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ABSTRACT 

In this paper, we prove that the combined homotopy interior point method for a multiobjective programming problem 
introduced in Ref. [1] remains valid under a weaker constrained qualification—the Mangasarian-Fromovitz constrained 
qualification, instead of linear independence constraint qualification. The algorithm generated by this method associated 
to the Karush-Kuhn-Tucker points of the multiobjective programming problem is proved to be globally convergent. 
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1. Introduction 

Let  be the -dimensional Euclidean space, and let 
 and  denote the nonnegative and positive , 

respectively. For any two vectors 1 2
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Consider the following multiobjective programming 
problem (MOP) 
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It is well known that if x  is an efficient solution of 

(MOP), under some constraint qualifications, such as the 
Kuhn and Tucker constraint qualification (see Ref. [2]) 
or the Abadie constraint qualification (see Ref. [3]), then 
the following Karush-Kuhn-Tucker (KKT) condition at 
x  for (MOP) holds (see Refs. [4,5]): 

     
 

 

T T T
0

0

0

f x g x u h x v

Ug x

h x

   
 
 

      (1) 

where  \ 0 , , ,p mu v      s  and 

 1 2diag , , , .mU u u u   

We say that x  is a KKT point of (MOP) if it satisfies 
the KKT condition. 

Since the remarkable papers of Kellogg et al. (Ref. [6]) 
and Chow et al.(Ref. [7]) have been published, more and 
more attention has been paid to the homotopy method. 
As a globally convergent method, the homotopy method 
(or path-following method) now becomes an important 
tool for numerically solving nonlinear problems include- 
ing nonlinear mathematical programming and comple- 
mentarily problems (see Refs. [3,4]). 

In 1988, Megiddo (see Ref. [8]) and Kojima et al. (see 
Ref. [9]) discovered that the Karmakar interior point 
method was a kind of path-following method for solving 
linear programming. Since then, the interior path-follow- 
ing method has been generalized to convex programming, 
and becomes one of the main methods for solving ma- 
thematical programming problems. Among most interior 
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methods, one of the main ideas is numerically tracing the 
center path generated by the optimal solution set of the 
so-called logarithmic barrier function. Usually, the strict 
convexity of the logarithmic barrier function or non- 
emptiness and boundedness of the feasible set (see Ref. 
[10]) are needed. In 1997, Lin, Yu and Feng (see Ref. 
[11]) presented a new interior point method—combined 
homotopy interior point method (CHIP method)—for 
convex nonlinear programming without such assump- 
tions. Subsequently, Lin, Li and Yu (see Ref. [12]) 
generalized CHIP method to general nonlinear program- 
ming where, instead of convexity condition, they used a 

more general “normal cone condition”. 
In 2003, Lin, Zhu and Sheng (see Ref. [13]) general- 

ized CHIP method to convex multiobjective program- 
ming(CMOP) with only inequality constraints. Instead of 
(CMOP), they considered an associated non-convex non- 
linear scalar optimization problem and constructed the 
homotopy mapping. 

In Refs. [1,14], we considered a combined homotopy 
interior point method for the multiobjective programm- 
ing (MOP) under the condition linearly independent 
constraint qualification (LICQ). To find a KKT point of 
(MOP), we construct a homotopy as follows 
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                (2) 

where      T0 0 0 0 0, , , 0 , 1,1, ,1 ,m px u v R e R  
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Let nA    be a nonempty closed set and x A . 

We recall that the Fréchet normal cone of A  at x  is 
defined as 
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We used the following basic assumptions which are 
commonly used in that literature: 

(A1)  is nonempty (Slater condition) and bounded; 

(A2) (LICQ) ,x   the matrix  

      T T
, :jh x g x j I x    

is a matrix of full column rank; 
(A3) Normal condition: 

    ˆ, .x x N x x      

It is well known that if condition (A2) holds, then 
 

   
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We have proved the following convergence result in 

Ref. [1]. 
Theorem 1.1 (Convergence of the method) Suppose 
, ,i jf g  and k  are twice continuously differentiable 

functions such that the conditions (A1), (A2), and (A3) 
hold. Then for almost all  

h

0 ,m sR R 
    

the zero-point set  of the homotopy map (2)   0
1 0H




contains a smooth curve  0 0,1 ,p m sR


 
      

which starts from   As 

   0 0 0
p m sT R  
     of 


  is nonempty, and the  

-x component of every point in T  is a KKT point of 
(MOP). 

Recently, many researchers extended and improved 
the results in Ref. [1] to convex multiobjective pro- 
gramming problem, see Ref. [14-17]. The purpose of this 
paper is to show that Theorem 1.1 remains true under the 
condition MFCQ instead of LICQ. The paper is 
organized as following. In Section 2, we prove the 
existence and convergence of a smooth homotopy path 
from almost any interior initial point 0  to a solution of 0 ,1 . 0,   the limit set  
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the KKT system of (MOP) under the condition MFCQ.  

2. Main Results 

We need the following elementary condition. 
(A2′) (MFCQ) For every ,x  the following 

conditions hold: 
  are linear independent;   , ,jh x j J 
 there exists a np R  such that  

    0,ig x p i I x    and    0, .jh x p j J  

Clearly, condition (A2) implies (A2′). It is also known 
that if (A2′) holds, then (3) remains valid. 

By using an analogue argument as in Ref. [1], we can 
prove the following two theorems. 

Theorem 2.1 Suppose that  and conditions 
(A1), (A2′) hold. Then for almost all initial points  
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We next prove that 0
  is a bounded curve. 

Theorem 2.3 (Boundedness) Suppose that the con- 
ditions (A1), (A2′), and (A3) hold. Then for a given  

0 ,m s 
     if 0 is a regular value of 0H


, 

then 0
  is a bounded curve. 
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1. If 
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,k   (6) becomes 
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Therefore, 

is is a
o

0
  is a bounded curve. 

By an analogue argument as in Ref. [1], it  easy to 
sh

ions ) hold. Then for 

alm e zero-point set 
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ow the following result. 
Theorem 2.4 (Convergence of the method) Suppose 

tha itt the cond  (A1), (A2′), and (A3
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 0
1 0H
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   of 0limit set 0 0T   
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   
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Therefor
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 point in T  is a KKT point of the x-component of every
(MOP), the -component of homotopy path  the  is the
solution of (1) as   goes to 0. 
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