
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING
Int. J. Numer. Meth. Biomed. Engng. 2012; 28:187–204
Published online 19 July 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cnm.1453
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SUMMARY

Spatial–temporal calcium dynamics due to calcium release, buffering and re-uptaking plays a central role in
studying excitation–contraction (E–C) coupling in both normal and diseased cardiac myocytes. In this paper,
we employ a meshless method, namely, the local radial basis function collocation method (LRBFCM),
to model such calcium behaviors by solving a nonlinear system of reaction–diffusion partial differential
equations. In particular, a simplified structural unit containing a single transverse tubule (T-tubule) and its
surrounding half sarcomeres is investigated using the meshless method. Numerical results are compared with
those generated by finite element methods, showing the capability and efficiency of the LRBFCM in model-
ing calcium dynamics in ventricular myocytes. The single T-tubule model is also extended to the whole-cell
scale with T-tubules excluded to demonstrate the scalability of the proposed meshless method in handling
very large domains. The experiments have shown that the LRBFCM is suitable to multiscale modeling of
calcium dynamics in ventricular myocytes with high accuracy and efficiency. Copyright © 2011 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Heart failure has been one of the leading causes of human deaths in many countries including
the USA. The prevalence of this disease is largely due to our lack of accurate understanding of
excitation–contraction (E–C) coupling in cardiomyocytes. In particular, the architecture of uniquely
developed membrane organelles in ventricular myocytes, including transverse tubules (T-tubules)
and junctional sarcoplasmic reticulum (SR), and the arrangement of associated proteins are known
to play a major role in dynamically controlling intracellular calcium levels, which in turn regulate
cardiac contraction and other cellular functions [1]. For its central role in E–C coupling, modeling
Ca2C release and concentration change has been an active research area and is typically studied in
two ways: stochastic approaches that employ Monte Carlo simulation at the nanometer scale [2] and
deterministic approaches based on partial differential equations (PDEs) at the micrometer scale [3].
Although stochastic simulation at the nanometer scale provides elementary information on calcium
dynamics, cardiac cell contraction is most closely related to the intracellular calcium concentration
level ŒCa2C�i [4]. For this reason, our interest in the present paper is to investigate spatial–temporal
variations of intracellular calcium concentration at cellular and subcellular levels, where the stochas-
tic behavior of calcium dynamics is insignificant so that deterministic methods utilizing PDEs are
more appropriate.
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A set of PDEs may be numerically solved by such traditional approaches as the finite difference
method (FDM) [5], the finite element method (FEM) [6, 7], the finite volume method (FVM) [8],
and the boundary element method (BEM) [9, 10]. Despite their great success in the past decades in
many branches of science and engineering, these mesh-based methods require meshes or grids as
the solution domain. The costs and difficulties in creating quality meshes, however, constitute one
of the major bottlenecks in these methods. Therefore, the meshless method that uses only a set of
unconnected and arbitrarily placed nodes to discretize a domain has become a popular technique
in many fields such as fluid dynamics, solid mechanics, and computational mathematics [11–15].
Detailed discussion on the meshless method and its applications to many complex and large-scale
PDE-based problems can be found in [13, 15–19].

The main advantages of the meshless method for solving PDEs lie in its simplicity, applicabil-
ity to various PDEs, and effectiveness in dealing with nonlinear and high-dimensional problems
with complicated geometries [20]. Much as with the FDM or the FEM, it has long been recognized
that, with global meshless methods, restriction on the size of the computational stencil is a neces-
sity in order to achieve stability. To avoid ill-conditioned problems and to reduce computational
costs involved in solving large-scale problems using global meshless methods, various localized
meshless methods have recently been developed [21–23]. One significant development is the local
radial basis function collocation method (LRBFCM) developed by S̆arler and Vertnik [23]. Pre-
vious work has shown LRBFCM’s accuracy and efficiency in various complex problems such as
convection–diffusion problems with phase-change [24], continuous casting [25], solid–solid phase
transformations [26], Navier Stokes equations [27], Darcy flow [28], turbulent flow [29], and so
on. The main feature of the LRBFCM is that collocation takes place on overlapping local domains.
This drastically reduces the size of the collocation matrix. The price paid, however, is that many
small matrices must now be solved. Because the LRBFCM does not experience any significant loss
of accuracy in comparison with the global version, it has been applied to many complicated PDE
problems, including large-scale industrial applications. It is apparent that localized meshless meth-
ods can compete with traditional numerical methods for solving large-scale PDEs. Thanks to the
collocation approach, no numerical integration is required in the LRBFCM, which makes it easy for
this approach to handle extremely irregular domains by adopting a random node arrangement.

In this paper, we apply the LRBFCM meshless method to solve a set of PDEs that govern calcium
dynamics in ventricular myocytes. The rest of the paper is organized as follows. The governing sys-
tem of PDEs are introduced in Section 2. In Section 3, we briefly describe the operator-splitting
method to decouple the PDEs and to separate nonlinear sources and Laplacian operators. The
LRBFCM is briefly reviewed in the beginning of Section 4, followed by an extension of the scaling
technique in [23] to three-dimensional (3D) cases allowing us to alleviate the difficulty of finding
suitable shape parameters. In Section 5, various numerical experiments are conducted and compared
with those generated by the FEM in [30] to validate the proposed meshless approach. We draw the
conclusion in Section 6.

