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A comparison of the performance of the global and the local radial basis function collocation meshless

methods for three dimensional parabolic partial differential equations is performed in the present

paper. The methods are structured with multiquadrics radial basis functions. The time-stepping is

performed in a fully explicit, fully implicit and Crank–Nicolson ways. Uniform and non-uniform node

arrangements have been used. A three-dimensional diffusion–reaction equation is used for testing with

the Dirichlet and mixed Dirichlet–Neumann boundary conditions. The global methods result in

discretization matrices with the number of unknowns equal to the number of the nodes. The local

methods are in the present paper based on seven-noded influence domains, and reduce to discretiza-

tion matrices with seven unknowns for each node in case of the explicit methods or a sparse matrix

with the dimension of the number of the nodes and seven non-zero row entries in case of the implicit

method. The performance of the methods is assessed in terms of accuracy and efficiency. The outcome

of the comparison is as follows. The local methods show superior efficiency and accuracy, especially for

the problems with Dirichlet boundary conditions. Global methods are efficient and accurate only in

cases with small amount of nodes. For large amount of nodes, they become inefficient and run into

ill-conditioning problems. Local explicit method is very accurate, however, sensitive to the node

position distribution, and becomes sensitive to the shape parameter of the radial basis functions when

the mixed boundary conditions are used. Performance of the local implicit method is comparatively

better than the others when a larger number of nodes and mixed boundary conditions are used. The

paper represents an extension of our recently made similar study in two dimensions.

Published by Elsevier Ltd.
1. Introduction

In recent years radial basis functions (RBFs) have been exten-
sively used in different applications [2,3,5,17,32,36,37,39,43] and
emerged as a potential alternative in the field of numerical solution
of partial differential equations (PDEs). A detailed discussions
on meshless methods and their applications to many complex
PDEs, industrial and large-scale problems can also be found in
[8,11,12,22–24,40,42] and the references therein.

Different types of meshless methods, based on RBFs, have
gained popularity in the engineering and science community for a
number of reasons. The most attractive features of the meshless
methods are (i) they provide an alternative numerical tool, free
from extensive and costly mesh generation or manipulation related
Ltd.

lam).
problems; (ii) they are flexible in dealing with complex geometries,
and are easily extendible to multi-dimensional problems. Meshless
methods have been proved successful for solving PDEs on both
regular and irregular node arrangements. They use functional basis
which allows arbitrary placement of points. Traditional numerical
methods, such as the finite difference method (FDM), the finite
volume method (FVM), and the finite element method (FEM), are
based on the local mesh based interpolation to find the solution and
its derivatives. In contrary to these mesh-based methods, meshless
methods use a set of uniform or random points which are not
interconnected in the form of a classical mesh. Meshless methods
actually reduce to multivariate data fitting between the points and
related calculation of the derivatives and/or integrals. In the case of
meshless methods, interpolation can be accomplished both locally
and globally with high efficiency.

In 1971, Hardy introduced radial basis functions interpolation
[13] to approximate two-dimensional geographical surfaces based
on scattered data. Later on, meshless methods, based on
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Multiquadric (MQ) RBFs [15], were derived for numerical solutions
of different types of PDEs. The idea was extended by [10] after-
wards. The existence, uniqueness, and convergence of the RBFs
approximation was discussed in [9,26,28]. The importance of shape
parameter c in the MQ RBF was elaborated in [35]. Solvability of the
system of equations with respect to distinct interpolation points
was discussed in [28]. All of these methods can be called the global
radial basis function collocation method (GRBFCM). The most
recent applications of the GRBFCM can be found in [1,17,32–34].
The main disadvantage of the GRBFCM is that it involves full
matrices that result from the discretization of the PDEs. These
matrices are often ill-conditioned and extremely sensitive to the
choice of the shape parameters in RBFs.

To overcome the problems of ill-conditioning and shape
parameter sensitivity of the GRBFCM, the local radial basis
function collocation method (LRBFCM) was first introduced for
diffusion problems in [43] with improved results in terms of
accuracy and efficiency of the method. Subsequently, due to
handiness of this approach, the LRBFCM has been applied to more
complex problems such as convection–diffusion problems with
phase-change [37], continuous casting [40], solid–solid phase
transformations [22], heat transfer and fluid flow [41], Navier–
Stokes equations [7], Darcy flow [19], turbulent flow [39], etc.

The main idea of LRBFCM is the collocation on the overlapping
sub-domains of influence instead of the whole domain which
drastically reduces the size of the collocation matrix at the
expense of solving many small matrices. The size of each small
matrix is the same as the number of nodes included in the domain
of influence of each node.

The main disadvantage of the LRBFCM is that the method does
not work for elliptic problems in a straightforward way. Another
kind of RBF-based meshless methods use the integration of RBFs
instead of the differentiation of the RBFs. They are known as
indirect RBF collocation methods. This class includes indirect
RBFN method (IRBFN) [27], the method of approximate particular
solutions (MAPS) [6], the localized method of approximate parti-
cular solutions (LMAPS) [47], and others. The recent studies can
be found in [49]. The LMAPS works well for elliptic PDEs, and can
be extended to time-dependent problems as well [46]. This
approach yields sparse matrices instead of full matrices, which
makes the LMAPS suitable for solving large-scale problems.
However, in this paper, we will focus on the LRBFCM only.

