
Computers and Mathematics with Applications 61 (2011) 2376–2387

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

A localized approach for the method of approximate particular solutions
Guangming Yao, Joseph Kolibal, C.S. Chen ∗

Department of Mathematics, University of Southern Mississippi, Hattiesburg, MS 39406, USA

a r t i c l e i n f o

Article history:
Received 27 June 2010
Received in revised form 6 February 2011
Accepted 7 February 2011

Keywords:
LMAPS
GMAPS
Kd-tree
Sparse system
Particular solutions

a b s t r a c t

The method of approximate particular solutions (MAPS) has been recently developed to
solve various types of partial differential equations. In the MAPS, radial basis functions
play an important role in approximating the forcing term. Coupled with the concept of
particular solutions and radial basis functions, a simple and effective numerical method for
solving a large class of partial differential equations can be achieved. One of the difficulties
of globally applying MAPS is that this method results in a large dense matrix which in turn
severely restricts the number of interpolation points, thereby affecting our ability to solve
large-scale science and engineering problems.

In this paper we develop a localized scheme for the method of approximate particular
solutions (LMAPS). The new localized approach allows the use of a small neighborhood
of points to find the approximate solution of the given partial differential equation. In
this paper, this local numerical scheme is used for solving large-scale problems, up to
one million interpolation points. Three numerical examples in two-dimensions are used
to validate the proposed numerical scheme.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The method of approximate particular solutions (MAPS) has been recently developed to solve various types of partial
differential equations [1]. Radial basis functions have been used as a major tool to obtain a closed form approximate
particular solution which can be used as a basis function for the approximation of the solution to a given partial differential
equation. Previously, after we obtain the particular solution, we convert the given differential equation to a homogeneous
equationwhich canbe solvedby standard boundarymethods, e.g., the boundary knotmethod, the boundary particlemethod,
and others [2–5]. This is a two-stage approach which is well-known in the literature.

Recently, a newapproachhas beenproposed to use the approximate particular solution to satisfy the differential equation
and boundary conditions simultaneously as a one-stage approach [6,7]. These numerical schemes constitute very simple and
very effective integrated radial basis function schemes. Along these lines, it is of interest to note thatMai-Duy and Tran-Cong
[8] had also developed a so-called indirect RBFNmethodwhere the integration is carried out along the axes of the coordinate
system, while the integration in the MAPS is carried out in the radial direction due to the radial symmetry of the selected
differential operator. We note that the indirect RBFNmethod is also very effective and powerful for solving numerical PDEs.

Due to the global nature of the scheme, however, the resulting matrix is dense and ill-conditioned, substantially limiting
the use of the technique to solving problems with only a limited number of interpolation points. Methods such as the
finite element method and the finite difference method are capable of solving large-scale problems due to their localized
formulations. Similar to these traditional numericalmethods,meshlessmethodswith localized formulations [9–13] are very
effective. The extension of the recent developed MAPS to solving large-scale problems is the main purpose of this paper.
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In this paper we adopt the idea of LMQ [10] in regard to using a localized formulation and apply it to the MAPS. In
this approach the solution of the given partial differential equation is expressed as the linear combination of some proper
basis functions, however, instead of finding the weighting functions required in the global approach, we seek the numerical
solutions at the interpolation points in the local approach. Furthermore, in the local scheme, due to the collocation approach,
no numerical integration is required.