2. GOVERNING EQUATIONS

The following nonlinear reaction–diffusion equations are modified from [30]:

@ŒCa2C�i
@t

DDCar
2ŒCa2C�i �

3X
mD1

RBm �RBs , in �, (1)

@ŒCaBm�

@t
DDCaBmr

2ŒCaBm�CRBm, in �, mD 1, 2, 3, (2)

@ŒCaBs�

@t
DRBs , in �, (3)

@ŒCa2C�i
@t

DDCar
2ŒCa2C�i C JCaflux, on @�, (4)
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with initial conditions:

ŒCa2C�i D 0.10 �M, ŒCaB1�D 11.92 �M, ŒCaB2�D 0.97 �M,

ŒCaB3�D 0.13 �M, ŒCaBs�D 6.36 �M,

and reflective boundary condition, where � � R3, and @� is the cell surface and T-tubule
membrane. The reactions between calcium ions and buffers are given by the following:

RBm D k
m
C .ŒBm�� ŒCaBm�/ ŒCa2C�i � k

m
� ŒCaBm�, mD 1, 2, 3, (5)

RBs D k
m
C .ŒBs�� ŒCaBs�/ ŒCa2C�i � k

m
� ŒCaBs�. (6)

In our model, three types of mobile Ca2C buffers (Fluo-3, ATP, and calmodulin, denoted by Bm,
mD 1, 2, 3) and one type of stationary Ca2C buffers (troponin, denoted byBs) are considered. Their
concentrations are denoted respectively by the following: ŒCa2C�i ; ŒCaBm�,mD 1, 2, 3; ŒCaBs�. At
the resting (initial) state, all the buffers are distributed uniformly throughout the cytosol but not on
the cell membrane. The resting concentrations of mobile and stationary buffers satisfy equilibrium
conditions (i.e., RBm D RBs D 0) [31]. The initial concentrations of buffers are calculated in equi-
librium with the resting Ca2C concentration, 0.1 �M. The total Ca2C flux, JCaflux, on the surface
membrane is defined as in [30], where Ca2C influx/efflux through L-type calcium channels (LCCs),
sodium–calcium exchangers (NCXs), Ca2C pumps and background leaks are included. The total
Ca2C flux (JCaflux) throughout the cell surface membrane and the surface of T-tubules is as follows
[1]:

JCaflux D JCaC JNCX � JpCaC JCab, (7)

where JCa is total LCC Ca2C influx, JNCX is total NCX Ca2C efflux, JpCa is total Ca2C pump efflux,
and JCab is the total background Ca2C leak influx. We use the following expressions from [32, 33]
to describe the current densities:

ICa D

8̂̂<
ˆ̂:
0.05978 t , t 2 .0, 4 ms�,

0.02327C 0.11931
�
e�t=55.900350C e�t=55.89166

�
, t 2 .4 ms, 70 ms�,

0, t 2 .70 ms,1/,

(8)

INCX D gNCX
e�V F=R T ŒNaC�3

i ŒCa2C�e � e.��1/V F=R TŒNaC�3e ŒCa2C�i�
k3m,NaC ŒNaC�3e

� �
km,CaC ŒCa2C�e

� �
1C ksate.��1/V F=R T

� , (9)

IpCa D
gpCaŒCa2C�i

ŒCa2C�i C km,pCa
, (10)

ICab D gCab

"
R T

2F
ln

 
ŒCa2C�e
ŒCa2C�i

!
� V

#
, (11)

where ICa is the LCC current density, INCX is the NaC/CaC exchanger, IpCa is the membrane
ŒCa2C�i pump, and ICab represents the leak current density. The physical constants and parameters
are summarized in Table I.

To calculate the total Ca2C flux, JCaflux, each of the current densities, Ii .�M ms�1/, is converted
to Ca2C flux, Ji (�M ms�1), by using the suggested experimental capacitance to rendered volume
ratio, (Cm=Vcell D 8.8 pF pL�1) [36]:

Ji D ˇ
Vmc

Si

�
1

2F

Cm

Vcell

�
Ii , (12)
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Table I. The parameters used in the paper.

Name Symbol Value Ref.

Physical constants
Faraday constant F 96.5 C mmol�1 Constant
Temperature T 295 K Constant
Universal gas constant R 8.314 J mol�1 K�1 Constant
T-tubule depth h 6.8 �m [34]

Ca2C and buffer concentrations
Extracellular Ca2C concentration ŒCa2C�i 1000 �M [4]
Resting Ca2C concentration ŒCa2C�i 0 0.1 �M [4]
Fluo-3 concentration ŒFluo� 100 �M [35]
Free ATP concentration ŒATP� 260 �M [35]
Troponin concentration ŒTN� 70 �M [35]
Calmodulin concentration ŒCal] 24 �M [35]

Diffusion coefficients
Diffusion coefficient for Ca2C DCa 0.39 �m2 ms�1 [35]
Diffusion coefficient for CaFluo DCa Fluo 0.1 �m2 ms�1 [35]
Diffusion coefficient for CaATP DCa ATP 0.168 �m2 ms�1 [35]
Diffusion coefficient for CaCal DCa Cal 0.025 �m2 ms�1 [35]

Rate coefficients
Ca2C on-rate constant for TN kCaTN

C 0.04 �M�1 ms�1 [35]
Ca2C off-rate constant for TN kCaTN

� 0.04 �M�1 ms�1 [35]
Ca2C on-rate constant for ATP kCaATP

C 0.225 �M�1 ms�1 [35]
Ca2C off-rate constant for ATP kCaATP

� 45 �M�1 ms�1 [35]
Ca2C on-rate constant for Fluo-3 kCaFluo

C 0.23 �M�1 ms�1 [35]
Ca2C off-rate constant for Fluo-3 kCaFluo

� 0.17 �M�1 ms�1 [35]
Ca2C on-rate constant for Calmodulin kCaCal

C 0.125 �M�1 ms�1 [35]
Ca2C off-rate constant for Calmodulin kCaCal

C 0.2975 �M�1 ms�1 [35]
Membrane Ca2C flux parameters
NaC/CaC exchange current

Extracellular NaC concentration ŒNaCe � 140 mM [4]
Resting NaC concentration ŒNaCi � 10 mM [4]
Pump rate of NCX gNCX 38.5 �M ms�1 [33]
Voltage dependence of NCX control � 0.35 [33]
NaC half saturation of NCX km,Na 87.5 mM [33]
Ca2C half saturation of NCX km,Ca 1380 �M [33]
Low potential saturation factor of NCX ksat 0.1 [33]