PDEs govern physical problems like transport processes, includ-
ing heat transfer and fluid flows, wave propagation or interaction
between fluids and solids, and option pricing. Unlike lower-dimen-
sional problems, the numerical simulation of three-dimensional
problems [4,44,45] is much more computationally intensive in
terms of CPU time and huge memory requirements. Local meshless
methods are not that much prone to these problems since the
coefficient matrix is of the same size as the size of the local sub-
domain, which is usually relatively small. In the case of uniform
node arrangement, the small matrix needs to be inverted only once
outside the time-loop for time-dependent problems. This saves a
considerable amount of CPU time and consumes less memory as
well. The computational efficiency of the local meshless methods in
the case of two-dimensional problems and its usefulness in large-
scale simulations can be found in [19–21,25,38,39,48].

This paper is an extension of work in [48] to three-dimensional
problems. The main motivation for this work is that literature on
the numerical methods for three-dimensional problems is sparse
compared with lower-dimensional problems. This is particularly
true in the field of meshless methods. Some of the related work
can be found in Refs. [4,14,18,44,45]. We compare performances
of the following five meshless collocation methods: the global
implicit radial basis function collocation method (GI), the global
Crank–Nicolson radial basis function collocation method (GCN),
the global explicit radial basis function collocation method (GE),
the local explicit radial basis function collocation method (LE), and
the local implicit radial basis function collocation method (LI).

The structure of the rest of the paper is as follows. In Section 2,
we introduce the governing equations. In Section 3, we discuss
the time discretization technique from implicit and explicit points
of view. In Section 4, the numerical methods are introduced from
the local and global views. Section 5 is devoted to discussion
regarding the scaling technique of the shape parameter c of MQ
RBF and the numerical tests on benchmark problems. At the end,
conclusions are drawn.
2. Governing equations

Consider a dimensionless form of the three-dimensional
diffusion–reaction equation, defined on domain O with boundary G

@uðx,tÞ

@t
¼L½uðx,tÞ�þmuðx,tÞþgðx,tÞ, xAO, t4t0, ð1Þ

with the initial condition

uðx,t0Þ ¼ u0, xAO [ G, ð2Þ

and Dirichlet or Neumann boundary conditions

B½uðx,tÞ� ¼ f ðx,tÞ, tZt0, xAG, ð3Þ

where u,t,x¼ ½x,y,z�tr are the diffusion, time and space variables,
respectively, tr represents the matrix transpose, g and f are the
known functions of x and t, G¼GDþGN , where GN and GD are the
boundaries that satisfy Neumann and Dirichlet boundary conditions,
respectively. m is a real constant, L is a differential operator
consisting of first- or second-order derivatives of space variables
and B is a first-order differential operator with respect to space
variables in the case of the Neumann boundary conditions and is
identity operator in the case of the Dirichlet boundary conditions.
3. Time discretization

Let Dt be the time-step size, and t¼ t0þDt be the time
discretization, where t0 refers to the beginning time of every time
step, and t refers to the end of the time step. For a time period ½t0,t�,
the time derivative in Eq. (1) is approximated by Euler formula:

@uðx,tÞ

@t
�

uðx,tÞ�uðx,t0Þ

Dt
: ð4Þ

Let yAð0;1�. The parameter y is used in the time discretization of
Eq. (1) as

uðx,t0þyDtÞ � yuðx,tÞþð1�yÞuðx,t0Þ, ð5Þ

gðx,t0þyDtÞ � ygðx,tÞþð1�yÞgðx,t0Þ, ð6Þ

L½uðx,t0þyDtÞ� � yL½uðx,tÞ�þð1�yÞL½uðx,t0Þ�: ð7Þ

Then Eq. (1) can be discretized in time-space as

ð1�myDtÞuðx,tÞ�yDtL½uðx,tÞ��yDtgðx,tÞ

¼ ð1þmð1�yÞDtÞuðx,t0Þþð1�yÞDtL½uðx,t0Þ�

þð1�yÞDtgðx,t0Þ, ð8Þ

note that t¼ t0þDt. Similarly, for xAG, Eq. (3) can be discretized in
time-space as

yB½uðx,tÞ��yf ðx,tÞ ¼ �ð1�yÞB½uðx,t0Þ�þð1�yÞf ðx,t0Þ: ð9Þ

To represent the approximate solution of Eqs. (1)–(3) in a single
equation, at the interior and boundary points, we define the following
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domain and boundary indicators:

gx
O ¼

1, xAO,

0, x=2O,

(
gx
G ¼

1, xAG,

0, x=2G,

(
ð10Þ

where xAO [ G. By using Eqs. (8) and (9), Eqs. (1)–(3) can be
approximated as

gx
G½yB½uðx,tÞ��yf ðx,tÞ�þgx

O½ð1�myDtÞuðx,tÞ

�yDtL½uðx,tÞ��yDtgðx,tÞ�

¼ gx
G½�ð1�yÞB½uðx,t0Þ�þð1�yÞf ðx,t0Þ�

þgx
O½ð1þmð1�yÞDtÞuðx,t0Þ

þð1�yÞDtL½uðx,t0Þ�þð1�yÞDtgðx,t0Þ�: ð11Þ

More specifically, if y¼ 0, i.e., the explicit method:

gx
GB½uðx,t0Þ�þgx

Ouðx,tÞ

¼ gx
Gf ðx,t0Þþgx

O½ð1þmDtÞuðx,t0Þ

þDtL½uðx,t0Þ�þDtgðx,t0Þ�; ð12Þ

if y¼ 0:5, i.e., Crank–Nicolson method:

0:5gx
G½Buðx,tÞ�f ðx,tÞ�þgx

O½ð1�0:5mDtÞuðx,tÞ

�0:5DtL½uðx,tÞ��0:5Dtgðx,tÞ�

¼ 0:5gx
G½�B½uðx,t0Þ�Þþ f ðx,t0Þ�

þgx
O½ð1þ0:5mDtÞuðx,t0Þ

þ0:5DtL½uðx,t0Þ�þ0:5Dtgðx,t0Þ�; ð13Þ

if y¼ 1, i.e., implicit method:

gx
GB½uðx,tÞ�þgx

O½ð1�mDtÞuðx,tÞ�DtL½uðx,tÞ�

�Dtgðx,tÞ� ¼ gx
Gf ðx,tÞþgx

Ouðx,t0Þ: ð14Þ

These are the commonly used two-level time stepping strate-
gies which approximate uðx,tÞ in O from the values given at the
initial time t0 and further time t¼ t0þ Dt. In the global cases
derived in this paper, we take y¼ 0,0:5 and 1, whereas in the local
approximations, we choose y¼0 and 1.
4. Space discretization

Let fxig
N
1 AO [ G be the space discretization where N¼NO [ NG

and N denotes the total number of points, NO denotes the number
of interior points, and NG denotes the number of boundary points.

4.1. Global method

In this approach, the formulation of the problem starts with
the representation of u with RBFs on the entire domain. The RBFs
approximation for uðx,tÞ is given in the following form:

uðx,tÞ ¼
XN

k ¼ 1

fðJx�xkJÞakðtÞ, xAO, ð15Þ

where akðtÞ,k¼ 1;2, . . . ,N are the real RBFs coefficients. MQ RBFs
are defined as

fðJx�xkJÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jx�xkJ

2
þc2

q
, ð16Þ

where c is the shape parameter. RBFs approximation for the
derivatives of uðx,tÞ can be represented by

Luðx,tÞ ¼
XN

k ¼ 1

LfðJx�xkJÞakðtÞ: ð17Þ
The coefficients akðtÞ,k¼ 1;2, . . . ,N can be found from the colloca-
tion as

uðx1,tÞ

uðx2,tÞ

^

uðxN ,tÞ

2
66664

3
77775¼

fðJx1�x1JÞ fðJx1�x2JÞ . . . fðJx1�xNJÞ

fðJx2�x1JÞ fðJx2�x2JÞ . . . fðJx2�xNJÞ

^ ^ ^ ^

fðJxN�x1JÞ fðJxN�x2JÞ . . . fðJxN�xNJÞ

2
66664

3
77775

a1ðtÞ

a2ðtÞ

^

aNðtÞ

2
66664

3
77775:

ð18Þ

This can be written in the matrix notation as

u¼Ua, ð19Þ

where u¼ ½uðx1,tÞ,uðx2,tÞ, . . . ,uðxN ,tÞ�tr , a¼ ½a1ðtÞ,a2ðtÞ, . . . ,aNðtÞ�
tr

and Fsk ¼fðJxs�xkJÞ is the matrix element of N�N matrix U.
By inserting Eqs. (15)–(17) in Eq. (11) we get

ygxj

G

XN

k ¼ 1

BfðJxj�xkJÞakðtÞ�g
xj

Gyf ðxj,tÞ

þgxj

O ð1�ymDtÞ
XN

k ¼ 1

fðJxj�xkJÞakðtÞ

"

�yDt
XN

k ¼ 1

LfðJxj�xkJÞakðtÞ�gðxj,tÞ

 !#

¼ gxj

G ð1�yÞf ðxj,t0Þ�g
xj

G ð1�yÞ
XN

k ¼ 1

BfðJxj�xkJÞakð0Þ

þgxj

O

"
ð1þmð1�yÞDtÞuðxj,t0Þþð1�yÞDt

Xn

k ¼ 1

LfðJxj�xkJÞakð0Þþgðxj,t0Þ

 !#
ð20Þ

for j¼ 1, . . . ,N, and 0ryr1 and a0 ¼ ½a1ð0Þ,a2ð0Þ, . . . ,aNð0Þ�
tr is the

value of ak at t0 which is updated in every time iteration. The above
linear system of equations can be written in a matrix notation as