Typically, the collocation approach for the global method is constructed by taking into consideration large number of
collocation points in the entire domain. It is generally unstable due to the dense matrix formulation, sensitive to the choice
of the free parameters in RBFs, and difficult to solve for large-scale problems if not impossible. There are several methods
to circumvent this issue such as domain decomposition [14], the greedy algorithm [15], multi-grid approach and compactly
supported RBFs [16], extended precision arithmetic [17], the improved truncated singular valued decomposition [18], the
localized formulations [10,11,13], iterative methods [19], fast multipole expansion techniques [20], etc. These approaches
all represent a substantial complication of the original simple method, on the one hand, with a very limited advantages on
the other hand. The localized formulations can alleviate the ill-posed problem of coefficient matrix. The iterative methods
can promote the efficiency in determining the coefficients. The fast multipole expansion techniques can accelerate the
calculation of influence matrix. Since only the nearby collocation points are needed in the formulation using the local
method, the usual ill-conditioning associated with large, dense matrix systems can be alleviated. Another important
advantage of considering a local approach using radial basis functions is that the shape parameter associated with the MQ
RBF is only slowly varying. In general, MQ is regarded as one of the best RBFs in terms of accuracy if we can identify a suitable
shape parameter. For the global approach, this is still a challenging issue [21–23]. One further advantage of the proposed
approach is that the computational efficiency achievable by the localized approach does not compromise the accuracy of
the method. Instead of solving a dense matrix in the global approach, the local approach results in a sparse matrix that can
be solved efficiently.

The structure of the paper is as follows. In Section 2, we briefly review the method of approximate particular solutions
(MAPS). Various types of radial basis functions have been introduced for the formulation of theMAPS. In Section 3,we extend
the concept of global approach of the MAPS to local MAPS which allows us to alleviate the difficulty of ill-conditioning and
finding a suitable shape parameter. In Section 4, to validate our proposed approach, we compare our proposed method to
the LMQ through three numerical examples.

2. The method of approximate particular solutions (MAPS)

Before we introduce the proposed local scheme we briefly review the formulation of the method of approximate
particular solutions [1]. To illustrate the basic idea, we consider the following elliptic partial differential equation in a
bounded domain Ω with its boundary ∂Ω in 2D, x = (x, y) ∈ Ω ,

1u + a(x)ux + b(x)uy + c(x)u = f (x), x ∈ Ω, (1)

Bu = g(x), x∈∂Ω, (2)

where ∆ is the Laplacian, a(x), b(x), c(x), f (x), and g(x) are given functions. B is a boundary differential operator.
The basic idea of the MAPS is to rearrange (1) into the following Poisson-type equation

1u(x) = H(x, u, ux, uy), x ∈Ω, (3)

where

H(x, u, ux, uy) = −a(x)ux − b(x)uy − c(x)u + f (x). (4)

H can be approximated by φ

H(x, u, ux, uy) =

N−
i=1

αiφ(‖x − xi‖), x, xi ∈ Ω, (5)

where ‖ · ‖ is the Euclidean norm, {xi}N1 are the interpolation points, and φ : R+ → R is a univariate function.
Using radial basis functions (RBFs), an approximate particular solution to (3) is given by

ûp(x) =

N−
i=1

αiΦ(‖x − xi‖), (6)

where on introducing r = ‖x − xi‖, Φ is obtained by analytically solving

1Φ(r) = φ(r). (7)

Note that ∆ = 1/r(d/dr(r(d/dr))) in 2D. Φ in (7) can be obtained by repeated integration of φ [5,24]. Four commonly used
RBFs, φ, and their corresponding particular solutions, Φ , are shown in Table 1.
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Table 1
Radial basis functions and their corresponding particular solutions.

Type of RBF φ(r) Φ(r)

MQ
√
r2 + c2 1

9 (4c2+r2)
√
r2 + c2− c3

3 ln(c+
√
r2 + c2)

IMQ 1√
r2+c2

√
r2 + c2 − c ln(c +

√
r2 + c2) − c ln 2c

Polyharmonic spline r2m ln r r2m+2 ln r
4(m+1)2

−
r2m+2

4(m+1)3

Polyharmonic spline r2m−1 r2m+1

(2m+1)2

Let us assume the solution of (1)–(2) can be approximated by

u(x) ≃ û(x) =

N−
i=1

αiΦ(‖x − xi‖). (8)