Membrane Ca2C ATPase
Maximum Ca2C pump rate gpCa 0.0035 �M ms�1 [33]
Half saturation of Ca2C pump km,pCa 0.5 �M [33]

Membrane Ca2C leak
Conductance of sarcolemmal Ca2C leak gCab 1.65E�5 �M mV�1 ms�1 Estimated

ATP, adenosine triphospate; NCX, sodium–calcium exchangers; T-tubule, transverse tubule.

with i D Ca, NCX, pCa, or Cab. Note that Si is the total area of surface membrane and T-tubule
membrane where calcium-related channels reside and Vmc is the volume of the model being con-
sidered. ˇ is a model-dependent scaling parameter. The voltage-clamp protocol is assumed to hold
potential �50 mV with an electric pulse of 10 mV for 70 ms, that is,

V D

(
10 mV, t 2 .0, 70 ms�,

�50 mV, t 2 .70 ms,1/.
(13)

In the present work, two geometric models are considered:

I. According to [34, 37], ventricular myocytes may be simplified to repeated structural units
consisting of a single T-tubule and its surrounding half sarcomeres. The surrounding half
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sarcomeres are modeled as a cube-shaped box with a dimension of length 7 �m, width 2 �m,
and depth 2 �m, enclosing a T-tubule of 6.8 �m� 0.2 �m� 0.2 �m. The T-tubule is assumed to
be a tiny cube located vertically in the center of the domain, as shown on the left of Figure 1.
This simplified geometric model had been studied in [30], where the FEM was utilized to find
the numerical solutions of the equations. The same geometry is considered in our work so that
we can validate our meshless numerical approach. In addition, we also experimented a special
case where the T-tubule is ‘reduced’ into a single line (with zero thickness).

II. We shall also consider a simplified whole-cell model, as shown on the right of Figure 1. The
cell surface is described by the following parametric equation:

r.� ,�/D 35R.�/ cos.�/iC 10R.�/ sin.�/ cos.�/jC 10R.�/ sin.�/ sin.�/k, (14)

where � 2 Œ0,�/,� 2 Œ0, 2�/, and R.�/ D
q

cos .2 �/C
p
4� sin2.2 �/. With this model, we

aim to predict spatial–temporal calcium concentrations in the absence of T-tubule systems. The
question of interest is to predict a high gradient near the cell membrane and a more uniform
calcium distribution in the cell interior.

To solve the system of equations in Equations (1)–(4) with meshless techniques, we use an explicit
time-stepping method in time dimension and the LRBFCM [23] in space dimension. The details of
the algorithm are given in the following sections.

3. OPERATOR-SPLITTING METHOD

Rewrite the diffusion–reaction equations in Equations (1)–(4) as

@u.x, t /

@t
D 	r2u.x, t /C f.u.x, t //, (15)

where x D .x,y, ´/ 2 � and u stands for the concentration of calcium and buffers, that is,
ŒCa2C�i , ŒCaBm�, or ŒCaBs�. The diffusion coefficients DCa and DCaBm are denoted by 	. The
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Figure 1. Two computational models considered (unit: �m). Left: single T-tubule model with the T-tubule
(blue), the surrounding half sarcomere (red), and the external cell membrane (green). A total of 24 297
interior points and 6510 boundary points are distributed in the domain and used in the meshless method.
Right: the whole-cell model with the cell membrane (blue) and the cell cytosol (red). Note that T-tubules are
excluded from the whole-cell model and the blue dots (a total of 7065) shown are the actual nodes used by

the meshless method.
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reaction and total Ca2C flux are combined as a source function f.u.x, t //. The time domain is uni-
formly discretized with an interval
t . For simplicity, we only consider below two consecutive time
steps, ts and tsC1, referred to as ‘previous’ and ‘current’ time steps, respectively. For sufficiently
small 
t (tsC1 D ts C
t ), we have

@u.x, t /

@t
D
u.x, tsC1/� u.x, ts/


t
CO.
t/. (16)

Then, Equation (15) can be approximated by

u.x, tsC1/� u.x, ts/


t
D 	r2u.x, t /C f.u.x, t //, t 2 .ts , tsC1�. (17)

To decompose the elliptic differential operator and the nonlinear forcing term into simpler subprob-
lems and thus solve them individually using suitable numerical algorithms, we use the first-order
operator-splitting method [38], yielding the following two subproblems:

u.x, tsC1=2/� u.x, ts/


t
D f.u.x, ts//, (18)

and

u.x, tsC1/� u.x, tsC1=2/


t
D 	r2u.x, tsC1=2/. (19)

Rearranging the above equations, we have

u.x, tsC1=2/D u.x, ts/C
t f.u.x, ts//, (20)

and

u.x, tsC1/D u.x, tsC1=2/C	
tr
2u.x, tsC1=2/. (21)

Substituting Equation (20) into Equation (21), we have

u.x, tsC1/D u.x, ts/C
t f.u.x, ts/C	
tr
2u.x, tsC1=2/, (22)

where the values u.x, tsC1=2/ are calculated from Equation (20) and the Laplacian term,
r2u.x, tsC1=2/, is approximated by using the meshless method, as detailed in the next section.