Wa¼ b, ð21Þ

where W is the matrix in N by N system of linear equations
Eq. (20), the unknown coefficients on the left-hand side of
Eq. (20) are denoted by a¼ ½a1ðtÞ,a2ðtÞ, . . . ,aNðtÞ�

tr and b¼
½b1,b2, . . . ,bN�

tr is the right-hand side of Eq. (20). The matrices W
and b are defined as

Csk ¼ ygxs

G BfðJxs�xkJÞþgxs

O ½ð1�ymDtÞfðJxs�xkJÞ

�yDtLfðJxs�xkJÞ�,

bs ¼ gxs

G yf ðxs,tÞþgxs

OyDtgðxs,tÞ�gxs

G ð1�yÞBUa0

þgxs

G ð1�yÞf ðxs,t0Þþgxs

O ð1�yÞDtgðxs,t0Þ

þgxs

O ½ð1þmð1�yÞDtÞuðxs,t0Þ

�ð1�yÞDtLUa0� s,k¼ 1;2, . . . ,m,

where U is given in (19). We determine the coefficients a by
inverting W:

a¼W�1b, ð22Þ

which implies that

asðtÞ ¼
XN

k ¼ 1

C�1
sk bk, s¼ 1;2, . . . ,N, ð23Þ

where C�1
sk denotes the matrix element of the matrix W�1. The

diffusion variable u, at the next time t¼ t0þDt and position x, can
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be approximated in the following form:

uðx,tÞ ¼
XN

k ¼ 1

fðJx�xkJÞakðtÞ, xAO: ð24Þ

4.2. Local methods

In order to reduce the size of the dense matrices arising from
the global scheme, we propose a local meshless scheme instead of
the global methods, as discussed in the last section and compare
its performance with global method in the context of three-
dimensional time dependent PDEs.

For each xjAO [G, j¼ 1;2, . . . ,N we choose n nearest neigh-
boring points contained in the sub-domain jO ¼ fjxkg

n
k ¼ 1, where k

denotes the local indexing for each collocation point xj being
center of jO instead of these whole domains. The schematic
diagram of the local domain of influence containing seven points,
i.e., n¼7, is shown in Fig. 1.

To approximate uðx,tÞ through the local explicit radial basis
function collocation method (LE), consider collocation on the sub-
domain jO ¼ fjxkg

n
k ¼ 1, j¼ 1, . . . ,N instead of the whole domain O.

The diffusion variable u can be approximated on each sub-domain
in the following form:

uðjx,t0Þ ¼
Xn

k ¼ 1

fðJjx�jxkJÞjak, jxA jO: ð25Þ

It follows that for j¼ 1;2, . . . ,N,

Luðjx,t0Þ ¼
Xn

k ¼ 1

LfðJjx�jxkJÞjak, jxA jO, ð26Þ

Buðjx,t0Þ ¼
Xn

k ¼ 1

BfðJjx�jxkJÞjak ¼ f ðjx,t0Þ, jxA jO: ð27Þ

The coefficients jak are determined by collocation in the following
form:

gxs

O

Xn

k ¼ 1

fðJjxs�jxkJÞjakþg
xs

G

Xn

k ¼ 1

BfðJjxs�jxkJÞjak

¼ gxs

Ouðjxs,t0Þþgxs

G f ðjxs,t0Þ, ð28Þ

where s¼ 1;2, . . . ,n, gxs

O and gxs

G are defined indicators of xs. The
above linear system can be written in matrix notation as

jUja ¼ jb, ð29Þ

where ja ¼ ½ja1,ja2, . . . ,jan�
tr , jb ¼ ½jb1,jb2, . . . ,jbn�

tr is the right-
hand side of Eq. (28). The matrices jU and jb are defined as

jFsk ¼ g
xs

OfðJjxs�jxkJÞþg
xs

G BfðJjxs�jxkJÞ, s,k¼ 1;2, . . . ,n,

jbs ¼ g
xs

O uðjxs,t0Þþgxs

G f ðjxs,t0Þ, s¼ 1;2, . . . ,n,
Fig. 1. Seven-node local domain schematics.
where jU ¼ ½jFsk�ARn�n. We determine the coefficients ja by
inverting jU

ja ¼ jU
�1

jb, ð30Þ

which implies that

jas ¼
Xn

k ¼ 1
jF
�1
sk jbk, s¼ 1;2, . . . ,n, ð31Þ

where jF
�1
sk denotes the matrix element of the matrix jU

�1 . Then,

Luðxj,t0Þ ¼
Xn

s ¼ 1

LfðJxj�jxsJÞ
Xn

k ¼ 1
jU
�1
sk jbk: ð32Þ

Let y¼ 0. The diffusion–reaction variable u for y¼ 0 at the interior
point xj, uðxj,tÞ, can be approximated by using Eq. (26) in (11):

uðxj,tÞ ¼ ð1þmDtÞuðxj,t0ÞþDt
Xn

s ¼ 1

LfðJxj�jxsJÞ

Xn

k ¼ 1
jU
�1
sk jbkþDtgðxj,t0Þ: ð33Þ

For boundary point xj, from Eq. (25), we have

uðxj,tÞ ¼
Xn

s ¼ 1

fðJxj�jxsJÞ
Xn

k ¼ 1
jU
�1
sk jbk: ð34Þ

This completes the formulation of the local explicit radial basis
function collocation method (LE). The formulations are similar for
the global and the local methods, however, the global methods
involve inversion of a full matrix, but the local methods invert N

small n�n matrices.
In the case of local implicit radial basis function collocation

method (LI), let y¼ 1 in Eq. (11),

gxj

O ð1�mDtÞuðxj,tÞ�Dt
Xn

s ¼ 1

LfðJxj�jxsJÞ
Xn

k ¼ 1
jU
�1
sk uðjxk,tÞ

" #

þgxj

G

XN

k ¼ 1

BfðJxj�jxsJÞ
Xn

k ¼ 1
jU
�1
sk uðjxk,tÞ

¼ gxj

O ½uðxj,t0ÞþDtgðxj,tÞ�þg
xj

G f ðxj,tÞ: ð35Þ

Note that ffjxkg
n
k ¼ 1,j¼ 1;2, . . . ,Ng ¼ fxjg

N
j ¼ 1, Eq. (35) leads to a

linear system of N equations with N unknowns fuðxj,tÞg
N
j ¼ 1 with

all entries in each row equal to zero except those related to the
sub-domain. This leads to N � N sparse system which can be
solved by an efficient sparse matrix solver.
5. Numerical results