Then from (7) we have

1u ≃ 1û =

N−
i=1

αi1Φ(‖x − xi‖) =

N−
i=1

αiφ(‖x − xi‖). (9)

From (5) and (9), we have
N−
i=1

αiφ(‖x − xi‖) = −a(x)ûx − b(x)ûy − c(x)û + f (x), x ∈ Ω, (10)

and

ux ≃ ûx =

N−
i=1

αiΦx(‖x − xi‖), (11)

uy ≃ ûy =

N−
i=1

αiΦy(‖x − xi‖). (12)

We can reformulate (10) as
N−
i=1

αiΘ(‖x − xi‖) = f (x), x ∈ Ω, (13)

where

Θ(‖x − xi‖) = φ(‖x − xi‖) + a(x)Φx(‖x − xi‖) + b(x)Φy(‖x − xi‖) + c(x)Φ(‖x − xi‖).
The boundary condition in (2) becomes

N−
i=1

αiBΦ(‖x − xi‖) = g(x), x ∈ ∂Ω. (14)

By the use of the collocation method, {αi}
N
i=1 can be obtained through (13) and (14).

3. Localized method of approximate particular solutions (LMAPS)

To reduce the size of the dense matrices arising from the global scheme, we introduce a local scheme for the MAPS that
was discussed in Section 2.

Let {xi}N1 be a set of collocation points in Ω ∪ ∂Ω . For each xi ∈ Ω we choose n nearest neighbor points (including xi
itself) Ωi = {xik}

n
k=1, in which xik ≡ xk(i), denotes the local indexing for each collocation point associated or belonging to Ωi.

The construction requires that Ωi ∩ Ωj ≠ ∅ for some j ≠ i, and {xi}N1 = ∪i Ωi. In this section our purpose is to formulate
a numerical scheme to approximate u(x) and its derivatives at all the collocation points {xi}N1 . Since these points can be
selected arbitrarily in the domain, we can always choose the points where the approximate solutions are needed as the
collocation points.

Consider the collocation method on the local domain Ωi, and let xi = xij ∈ Ωi for some j ≤ n. Then u(xi) can be
approximated as shown in (8) which is the following

u(xi) ≃ û(xi) =

n−
k=1

αkΦ(‖xi − xik‖). (15)
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Assume that within each Ωi, using the collocation method, we obtain the resulting linear system
û(xi1)
û(xi2)

...

û(xin)

 =


Φ(‖xi1 − xi1‖) Φ(‖xi1 − xi2‖) . . . Φ(‖xi1 − xin‖)
Φ(‖xi2 − xi1‖) Φ(‖xi2 − xi2‖) . . . Φ(‖xi2 − xin‖)

...
...

...
...

Φ(‖xin − xi1‖) Φ(‖xin − xi2‖) . . . Φ(‖xin − xin‖)




α1
α2
...

αn

 . (16)

Denote the matrix on the right-hand side of (16) as Φn.
It can be proved [25] that Φn is non-singular such that the inverse matrix can always be computed provided that all the

nodal points inside Ωi are distinct points. The unknown coefficients in (16) can be written as follows

α = Φ−1
n ûn, (17)

whereα = [α1, α2, . . . , αn]
T , ûn = [û(xi1), û(x

i
2), . . . , û(x

i
n)]

T . Hence, û(xi) in (15) can be expressed in terms of the function
values at n nodal points, ûn, i.e.

û(xi) =

n−
k=1

αkΦ(‖xi − xik‖) = Φ̂n(xi)α = Φ̂n(xi)Φ−1
n ûn

= Ψ n(xi)ûn, (18)

where

Φ̂n(xi) = [Φ(‖xi − xi1‖), Φ(‖xi − xi2‖), . . . , Φ(‖xi − xin‖)], (19)

and

Ψ n(xi) = Φ̂n(xi)Φ−1
n = [ϕ1, ϕ2, . . . , ϕn]. (20)

In the local approach, the formulation of (18) is preferred to (16). In (18) û(xi) is expressed in terms of the function values
of u at the n local nodal points.