4. SPACE DISCRETIZATION: LOCAL RADIAL BASIS FUNCTION
COLLOCATION METHOD

In this section, we introduce the LRBFCM [23] to approximate r2u.x, tsC1=2/ in Equation (22).
Interested readers may refer to [13, 15] for more details on the meshless method. The main idea of
the LRBFCM is the collocation on overlapping local domains, which drastically reduces the collo-
cation matrix size at the expense of solving many small matrices. The sizes of matrices depend on
the number of nodes included in the local domain of each node.

As the name implies, radial basis functions (RBFs) are utilized in the LRBFCM, as in many other
meshless methods. Therefore, this section begins by introducing some basic features of RBFs in
order to develop properties necessary for use with the LRBFCM.

Definition 1
Let Rd be a d -dimensional Euclidean space. Let c 2 Rd and ˆ W Rd ! R be an invariant function
whose value at any point x 2 Rd depends only on the distance from the fixed point c and can be
written as

ˆ.kx� ck/. (23)

Then, the function ˆ is an RBF, where c is the center of ˆ.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:187–204
DOI: 10.1002/cnm



A MESHLESS APPROACH FOR MODELING SPATIAL–TEMPORAL CALCIUM DYNAMICS 193

The variable r D kx� ck is often used in RBFs and thus is adopted in this study. Micchelli [39]
proved that the distance matrix generated by distinct points using the Euclidean norm is invertible
for several types of RBFs. Thus, this paper utilizes only the Euclidean norm. Several commonly used
RBFs are multiquadrics (MQ), inverse multiquadrics (IMQ), Gaussian, thin-plate splines, polyhar-
monic splines, and so on. MQ RBF has been proved to have a high-order rate of convergence. Thus,
in this paper, we use MQ, that is,

ˆ.r/D
p
r2C c2, (24)

where c > 0 is called a shape parameter.
In the LRBFCM, the value of r2u.x, tsC1=2/ at each node xi , i D 1, 2, : : : , N , is approximated

by the values at the neighbors of xi . The local domain, �i , associated with xi can be created using
the n nearest neighbors to xi including itself, that is, fxŒi�

k
gn
kD1
� �i . In this paper, the number

of points in each local domain is fixed as n D 7. Figure 2 shows the seven-node local domain,
�i , including the center node, xi , and its six neighbors. Note that our model includes net fluxes
through cell surface and T-tubule membrane, so the diffusion on @� does not include the diffu-
sion between boundary points. Thus, the neighborhood of a boundary point contains only interior
points. By Equation (20), the concentration, u.xi , tsC1=2/, is known at every node xi . To approxi-
mate r2u.xi , tsC1=2/, we create a local domain �i , and interpolate u.x, tsC1=2/ on �i using RBFs

ˆ.r/ with different centers xŒi�
k

, k D 1, 2, : : : ,n. Thus, we have

u.xŒi�j , tsC1=2/D
nX
kD1

ˆ.kxŒi�j � xŒi�
k
k/˛

Œi�

k
, j D 1, 2, : : : , n. (25)

This is an n by n system of linear equations:

2
66666664

u
�

xŒi�
1

, tsC1=2
	

u
�

xŒi�
2

, tsC1=2
	

...

u
�

xŒi�n , tsC1=2
	

3
77777775
D

2
66666664

ˆ
�
kxŒi�
1
� xŒi�

1
k
	

ˆ
�
kxŒi�
1
� xŒi�

2
k
	

: : : ˆ
�
kxŒi�
1
� xŒi�n k

	
ˆ
�
kxŒi�
2
� xŒi�

1
k
	

ˆ
�
kxŒi�
2
� xŒi�

2
k
	

: : : ˆ
�
kxŒi�
2
� xŒi�n k

	
...

...
...

...

ˆ
�
kxŒi�n � xŒi�

1
k
	

ˆ
�
kxŒi�n � xŒi�

2
k
	

: : : ˆ
�
kxŒi�n � xŒi�n k

	

3
77777775

2
6666664

˛Œi�1

˛Œi�2

...

˛Œi�n

3
7777775

.

(26)

It can be written in a matrix notation as

uŒi� D Pnn˛Œi �, (27)

i

1

2

3

4

5

6

Figure 2. Schematic diagram showing the seven-node local domain of the i-th node, xi .
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where ˛Œi � D Œ˛Œi�1 ,˛Œi�2 , : : : ,˛Œi�n �T and Pjk Dˆ.kx
Œi�
j � xŒi�

k
k/ being the entry element of the matrix

of Pnn at the j th row and the kth column, and

uŒi� D Œu.xŒi�1 , tsC1=2/,u.x
Œi�
2 , tsC1=2/, : : : ,u.x

Œi�
n , tsC1=2/�

T. (28)

The unknown coefficients, ˛Œi �, can be obtained by inverting the matrix in Equation (27), that is,

˛
Œi�

k
D

nX
jD1

P�1kj u.x
Œi�
j , tsC1=2/, k D 1, 2, : : : , n. (29)

Note that P�1
kj

is the kth row and j th column of inverse matrix, P�1nn . From Equations (24) and (25),
we have

r2u.xi , tsC1=2/D
nX
kD1

r2ˆ.kxi � xŒi�
k
k/˛

Œi�

k
, (30)

where by direct differentiation,

�.r/ WD r2ˆ.r/D
2r2C 3c2

.r2C c2/3=2
.