The performance of the explicit/implicit and global/local
collocation methods, both on uniform and random node arrange-
ments, is investigated in this paper. Two test problems are con-
sidered for the numerical validation. The MQ RBF

fðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2

p
ð36Þ

are used throughout this text. The differentiation operator
involved is L¼r2. Thus, the differentiation of f involved in all
the numerical methods is

r2fðrÞ ¼
2r2þ3c2

ðr2þc2Þ
3=2
: ð37Þ

We investigate the performance of the global and local RBFCM
that can both be implemented on evenly or randomly distributed
nodes. The computer program has been coded in MATLAB. Three
kinds of error measures: absolute error, maximum absolute error
and root mean squared error

Labs ¼ 9uðxj,tÞ�ûðxj,tÞ9, j¼ 1;2, . . . ,N,



Table 1
GI, LI, GE, LG, L1 and Lrms, Example 1, t¼1, with different node densities,

Dt ¼ 10�3.

N GI GCN GE LI LE

L1
32 8.42�10�3 8.41�10�3 4.36�10�2 6.46�10�3 6.38�10�3

81 9.24�10�3 9.22�10�3 5.56�10�2 5.36�10�3 5.28�10�3

160 8.22�10�3 8.20�10�3 5.89�10�2 3.91�10�3 3.88�10�3

1600 1.58�10�3 1.57�10�3 6.61�10�2 1.21�10�3 8.81�10�4

9025 – – – 1.84�10�3 2.05�10�4

Lrms

32 1.61�10�3 1.61�10�3 1.02�10�2 1.58�10�3 1.56�10�3

18 1.45�10�3 1.45�10�3 1.22�10�2 1.16�10�3 1.15�10�3

160 9.46�10�4 9.48�10�4 1.38�10�2 8.40�10�4 8.32�10�4

1600 1.35�10�4 1.37�10�4 1.73�10�2 2.70�10�4 1.96�10�4

9025 – – – 4.20�10�4 4.67�10�5

CPU (s)

32 0.52 0.29 0.30 0.19 0.28

18 0.88 0.88 0.82 0.42 0.59

160 3.10 3.18 3.41 0.77 1.21

1600 1068.54 1058.78 828.18 40.75 14.92

9025 – – – 2470.00 2505.95

Table 2
GI, LI, GE, LG, L1 and Lrms, Example 1, t¼1, with different time-steps, N¼160.

Dt GI GCN GE LI LE

L1
10�1 9.58�10�3 8.10�10�3 8.53�10 5.92�10�3 6.06�10�3

10�2 8.53�10�3 8.19�10�3 5.83�10�2 4.16�10�3 2.98�10�3

10�3 8.22�10�3 8.20�10�3 5.89�10�2 3.91�10�3 3.88�10�3

10�4 8.41�10�3 8.20�10�3 5.90�10�2 2.84�10�3 3.97�10�3

Lrms

10�1 1.75�10�3 1.03�10�3 2.07�10 1.27�10�3 1.38�10�3

10�2 1.62�10�3 9.54�10�4 1.37�10�2 8.93�10�4 6.39�10�4

10�3 9.46�10�4 9.48�10�4 1.38�10�2 8.40�10�4 8.32�10�4

10�4 1.61�10�3 9.47�10�4 1.38�10�2 6.09�10�4 8.51�10�4

Table 3
GI, LI, GE, LG, L1 and Lrms, Example 1, t¼1, with different displacement factors, Z.

N¼160.

Z GI GCN GE LI LE

L1
0.0 8.22�10�3 8.20�10�3 5.89�10�2 3.91�10�3 3.88�10�3

0.2 1.07�10�2 1.24�10�2 6.52�10�2 3.37�10�2 3.50�10�2

0.4 1.29�10�2 1.86�10�2 6.17�10�2 4.58�10�2 4.16�10�2

0.6 1.35�10�2 1.36�10�2 5.71�10�2 5.86�10�2 3.06�10�2

0.8 9.90�10�2 5.58�10�2 5.51�10�1 6.16�10�2 8.51�10�2

Lrms

0.0 9.46�10�4 9.48�10�4 1.38�10�2 8.40�10�4 8.32�10�4

0.2 1.29�10�3 1.20�10�3 1.35�10�2 4.16�10�3 4.61�10�3

0.4 1.22�10�3 1.87�10�3 1.22�10�2 6.36�10�3 4.31�10�3

0.6 1.30�10�3 1.51�10�3 1.22�10�2 6.44�10�3 4.91�10�3

0.8 1.61�10�3 6.38�10�3 4.68�10�2 6.44�10�3 9.58�10�3
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L1 ¼max Labs,