Let

ûN = [û(x1), û(x2), . . . , û(xN)]T . (21)

We try to reformulate (18) in terms of global ûN instead of local ûn. This can be done by padding the vector Ψ n(x) with zero
entries based on the mapping between ûn and ûN . It follows that

û(xi) = ΨN(xi)ûN (22)

is equivalent to (18), where ΨN(xi) is a vector with N components that is obtained by inserting N − n zeros into Ψ n(xi) at
the proper places.

For example, let us assume N = 100, n = 3, and Ωi = {xi1, x
i
2, x

i
3} = {x20, x23, x27}. Then, we insert 97 zeros into the

n-vector, Ψ n(xi), given in (20), thereby padding the vector at positions other than 20, 23, and 27, as shown explicitly in

ΨN(xi) = [0, 0, . . . , ϕ1
20th

, 0, 0, ϕ2
23th

, 0, 0, 0, ϕ3
27th

, 0, . . . , 0
100th

]. (23)

In (23) there are 19 zeros before ϕ1 and 73 zeros after ϕ3. This zero padding keeps track of the original position at each local
point so that ΨN(xi) can be easily obtained from Ψ n(xi). The procedure is much the same as the process of matrix assembly
in other local methods.

Next, we observe

1û(xi) =

n−
k=1

αk1Φ(‖xi − xik‖)

= 1Φ̂n(xi)α
= 1Φ̂n(xi)Φ−1

n ûn

= Λn(xi)ûn

= ΛN(xi)ûN , (24)

where

Λn(xi) = 1Φ̂n(xi)Φ−1
n , (25)

and ΛN(xi) is the expansion of Λn(xi) obtained by adding zero entries as mentioned above. Note that the Laplacian in (25)
is applied to the radial basis functions that are the components of the matrix Φn. Since (18) and (24) hold for any {xi}N1 , we
have a N × N sparse system of equations with N unknown {û(xi)}N1 which are approximate values of {u(xi)}N1 , respectively.
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We continue by outlining the application of this local scheme to solve (1)–(2). Let {xi}
Ni
1 be the interior points in the

domain Ω and {xi}
Ni+Nb
Ni+1 be the boundary points on ∂Ω and N = Ni +Nb. For each interior point xi ∈ Ω , we choose Ωi that

contains n nearest neighbor points of xi. From (13), for 1 ≤ i ≤ Ni, we have

f (xi) =

n−
k=1

αkΘ(‖xi − xik‖)

= Θ̂n(xi)α
= Θ̂n(xi)Φ−1

n ûn

= Ξn(xi)ûn, (26)

where Θ̂n is defined in a similar fashion as Φ̂n in (19), α = Φ−1
n ûn is given in (17), and Ξn(xi) = Θ̂n(xi)Φ−1

n . Similar to (18)
and (22), we can extend ûn to ûN in (26) as

f (xi) = ΞN(xi)ûN , 1 ≤ i ≤ Ni, (27)

where ΞN(xi) is the extension of Ξn(xi) obtained by padding the vector with N − n zeros in the proper position indicated
above. Furthermore, from (14), for Ni + 1 ≤ i ≤ N , we have

g(xi) =

n−
k=1

αkBΦ(‖xi − xik‖)

= BΦ̂n(xi)α

= BΦ̂n(xi)Φ−1
n ûn, (28)

whereBΦ̂n(xi) is defined in a similar fashion as1Φ̂n(xi) in (24). Similarly, we can extend (28) from ûn to ûN as before. Then,
we have

g(xi) = ΥN(xi)ûN , Ni + 1 ≤ i ≤ N, (29)

where ΥN(xi) is the extension of BΦ̂n(xi)Φ−1
n obtained by inserting N − n zeros. From (27) and (29), we have the following

sparse system of equations

ΞN(x1)
...