As a result,

r2u.xi , tsC1=2/D
nX
kD1

�.kxi � xŒi�
k
k/

0
@ nX
jD1

P�1jk u.x
Œi�
j , tsC1=2/

1
A . (31)

Let

ƒ .xi /D Œƒ1.xi /,ƒ2.xi /, : : : ,ƒn.xi /� (32)

where

ƒj .xi /D
nX
kD1

�.kxi � xŒi�
k
k/P�1jk . (33)

Rearranging Equation (31), we have

r2u.xi , tsC1=2/D
nX
jD1

ƒj .xi /u.x
Œi�
j , tsC1=2/. (34)

This gives an approximation of u.xi , tsC1/ using Equation (22):

u.xi , tsC1/D u.x, ts/C
t f.u.x, ts/C	
t
nX
jD1

ƒj .xi /u.x
Œi�
j , tsC1=2/. (35)

The RBF shape parameter in MQ plays a major role in improving the accuracy of numerical solu-
tions [40, 41]. In general, the optimal shape parameter depends on the densities, distributions, and
function values at the nodes. However, it is very difficult to assign different free parameters for each
local domain. Thus, choosing shape parameters has been an active topic in approximation theory.
It has been showed that the scaling technique allows a large range of acceptable shape parameters,
while greater shape parameters perform more accurately than smaller ones [23]. We extend the scal-
ing technique in [23] to 3D case. It can be done in each of the x, y, and ´ directions in the local
domain. Let xŒi�j D .x

Œi�
j ,yŒi�j , ´Œi�j /, j D 1, 2, : : : , n. We define

xm D max
16j ,k6n

kx
Œi�
j � x

Œi�

k
k, ym D max

16j ,k6n
ky
Œi�
j � y

Œi�

k
k, ´m D max

16j ,k6n
k´
Œi�
j � ´

Œi�

k
k, (36)

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:187–204
DOI: 10.1002/cnm



A MESHLESS APPROACH FOR MODELING SPATIAL–TEMPORAL CALCIUM DYNAMICS 195

The normalized MQ RBF can then be written as

ˆ.r/D

s�
x � xc

xm

�2
C

�
y � yc

ym

�2
C

�
´� ´c

´m

�2
C c2. (37)

By simple differentiations, we have

@2ˆ.r/

@x2
D
.y � yc/

2=y2mC .´� ´c/
2=´2mC c

2

x2m.r
2C c2/3=2

, (38)

@2ˆ.r/

@y2
D
.x � xc/

2=x2mC .´� ´c/
2=´2mC c

2

y2m.r
2C c2/3=2

, (39)

@2ˆ.r/

@´2
D
.x � xc/

2=x2mC .y � yc/
2=y2mC c

2

´2m.r
2C c2/3=2

, (40)

where r D
p
.x � xc/2=x2mC .y � yc/

2=y2mC .´� ´c/
2=´2m. Thus,

r2ˆ.r/D
@2ˆ.r/

@x2
C
@2ˆ.r/

@y2
C
@2ˆ.r/

@´2

D
.y � yc/

2=y2mC .´� ´c/
2=´2mC c

2

x2m.r
2C c2/3=2

C
.x � xc/

2=x2mC .´� ´c/
2=´2mC c

2

y2m.r
2C c2/3=2

C
.x � xc/

2=x2mC .y � yc/
2=y2mC c

2

´2m.r
2C c2/3=2

. (41)

In particular, when xm D ym D ´m (denoted by rm), the MQ RBF is scaled as

ˆ.r/D
1

rm

q
r2C r2mc

2 and r2ˆ.r/D
1

rm

2r2C 3r2mc
2

.r2C r2mc
2/3=2

, (42)

where r D
p
.x � xc/2C .y � yc/2C .´� ´c/2.

After re-scaling the interpolating RBFs, a relatively large shape parameter c can be used even for
extremely small grid distances. In the rest of this paper, c D 300 is used.

5. SOLUTION PROCEDURE

In this section, the solution procedure to approximate spatial–temporal calcium concentrations is
presented. The coupled system described in Equations (1)–(4) is solved by the following steps:

1. Set the initial conditions and boundary conditions at the domain nodes.
2. Search the n nearest neighbors of every node.
3. Calculate the unique vector, ƒ.xi /, defined in Equation (32), for each node xi .
4. Solve the diffusion–reaction equations for each time step (e.g., from ts to tsC1).

4.1 Calculate JCaflux, RBm, and RBs , mD 1, 2, 3.
4.2 Approximate the concentration of the stationary buffer, ŒCaBs�, by Equation (20). In this

case, tsC1 instead of tsC1=2 is used as there is no diffusion term in the stationary buffer.
4.3 Use the initial conditions and Equation (20) to approximate ŒCaBm�, ŒCa2C�i at tsC1=2,

mD 1, 2, 3.
4.4 Use Equation (34) to approximate the Laplacian operators r2ŒCaBm�, r2ŒCa2C�i at

tsC1=2.
4.5 Use Equation (21) to approximate concentrations ŒCaBm�, ŒCa2C�i at tsC1.
4.6 Update ŒCaBm�, ŒCa2C�i , and ŒCaBs� with the concentrations at tsC1.

5. Repeat Step 4.

In Step 2 of the solution procedure, we must find the local domains �i for each node xi , i D
1, : : : ,N , such that �i includes the n closest points to xi . For a large number of collocation points
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or a high-dimensional space, the time consumption can be very high if a brute-force searching algo-
rithm is used. There are a number of established methods of finding the nearest neighbors of a given
point [42–46]. In our work, the k-dimensional tree (or kd-tree for short) data structure is used for its
high efficiency [42,43]. In Step 3, there are N small matrices with a dimension of n�n that need to
be inverted. The positive definiteness of MQ RBFs guarantees the existence of the inverse matrices.
Because the weights depend only on the locations of the neighbors and are time-independent, the
weights can be precomputed and stored in the vector ƒ.xi /.

