) and & € (0, 1) we
observe that u’j‘.gj (x% = /fcu(}gj (x%) < 0, this is a contradiction.

As a conclusion, (c) is the only possible case. Clearly (@, 1) € Q x ]Rfrm x {0},
and o is a solution of the KKT system. U

By Theorem 3.4, for almost all ° € Q x Rf_j_m x R¥ x {0}, the homotopy equa-
tion (2) generates a smooth curve I' o which we call the homotopy path, and the w
component of (w(s), iu(s)) in the homotopy path, is the solution of (1) as u(s) — 0.
We can propose following algorithm to track numerically I' o from (@, 1) until
n(s) — 0. A simple numerical example will be given later.

Algorithm 3.1 (MOP)’s Euler—Newton method

Step 0: Give an initial point (0%, 1) € 2 x AT+ x R™_ x {0} x {1}, an initial
steplength o > 0 and three small positive numbers €1, €2, €3. Let k :=0;
Step 1: Compute the direction 7¥ of the predictor step:
(a) Compute a unit tangent vector £€ € R*+P+m+s+1 of 1
at (o, p);

(b) Determine the direction 7¥ of the predictor step as follows:

k
DHwOé(ka; s k) _ (_1)p+m+s+pm+ps+ms+l’ take nk _ -’;:k'

’

If sign

DH, 0 (o, i)

é_—kT — (_1)p+m+s+pm+ps+ms’ take 77k — _%.k.

If sign

Step 2: Compute a corrector point (* !, pry1):

(@, fix) = (@, up) + hen,

(@ i) = (@, k) — D Hay (@, i)™ Ho0(@F, fun),
where DH,o(w, w)™ = DH,0(w, )" (DH_o(w, w)DH, 0 (w, 1)")~!
is the Moore—Penrose inverse of DH o (w, it).
If ||H,o(@" ™, w1l < e, let hgpy = min{ho, 24}, and go to
Step 3.
If | H o (@, i)l € (€1, €2), let hgs1 = hy, and go to Step 3.
If | Hyo (@, e )|l > €2, Tet byt = max{3ho, 3/}, and go to
Step2.
Step 3: If ! € QxRE™ x R* and py41 > €3, letk := k41 and go to Step 1.

k+1 ® p+m s _ . Mk
If w e QxR xR a’tn(i Uk+1 < —€3, let hy := hkuk—uk+1’
+

, k+1) for the initial point (a)", ).

go to Step 2 and recompute (@
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If of ! ¢ Q x R‘_ﬁm x RS, let hy = thMkilllik+l’ go to Step 2 and re-

compute (cgk“, wi+1) for the initial point (¥, ).
If ot e @ x Rffm x R¥, and |uiy1| < €3, then stop.

Remark 3.1 A unit tangent vector & of I' o at some point (w, ) € I 0 satisfies
DH o(w(s), ju(s))§ =0. 13)

Since 0 is a regular value of H,p, thatis, DH o(w(s), u(s)) is a matrix of full row
rank, so £ as determined by the (13) has two opposite directions. One (the possible
direction) makes s increase, and the other makes s decrease. There are many suc-
cessful methods to numerically implement the problem, so we will not deal with it in
detail.

Remark 3.2 In the numerical implementation of the homotopy algorithm, another key
problem lies in the choice of the predictor direction. In order to enforce the algorithm
smoothly and not to lead us back to the initial point, we must go along the positive
direction. Reference [8] tells us that the positive direction n at any point (w, i) on
I" 0 keeps the sign of the determinant

DH p(w, 1)

nT

invariant. By the following proposition, we show that the predictor direction of Al-
gorithm 3.1 is effective.

Proposition 3.1 Let I o be a smooth curve of H;)I (0). Then, the direction n° of the

predictor step at the initial point (0°, 1) satisfies

DH (o, 1)

= (- 1)p+m+s+pm+ps+ms+1
of )

sign

Proof By Theorem 3.4, we know that the unit tangent vector £0 of I,o at (@2, 1)
satisfies

&) = —M; Moy
By a simple computation, we have
m
1My = (=14 VRGO VR ] 2 (0,
i=1
where

q=p-—+Ss+ pm-+ ps+ms.
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Hence,
DH (% )| |Mi My M, M;
T = .07 o |~ —T &0 £0
g0 g &) —MyME) &)
M, M,

£ = M| (1 + MMy My Mo)EY.

0 1+MIM "M " M,

By the definition of the direction of the predictor step, 77(2) <0 and

m
sign| M| = sign{(— )? VR ) VAT | [ [ 2i (20} = (= 1yptmistpmtpsims

i=1
SO

DH, (0, 1)

=(— 1)p+m+s+pm+ps+ms+l
oT - )
n

sign

4 The Homotopy Method for Convex Multiobjective Program

For convex multiobjective programming problem (CMOP), we can replace Condi-
tion (A1) by the following condition:

(A4) there exists z° € Q such that Q%) = {x € Q: (x — ZO)Tij(x) <0,
j=1,2,..., p}isbounded.

Theorem 4.1 Suppose that all the f;, g; are twice continuously differentiable convex
Sfunctions, and hy, are linear functions. If Q # ¢ and Conditions (A2), (A4) hold, then
problem (1) has a solution.

Proof By the discussion in the previous section, we only need to show that the projec-
tion of I' 0 onto x component is bounded after proving its A component is bounded.
Suppose that the projection of I' o onto x component is unbounded. Then there ex-
ists a sequence (o, ui)}y C Iy, such that lx¥|| = oo, k — oco. From the homotopy
equation (2), we have that

(1 — m)(V £ (N + Vg (Fuky + VR(F )k + py (xF = x%) =o0.
Thus,
(1 — )l = 2TV FAE 4 F = 20T Ve bt

+ (K = 2T VR + (k= 29T (k= 1% = 0.
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By the convexity of g;, A, and zo € €2, we can deduce that

(1 — p)F = 2TV F )k
= —up(xF = 20T (k= x0)
— (1 — u)(* =0T Ve (M) Tuk — (xF — 20T vkt
= — il = 201 — e (x° = 207 (F = x0)

+ (1= ) = TV yuk + (0 — T VR (F)F
1
< —Euk(nxk — 12 = 1x® = 2%
+ (1= (g% — gD + (%) — h(xF)k

1
< —Euk(nxk — 202 = 1x0 = 221 — (1 — g (Fyuk

1
= —Eﬂk(nxk — 2O = 110 =20 — (= g (O,

where the last equation holds by using (8). Noticing that [|x*|| — oo, letting k — o0
in the above inequality, we obtain

p (1= p) ek = 20TV Fak

1
< —§<||xk — 22 = 112° = X0 — (1 — g (xNu® - —oo.

Hence, there exists jo € {1,2, ..., p}, such that (x* — zO)Tij0 (x*) < 0. This con-
tradicts Condition (A4). Thus the x-component of I',,, is bounded. O
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