Lrms ¼
1

N

XN

j ¼ 1

9uðxj,tÞ�ûðxj,tÞ9
2

2
4

3
5

1=2

are considered, where u and û represent exact and numerical
solutions of the given PDE, respectively. N is the total number of
collocation points considered. However, the points on the eight
corners of the cube domain are not included. Let N be the number
of points on unit length (0, 1) (note this is not a closed interval)
when a unit cube domain with evenly distributed nodes is con-
sidered, the total number of interior collocation points is Ni ¼N 3,
and total number of boundary collocation points is Nb ¼ 6N 2. Thus,
the total number of collocation points is N¼NiþNb ¼N 3

þ6N 2.
For example, N¼ 23

þ6ð22
Þ ¼ 32 when N ¼ 2, and N¼ 33

þ

6ð32
Þ ¼ 81 when N ¼ 3. The random nodes are generated from the

uniform nodes through the following transformation:

xj ¼ xjþcrandZrmin, ð38Þ

where xj ¼ ðxj,yj,zjÞ, is jth collocation node, crand is a random number
between 0 and 1, rmin denotes the minimum distance among
different points which are uniformly distributed throughout the
domain, Z stands for a displacement factor. The number Z is chosen
from 0 to 0.8 in this paper, the uniform nodes are used if not stated
otherwise (i.e., Z¼ 0). A scaling technique similar to the one
introduced in [43] is used to alleviate the difficulty of choosing
different values of shape parameter in MQ RBFs. The scaling
parameter jr0 is the maximum nodal distance in the sub-domains:

jr0 ¼ max
N

j ¼ 1
max

n

k ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jjxk�xjJ

2
q

: ð39Þ

The parameter c in all RBFs and the corresponding derivatives is
replaced by cr0. Hence, a larger shape parameter of the MQ RBF can
be used in the numerical implementation. Scaling of the shape
parameter is performed to make MQ RBFs approximation insensitive
to various dimensions of the domain. Thus, the LRBFCM is less
sensitive with respect to the shape parameter unlike the GRBFCM. In
this paper, the shape parameter in the local methods is chosen as
cl¼100 if not otherwise specified. The shape parameter c for the
GRBFCM (GCN, GI, GE) is chosen as c¼ 1:6=

ffiffiffiffi
N
p

[45], where N is the
total number of collocation points. The number of nodes in each
sub-domain in the case of LRBFCM is chosen as n¼7, which is the
simplest possible 3D local implementation. As n increases, all the
three kinds of errors are expected to improve while the computa-
tional efficiency will decrease, and we may run into ill-conditioning
problem.

Example 1. Consider the three-dimensional problem:

@uðx,y,z,tÞ

@t
¼

1

p2
r2uðx,y,z,tÞ�2 expðt�pðxþyþzÞÞ, ð40Þ

where 0rx,y,zr1, with the initial condition

uðx,y,z,t0Þ ¼ expð�pðxþyþzÞÞþxþyþz ð41Þ

and subject to the boundary condition

uð0,y,z,tÞ ¼ expðt�pðyþzÞÞþyþz,

uðx,0,z,tÞ ¼ expðt�pðxþzÞÞþxþz,

uðx,y,0,tÞ ¼ expðt�pðxþyÞÞþxþy,

uð1,y,z,tÞ ¼ expðt�pð1þyþzÞÞþ1þyþz,

uðx,1,z,tÞ ¼ expðt�pðxþ1þzÞÞþxþ1þz,

uðx,y,1,tÞ ¼ expðt�pðxþyþ1ÞÞþxþyþ1:
The analytical solution is given by

uðx,y,tÞ ¼ expðt�pðxþyþzÞÞþxþyþz: ð42Þ

The numerical results of the above problem are shown in
Tables 1–3 and Figs. 2 and 3.

In Table 1, we compute the L1 and Lrms errors at t¼1 by using
different numbers of collocation points, N, fixed and time-step size
Dt¼ 10�3. RBF collocation methods have been shown [9,16] to be
very accurate even for a small number of collocation points. As
shown in [31], when the shape of the basis functions matches the
shape/feature of the PDE solution, a small number of basis functions
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approximates the solution of PDE very well. As N increases, both L1
and Lrms are seen improving a little, while the computational
efficiency decreases as N gets larger. As shown in Table 1, CPU
times (in second) of GI are 15%, 650%, 1042%, 1837% more than LI
for N¼32, 81, 160, 1600, respectively. It is clear that in three-
dimensional space, LE and LI have shown accurate solution for
N¼9025 whereas in the case of global methods (GCN, GI and GE) no
solution is obtained due to excessive memory requirement and
large CPU time.

Table 2 shows the accuracy of all methods at t¼1 regarding
different time-step sizes with N¼160, where the results of GE are
not as accurate as the results of other methods. As we have seen,
L1 and Lrms improves slightly as Dt decreases. In Table 3 a
comparative performance of the global and the local methods
are given for random nodes with random parameter Z ranging
from 0.0 to 0.8, where N¼160. This table shows that both the
global as well as local methods produce accurate approximation
to the exact solution. As discussed in Introduction, this attribute is
only specific to meshless methods [30].