The most time-consuming parts of the procedure are Steps 4 and 5 because the solutions of the
diffusion–reaction equations have to be iteratively updated. To find the steady-state solution to the
system of PDEs, the following convergence criterion may be used:

max ju.x, tsC1/� u.x, ts/j6 �, (43)

where � is chosen as the steady-state convergence margin. However, to compare our work with
existing results in [30], all the simulations in this paper were conducted for a fixed time period
t 2 Œ0, 400 ms�. Thus, the computational cost will depend on the time-step size. In explicit time-
stepping methods, a small sampling distance in space generally implies the need for a small
time step, which apparently results in slow convergence. However, large time steps often lead to
diverging or oscillating numerical results. A good choice of time-step size can improve the rate
of convergence and the stability as well. On the other hand, an explicit time discretization form
is only conditionally stable and the stability analysis for diffusion equations yields the following
Courant–Friedrichs–Lewy condition [47]:

	
t

h2
6 1
2

, (44)

where 	 is the diffusion coefficients of calcium and mobile buffers in the present work, 
t is the
time-step size, and h is the grid distance. The aforementioned requirement is equivalent to


t 6 h2=2	. (45)

In our explicit time-stepping strategy, the minimum grid distance h D 0.1 �m has been used. The
diffusion coefficients are fixed as shown in Table I. Thus, the time-step size approximately satisfies:


t 6 0.01 ms. (46)

We had chosen the time-step size 
t as 0.004 ms, that is, 4 �s. This is much smaller than 4 ms
as in the FEM in [30]. Although it is necessary to have a small time-step size to ensure a stable
solution, the meshless method still significantly outperforms the FEM in computational efficiency.
As reported in [30], with FEM, it took approximately 18 min to simulate 400 ms of one Ca2C cycle
on a cluster of 10 Intel Xeon-based processors with the time step of 4ms. By contrast, our meshless
scheme only took about 5 min to simulate the same time course on a single processor of the same
type, despite a much smaller time-step size being used.

6. NUMERICAL RESULTS

In this section, we present the numerical results on two different models using the LRBFCM
described earlier.

6.1. Case 1: a single T-tubule model

We first consider the single T-tubule model as shown on the left of Figure 1, where the overall shape
is a cube of 7 �m � 2 �m � 2 �m and the T-tubule is vertically placed in the center as a tiny cube
of 6.8 �m � 0.2 �m � 0.2 �m. A very similar model has been used in [30] except that the T-tubule
in our work is modeled as a cube-shaped box instead of a cylinder. The geometries of the model
are derived from earlier studies that T-tubules with diameters ranging from 200–300 nm are mostly
found at intervals of about 2 �m near the Z-disks of ventricular myocytes [34]. As in [30], the LCC
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current density is uniformly distributed on the cell surface and the surface of the T-tubule. The NCX
current density is assumed to be three times higher on T-tubular membrane than the cell surface
and Ca2C pumps are located only on the cell surface. The surface areas and volumes are listed in
Table II.

The conversions from current densities to total Ca2C flux are as follows:

JCa D ˇ
Vmc

Smc

�
1

2F

Cm

Vcell

�
ICa, JCab D ˇ

Vmc

Smc

�
1

2F

Cm

Vcell

�
ICab, (47)

JNCX D

8̂̂<
ˆ̂:

3ˇVmc

3SmtC Sms

�
1

2F

Cm

Vcell

�
INCX, on T-tubule

ˇVmc

3SmtC Sms

�
1

2F

Cm

Vcell

�
INCX, on cell membrane,

(48)

JpCa D

8̂̂<
ˆ̂:
0, on T-tubule

ˇ
Vmc

Sms

�
1

2F

Cm

Vcell

�
IpCa, on cell membrane.

(49)

As suggested in [36], the ratio of cell capacitance to volume,Cm=Vcell, is assumed to be 8.8 pF pL�1.
The scaling parameter ˇ is chosen as 219.25, and a uniformly distributed grid with a sampling
distance of 0.1 �m is adopted.

The results in Figure 3 are in agreement with [30], where the Ca2C signals in rat ventricular
myocytes are calculated in the presence of 100 �M Fluo-3 and pharmacological blockade of the SR.
The global and local Ca2C transients reached the peaks at about 68 ms when the LCC current is com-
pletely blocked. Figure 3(a)–(b) shows the voltage-clamp protocol and the whole-cell L-type Ca2C

current used in Case 1. Figure 3(c)–(e) shows the averaged current densities of NaC/CaC exchang-
ers, Ca2C pumps and Ca2C leaks, assuming uniform distribution of Ca2C inside the model. The
average current densities are also predicted by using the local Ca2C concentrations near the calcium
channels (see Figure 4(a)–(c)) and appear significantly different from Figure 3(c)–(f). Figure 3(f)
shows the averaged Ca2C concentration over time. The results shown in Figure 3 are very similar
to those in [30]. The only difference is that Ca2C leak is slightly smaller in our case because of the
different model-dependent parameter ˇ that is used. The consequence is that the Ca2C concentration
is still decreasing even after the Ca2C peak at 68 ms (see Figure 3(f)).