ΞN(xNi)
ΥN(xNi+1)

...
ΥN(xN)





û(x1)
...

û(xNi)
û(xNi+1)

...
û(xN)


=



f (x1)
...

f (xNi)
g(xNi+1)

...
g(xN)


. (30)

By solving this sparse system of equations, we obtain the approximate solution to u at all given nodes.
The availability of efficient sparsematrix solvers changes the numerical solution of the problem fromonewith a dense, ill-

conditioned linear system, into one that contains a sparse matrix. Furthermore, the availability of a wide range of efficient
sparse matrix solvers makes this approach much more amenable to solving large-scale problems in engineering and the
applied sciences.

4. Numerical results

In the numerical implementation of the localmeshlessmethod, it is important to identify the nearestnneighboring points
of each computational node. For large numbers of interpolation points, the efficiency of the search algorithm is an important
consideration. Among these algorithms, the kd-tree is very efficient, using a space-partitioning data structure for arranging
points in a k-dimensional space. The construction of the kd-tree is needed before the search of the nearest neighbor points,
however the search can be done efficiently using the properties of the tree to quickly eliminate large portions of the search
space. Finding the nearest point is an O(logN) operation in the case of N randomly distributed points.1 In this section, we
adopt the kd-tree search algorithm to find the nearest n neighbor points.

The effectiveness of our numerical scheme can be assessed by comparing numerical results with analytical solutions as
the number of local nodes is varied. The high quality results attainable through the global MAPS are not examined, and in
general, the use of the local methods results in some slight decrease in accuracy.

1 For the details of the kd-tree search algorithm, we refer readers to Ref. [26]. The computer code for the construction of kd-tree is available.
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Fig. 1. Left: profile of the solution to the PDE in Example 1 on the domain [0, 1] × [0, 20]. Right: the absolute errors of LMAPS in Example 1 with
L = 1, n = 7, Sn = 25, c = 9.3.

Estimates of the numerical accuracy are based on the root mean squared error (RMSE) and the root mean squared error
of the spatial derivative with respect to x (RMSEx),

ε =

 1
Nt

Nt−
i=1

(û(xi) − u(xi))2, (31)

εx =

 1
Nt

Nt−
i=1

(ûx(xi) − ux(xi))2, (32)

respectively, and where Nt is the number of test points.
To further validate our proposed numerical algorithm, wemake comparison of our LMAPS with LMQ [10]. In addition, to

show the effect of shape parameter c of MQ and IMQ in local methods, we test c from 0.1 to 10.0. In contrast to the global
methods, we found the shape parameter c is insensitive using local approaches.

We denote by Ni the number of interior points, Nb the number of boundary points, with N = Ni + Nb, n the number
of nearest neighbor points, and Sn the number of partition points in (0, 1). The optimal shape parameter of MQ or IMQ is
denoted as copt .

Example 1. Consider the following Poisson problem

1u(x, y) = f (x, y), (x, y) ∈ Ω,

u(x, y) = g(x, y), (x, y) ∈ ∂Ω,

where Ω ∪ ∂Ω = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ L}. We note that the known functions f and g are given according to the
following exact solution

u(x, y) =
1.25 + cos(5.4y + 2.7)
6(1 + (3x + 0.5)2)

.

The computational domain is a rectangular [0, 1] × [0, L]. We use MQ as a basis function to solve the above problem for
various L. The nodes are distributed uniformly. Let Ni = S2

nL + Sn(L − 1) and Nb = 2(L + 1)(Sn + 1). We compute copt
and the corresponding ε and εx on the N interior and boundary points. The profile of exact solution is shown on the left
of Fig. 1, and clearly shows that, while the solution is smooth, it is rapidly varying. This is an important consideration in
assessing the effectiveness of LMAPS in accurately capturing the behavior of the solution while only using a limited number
of local nodes to construct the solution. The right figure of Fig. 1 shows the absolute errors on the domain [0, 1] × [0, 1],
where n = 7, Sn = 25, c = 9.3 are used. The estimates near the boundary as in any other region, are dependent on the
construction of the local domains. Themaximum errors appear in the region where the analytical solution has relative large
values.