Fig. 2 shows the absolute errors of the five methods together
with the exact solution u when t¼1, z¼0.4, Dt¼ 10�3, N¼160.
The pattern of absolute errors of GI, GCN are similar, and the
pattern of absolute errors of GE, LI, and LE resembles each other.
Clearly, GI, GCN, LI, and LE show smaller absolute errors in the
entire domain, where LE is slightly better than LI when larger
number of nodes are used. Fig. 3 shows the rate of convergence of
the five methods with respect to time-step size and minimum
grid distance in the case of uniformly spaced collocation nodes.
All the methods perform with a similar rate of convergence
except GE.

It is clear that the performance LRBFCM (LE, LI) is marginally
better than GRBFCM (GCN, GI, GE) for three-dimensional Dirichlet
boundary value problems, especially when large number of
collocation points is used. Apart from some improvement in the



Table 5
GI, LI, GE, LG, L1 and Lrms, Example 2, t¼1, with different time-steps, N¼1215.

Dt GI GCN GE LI LE

L1
10�1 5.54�10�2 5.43�10�2 5.54�10�2 4.38�10�2 2.16�10�1

10�2 5.55�10�2 5.44�10�2 5.55�10�2 4.41�10�2 2.14�10�1

10�3 5.55�10�2 5.44�10�2 5.55�10�2 4.08�10�2 2.14�10�1

10�4 5.55�10�2 5.44�10�2 5.55�10�2 9.23�10�2 2.14�10�1

Lrms

10�1 1.09�10�2 1.07�10�2 1.09�10�2 8.04�10�3 4.81�10�2

10�2 1.11�10�2 1.09�10�2 1.11�10�2 8.13�10�3 4.79�10�2

10�3 1.11�10�2 1.09�10�2 1.11�10�2 7.65�10�3 4.80�10�2

10�4 1.11�10�2 1.09�10�2 1.11�10�2 2.79�10�2 4.80�10�2

0.5

1

1.5
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,2

π/
5,
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Table 6
GI, LI, GE, LG, L1 and Lrms, Example 2, t¼1, with different displacement factors, Z.

Dt ¼ 10�2, N¼1215.

Z GI GCN GE LI LE

L1
0.0 5.55�10�2 5.44�10�2 5.55�10�2 4.41�10�2 6.15�10�1

0.1 6.85�10�2 7.79�10�2 7.73�10�2 4.20�10�1 9.84�10�1(cl¼10)

0.2 9.38�10�2 8.51�10�2 9.97�10�2 7.03�10�2 9.68�10�1(cl¼10)

0.3 1.32�10�1 1.40�10�1 1.10�10�1 8.92�10�2 1.03�10�0(cl¼10)

Lrms

0.0 1.11�10�2 1.09�10�2 1.11�10�2 8.13�10�3 1.83�10�1

0.1 1.20�10�2 1.21�10�2 1.20�10�2 1.62�10�2 2.18�10�1(cl¼10)

0.2 1.47�10�2 1.32�10�2 1.33�10�2 8.79�10�3 2.12�10�1(cl¼10)

0.3 1.66�10�2 1.80�10�2 1.74�10�2 1.24�10�2 2.09�10�1(cl¼10)
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accuracy of the LRBFCM, there is a considerable reduction in the
memory requirement and CPU time as well.

Another advantage of LRBFCM in the case of uniform node
arrangement is that a small matrix (of the size of sub-domain
which is 7�7 in the present case) needs to be inverted only once
outside the time-loop. Among the global methods (GCN, GI, GE)
performances of GCN and GI are similar, whereas accuracy of GE
is little lower than both GCN and GI. The global methods are
prone to the problem of ill-conditioning and large CPU time in
case of larger nodal density.

Example 2. Consider a three-dimensional problem [29]

@uðx,y,z,tÞ

@t
¼ 0:2r2uðx,y,z,tÞþ0:1u,

ðx,y,zÞA O, t40, ð43Þ

where O¼ ½0,p� � ½0,p� � ½0,p�, with the initial condition:

uðx,y,z,0Þ ¼ cos xþsin yþcos z, ðx,y,zÞAO ð44Þ

and subject to the boundary condition

uðx,y,0,tÞ ¼ expð�0:1tÞðcos xþsin yþ1Þ, t40,

uðx,y,p,tÞ ¼ expð�0:1tÞðcos xþsin y�1Þ, t40,

@uðx,0,z,tÞ

@y
¼ expð�0:1tÞ, t40,

@uðx,p,z,tÞ

@y
¼�expð�0:1tÞ, t40,

uð0,y,z,tÞ ¼ expð�0:1tÞð1þsin yþcos zÞ, t40,

uðp,y,z,tÞ ¼ expð�0:1tÞð�1þsin yþcos zÞ, t40:

The analytical solution is given by

uðx,y,z,tÞ ¼ expð�0:1tÞðcos xþsin yþcos zÞ: ð45Þ

The numerical results are shown in Tables 4–6 and Figs. 4 and 5.