To describe better the predicted Ca2C transients in the model, three scanned lines are chosen at
200, 400, and 700 nm away from the surface of the T-tubule. Also, we select three feature spots
along each scanned line at 0.5, 3.6, and 7.0 �m away from the cell surface, see Figure 3(g)–(m),
respectively. The model is able to predicate global and local Ca2C transient peaks after approxi-
mately 68 ms. The local Ca2C transients near the surface of the T-tubule are slightly different from
the other two scanned lines (see Figure 3(g) and (j)) because the scanned line is so close to the
T-tubular surface that the total Ca2C flux significantly affects the Ca2C concentration.

The time course concentrations of the mobile and stationary buffers are shown in Figure 4(d)–(g).
In the presence of LCC current densities, the concentrations of all buffers increase. The buffers
become stable only after the Ca2C concentration change becomes stable. The 3D Ca2C concentra-
tions at 68 and 300 ms are shown in Figure 4(h) and (i), corresponding to the Ca2C peak and stable

Table II. The cell geometry used in Case 1.

Compartment volume Vmc 27.728 �m3

Compartment surface Smc 9.440 �m2

Cell membrane area Sms 5.480 �m2

T-tubule membrane area Smt 3.960 �m2

T-tubule, transverse tubule.
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Figure 3. In this numerical experiment, the T-tubule is modeled as a cube with a dimension of 0.2 �m �
0.2 �m � 6.8 �m. (a)–(b) The voltage-clamp protocol and the whole-cell L-type calcium channel (LCC)
current used in the simulation. (c)–(f) Predicted global NaC/CaC, yy2C pump and leak currents and global
average y2C transient when yyy2C is uniformly distributed inside the cell. (g)–(i) Local yy2C transients
taken at three different line-scanned positions (the scanned line are located at (g) 0.2, (h) 0.4, and (i) 0.7 �m
away from the surface of the T-tubule) and at three feature spots along the scanning line (blue, green, and red
lines are 0.5, 3.6, and 7.0 �m from the cell surface, respectively). (j)–(m) Calcium concentrations visualized
as line-scan images in transverse cell direction, the scanned line locations are the same as that in (g)–(i).

NCX, sodium–calcium exchanger.

states, respectively. In Figure 4(h) and (i), the second picture shows a cross-section view along the
T-tubule.

To investigate how the thickness of the T-tubule may affect calcium signaling, we consider the
T-tubule as a line (zero thickness) instead of a cube while keeping the length unchanged. However,
we assume the same cell volume, cell surface areas, and T-tubule surface area as used in Table II. The
detailed transformations from the current densities to the total Ca2C flux throughout the T-tubule
and surface membrane are also the same as above. With all these assumptions, the predicted global

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:187–204
DOI: 10.1002/cnm



A MESHLESS APPROACH FOR MODELING SPATIAL–TEMPORAL CALCIUM DYNAMICS 199

0 200 400

−5

0

5
x 10−3

Time (ms)

(a)

N
C

X
 (

µM
 m

s-
1 )

0 200 400
0

1

2
x 10−3

Time (ms)

(b)

P
um

p 
(µ

M
 m

s-
1 )

0 200 400
1

2

3
x 10−3

Time (ms)

(c)

Le
ak

 (
µM

 m
s-

1 )

0 200 400
10

20

30

Time (ms)

(d)

C
aF

lu
o 

(µ
M

 m
s-

1 )

0 200 400
0

1

2

Time (ms)

(e)

C
aC

al
 (

µM
 m

s-
1 )

0 200 400
0

0.2

0.4

Time (ms)

(f)

C
aA

T
P

 (
µM

 m
s-

1 )
0 200 400

5

10

15

Time (ms)

(g)

C
aT

N
 (

µ 
M

/m
s)

(i)(h)

Figure 4. (a)–(c) The average NaC/yyyC, yy2C pump and leak current densities are also predicted by
using the local y2C concentrations near the calcium channels. (d)–(g) Predicted average concentrations of
mobile and stationary buffers over time. (h)–(i) Predicted 3D spatial yy2C concentrations at 68 and 300ms,
corresponding to the yyy2C peak and stable states, respectively. In (h) and (i), the second picture shows a

cross-section view along the transverse tubule. NCX, sodium–calcium exchanger.

NaC/CaC, Ca2C pump and leak current transients are very similar to those in Figure 3. In particu-
lar, Figure 5(a) shows the predicted average Ca2C concentration, which is very close to the result
when the T-tubule is modeled as a cube. Figure 5(b)–(c) show the 3D local Ca2C transients when
t D 68 ms and t D 300 ms. Figure 5(d)–(i) shows the predicted time course Ca2C transients at
three scanned lines and three feature spots (the locations are the same as in Figure 3). The Ca2C

concentrations near the cell surface are slightly higher (see Figure 5(d)–(f)). This experiment shows
that, although real T-tubules have certain thickness, treating them as line (or curve) structures can
simplify mathematical simulations with comparable numerical accuracy.

6.2. Case 2: a whole-cell model

Consider a T-tubule-free whole-cell model described in Equation (14). The nodes in the cell are
uniformly generated, where the grid distance is approximately 2 �m. The total yy2C flux is

Ji D ˇ
Vmc

Smc

�
1

2F

Cm

Vcell

� �
Iy C INCX � IpCaC ICab

�
, (50)

where the cell geometry is listed in Table III and the scaling parameter ˇ is chosen as 25.669.
As shown in Figure 6, our model is still able to predict a high gradient near boundary regions.

Figure 6(a)–(b) shows the voltage-clamp protocol and the whole-cell LCC yyy2C current used
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Figure 5. In this numerical experiment, the T-tubule is modeled as a single line. (a) Predict global average
yy2C transient when y2C is uniformly distributed inside the cell. (b)–(c) Predicted 3D yy2C concentration
at 68 and 300ms, respectively. (d)–(f) Local yyy2C transients taken at three different line-scanned positions
(the scanned line were located at (d) 0.2, (e) 0.4, and (f) 0.7 �m away from the T-tubule) and at three feature
spots (blue, green, and red lines are 0.5, 3.6, and 7.0 �m from the cell surface, respectively). (g)–(i) Calcium
concentrations visualized as line-scanned images in transverse cell direction, the locations of the scanned

lines correspond to the cases in (d)–(f), respectively.

Table III. The cell geometry used in Case 2.

Compartment volume Vmc 28237.526 �m3

Compartment surface Smc 7713.986 �m2

in the simulation. Figure 6(c)–(e) shows predicted NaC/CaC, Ca2C pump and leak when Ca2C is
uniformly distributed inside the cell. Figure 6(f)–(j) gives the average transients of Ca2C, CaFluo,
CaCal, CaATP, and CaTN. Figure 6(k)–(n) represent Ca2C concentration at five feature spots along
two scanned lines in transverse and longitudinal directions of the cell. Our study indicates that with-
out T-tubular system, the Ca2C signaling in ventricular myocytes is characterized by high gradients
near the cell membrane.

6.3. Discussions

In this subsection, we discuss two issues regarding the sensitivity of the described meshless method
to the shape parameter c and the number of nodes used. We first test the sensitivity to the shape
parameter using the single T-tubule model (on the left of Figure 1). Figure 7 shows the predicted
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Figure 6. In this numerical experiment, L-type Ca2C current density, NaC/CaC, and Ca2C pump were uni-
formly distributed on the surface of the cell. (a)–(b) The voltage-clamp protocol and the whole-cell L-type
Ca2C current used in the simulation. (c)–(f) Predicted global NaC/CaC, Ca2C pump and leak currents and
global average Ca2C transient when Ca2C is uniformly distributed inside the cell. (g)–(j) Predicted global
mobile and stationary buffer transient. (k) Local Ca2C transients taken at five feature spots (blue, magenta,
cyan, green, and black lines are 2, 4, 6, 8, and 10 �m away from the cell membrane, respectively) along the
scanning line that goes through the center of the cell in the transverse direction. (l) Local Ca2C transients
taken at five feature spots (blue, magenta, cyan, green, and black lines are 2, 6, 12, 18, and 58 �m away from
the cell membrane, respectively) along the scanning line that goes through the center of the cell in the lon-
gitudinal direction. (m)–(n) Calcium concentrations visualized as line-scan images, where the scanned lines
are the same as in (k) and (l), respectively. LCC, L-type calcium channel; NCX, sodium–calcium exchanger.

time course average ŒCa2C�i concentration with different shape parameters, c D 10, 100, and 300,
in which 24 297 interior points and 6510 boundary points are used. When c D 10, the concentration
is slightly smaller than the other two cases. However, when c becomes larger, the calcium con-
centration remains the same. For this reason, we have used c D 300 in all the experiments shown
earlier.

We then test the sensitivity of the meshless method to the number of nodes by using the whole-
cell model (on the right of Figure 1). Figure 8 shows the predicted time course average ŒCa2C�i
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Figure 7. Predicted average ŒCa2C�i concentration as a function of time when different shape parameters in
multiquadrics are used. In all three cases, there are 24 297 interior points and 6510 boundary points in the

domain.
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Figure 8. Predicted average ŒCa2C�i concentration as a function of time when different numbers of col-
location points are used. Three minimum grid distances, h D 2�m, 1�m, and 0.5�m, are considered. The

corresponding numbers of nodes used are 7065, 52725, and 403, 845, respectively.

concentration with different numbers of nodes (or equivalently, grid distances h). The time-step size

t D 0.004 ms in all cases as it meets the minimum criteria of Equation (44). The shape parameter
c is chosen as 300. When the grid distance becomes two times smaller (say, h goes from 2 �m to
1 �m), the corresponding JCaflux in Equation (50) at each node should be doubled accordingly (by
increasing the parameter ˇ). The reason is that the total fluxes of the model are independent of the
number of nodes chosen. When the grid distance becomes two times smaller, the number of bound-
ary nodes is expected to increase by four times, meaning that each boundary node is carrying four
times fewer calcium fluxes. However, the corresponding volume of each boundary node is reduced
by eight times, yielding a doubled local calcium concentration around each boundary node.

7. CONCLUSION AND FUTURE WORK

In this paper, we apply the localized meshless method called LRBFCM to solve a nonlinear sys-
tem of reaction–diffusion equations in order to model Ca2C dynamics in ventricular myocytes. The
numerical results are compared with those in [30] to validate the proposed approaches. In contrast
to the previous work [30, 48], where coupled PDEs were traditionally solved by using the FEM or
the FDM, the LRBFCM does not require mesh generation that is often tedious and sometimes very
difficult. Additionally, our method is flexible enough to handle complex geometric domains with
competitive accuracy and low time consumption.

However, the explicit time-stepping method has a very strict constraint on time step. To avoid
using impractically small time step to obtain the stable result, an implicit scheme can be considered.
Implicit time-stepping methods transform time-dependent problems into a series of Helmholtz or
modified Helmholtz equations. Although these methods are numerically harder to implement, we
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could save significant computational time using these methods due to much larger time steps. Our
ongoing research is focused on the utilization of implicit methods to model spatial–temporal calcium
dynamics in ventricular myocytes. We shall also integrate realistic ultra-structures of T-tubules and
SR from 3D imaging data into our models and investigate how SR releasing and uptaking channels
affect calcium signaling.
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