In Table 4, we compute the L1, Lrms errors at t¼1 and CPU time
using different sets of collocation points, N for the time-step size
Dt¼ 10�3. As we observe from Example 1, as N increases, both L1
and Lrms are recorded to improve marginally while the computa-
tional efficiency decreases at the same time. It is clear that the
Table 4
GI, GCN, GE, LI, LE, L1 and Lrms, Example 2, t¼1, with different node densities,

Dt¼ 10�3.

N GI GCN GE LI LE

L1
32 5.13�10�1 4.97�10�1 9.18�10�1 1.29�10 6.69�10�1

81 3.09�10�1 2.54�10�1 5.60�10�1 7.13�10�1 5.74�10�1

160 2.22�10�1 1.78�10�1 3.50�10�1 2.89�10�1 4.73�10�1

432 1.15�10�1 8.98�10�2 1.15�10�1 6.83�10�2 3.32�10�1

1215 5.44�10�2 4.34�10�2 5.44�10�2 4.14�10�2 2.16�10�1

6647 – – – 2.39�10�2 1.28�10�1

Lrms

32 1.73�10�1 1.57�10�1 3.02�10�1 6.44�10�1 2.89�10�1

81 6.69�10�2 5.14�10�2 1.17�10�1 1.38�10�1 2.64�10�1

160 4.52�10�2 3.14�10�2 6.99�10�1 6.83�10�2 1.72�10�1

432 2.19�10�2 1.30�10�2 2.85�10�2 1.40�10�2 8.67�10�2

1215 1.09�10�2 5.51�10�3 1.09�10�2 7.67�10�3 4.81�10�2

6647 – – – 4.40�10�3 2.16�10�2

CPU (s)

32 0.26 0.29 0.30 1.22 1.39

81 0.80 0.81 0.82 2.72 3.05

160 2.54 2.66 2.30 5.23 6.78

432 14.00 14.43 14.00 7.55 17.01

1215 191.00 192.84 190.00 35.04 52.06

6647 – – – 643.26 117.5

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.5

0

x

u 
(x

Fig. 4. The analytical solution and the approximate solutions using GI, GCN, GE, LE

and LI, y¼ p,z¼ 2p=5, t¼1 in Example 2, N¼1215, Dt¼ 10�3.
accuracy of LE is comparable with GRBFCM (GCN, GI, GE) for
three-dimensional mixed problem, whereas LI gives very large
errors when a very small number of collocation points (N¼32) is
used. On the other hand, with larger number of collocation points
LI performs slightly better than their other counter parts. Same
scenario has been observed in our earlier study in [48] for two-
dimensional case with the mixed boundary conditions. In the case
of LRBFCM, there is a considerable reduction in the memory
requirement as well as CPU time.

Table 5 shows that all methods are stable with respect to time-
step size in the given range where N¼1215, t¼1 are used.
However, LE performs slightly less accurate for all the time-step
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sizes chosen, and LI performs slightly better with respect to Lrms

when the time-step Dt is larger than 10�4. All the global methods
perform with a similar accuracy in all the cases.

In Table 6 a comparative performance of the global and local
methods are given for 1215 random nodes with random parameter,
Z, ranging from 0.0 to 0.3. When the mixed boundary condition is
used, the acceptable random parameter has smaller ranges than the
problem with Dirichlet boundary condition. Furthermore, both the
global and local methods produce enough accurate approximation
to the exact solution except LE. LE cannot approximate the solution
accurately when the shape parameter c¼100 is used. However, as
shown in the table, LE with a smaller shape parameter, c¼10 yields
acceptable solutions. Thus, LE is very sensitive to the shape para-
meter in random node distribution case.

Fig. 4 shows the exact solution versus numerical solution
when y¼ p, where z¼ 2p=5, xA ½0,p�, t¼1, Dt¼ 10�3, N¼1215.
The distribution of absolute errors of GI, GCN, GE, and LI are
similar to each other. Clearly, LE shows larger absolute errors
throughout the entire domain in comparison with the other
methods.

Fig. 5 shows the rate of convergence of the global and local
methods with respect to time-step size and minimum grid
distance. LI is more sensitive to the grid distance, and it performs
better accuracy with smaller time-steps. All other methods per-
form similarly.

From Fig. 6, it is clear that the gap between the accuracy of the
global method GCN in the case of Dirichlet and mixed type of
conditions is comparatively less than its local counter part LE. Over
all, performance of both the methods is satisfactory for both types of
boundary conditions. In the case of global methods, the performance
of GCN and GI are similar, whereas accuracy of GE is little lower than
both GCN and GI. Global methods run into troubles due to ill-
conditioning and CPU runs out of memory for larger node density.
6. Conclusions

A comparison of the meshless methods based on the global and
the local approximations with the three-dimensional parabolic PDEs
is performed in the present paper. The global methods run into
difficulties for cases with large number of collocation points and the
coefficient matrix becomes ill-conditioned. The local methods are
based on local interpolations and work well when a large number of
nodes is used. They save CPU time since several small matrices are
inverted only once outside the time-loop instead of a large matrix.
Tests on different benchmark problems show superiority of the local
collocation methods for problems with both Dirichlet and mixed type
of boundary conditions. In the case of mixed type of boundary
conditions, performance of the global methods is comparatively
better than their local methods if small number of nodes are used.
Nevertheless, global methods are more prone to ill-condition and
hence cannot be used for the numerical solution of multi-dimensional
problems with denser nodes.
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