In Table 2, we compute the ε and εx errors using various nearest neighbor points nwith L = 20. As n increases, both ε and
εx are expected to improve while the computational efficiency will decrease. In this example, LMAPS and LMQ have similar
accuracy using optimal c. In Table 3, the optimal shape parameter is stable and does not depend on the value of L. This is
mainly because we have the same point distribution in each square [0, 1] × [i, i + 1], i.e., in Table 3, we always choose
30× 30 = 900 inside [0, 1] × [i, i+ 1]. As we have observed, we can manage as many as 900,000 interpolation points and
obtain good accuracy without problem. Table 3 shows ε and εx for various L.
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Table 2
The ε and εx with various n using L = 20, Sn = 25.

n LMAPS LMQ
ε εx copt ε εx copt

7 9.46 × 10−5 4.78 × 10−3 9.3 5.87 × 10−5 3.83 × 10−3 0.8
9 5.88 × 10−5 2.20 × 10−3 5.3 8.34 × 10−5 1.81 × 10−3 0.5

11 8.99 × 10−5 1.93 × 10−3 2.8 8.29 × 10−5 1.64 × 10−3 0.4

Table 3
The ε and εx using different N for n = 9, Sn = 30.

N LMAPS LMQ
ε εx copt ε εx copt L

99,232 1.10 × 10−4 1.52 × 10−3 1.6 5.96 × 10−5 1.25 × 10−3 0.5 100
198,432 1.08 × 10−4 1.52 × 10−3 1.6 5.97 × 10−5 1.24 × 10−3 0.5 200
376,992 1.11 × 10−4 1.53 × 10−3 1.6 5.99 × 10−5 1.24 × 10−3 0.5 380
496,032 1.11 × 10−4 1.54 × 10−3 1.6 5.98 × 10−5 1.24 × 10−3 0.5 500
595,232 1.11 × 10−4 1.52 × 10−3 1.6 5.99 × 10−5 1.24 × 10−3 0.5 600
694,432 1.10 × 10−4 1.52 × 10−3 1.6 5.98 × 10−5 1.24 × 10−3 0.5 700
803,552 1.09 × 10−4 1.52 × 10−3 1.6 5.97 × 10−5 1.24 × 10−3 0.5 810
922,592 1.11 × 10−4 1.53 × 10−3 1.6 5.98 × 10−5 1.24 × 10−3 0.5 930

Fig. 2. The profiles of the ε and εx w.r.t. shape parameter c for Example 1 using LMAPS and GMAPS with L = 1, Sn = 10, n = 7.

In Fig. 2, the shape parameter c is more stable and easy to predict using the LMAPS than global approach. It is known that
the determination of optimal shape parameter is still an outstanding research problem [22,23]. Furthermore, we also show
we can achieve both high accuracy and manage to handle a large number of interpolation points using local methods.

The left figure in Fig. 3 shows the rate of convergence of LMAPSwith various numbers of nearest neighbor points n on the
domain [0, 1] × [0, 1], where Sn = 10 is considered. As we have seen from Table 2, the accuracy of the proposed method
improves as n increases, but both RMSE and RMSEx become stable very quickly. The right figure in Fig. 3 shows the rate of
convergence of LMAPSwith various numbers of collocation pointsN , where h = 1/(Sn+1),N = 4(Sn+1)+S2

n = (Sn+2)2.
As h decreased, the accuracy is increased as we expect.

Example 2. We consider the following modified Helmholtz equation

(∆ − 100)u(x, y) = f (x, y), (x, y) ∈ Ω, (33)
u(x, y) = g(x, y), (x, y) ∈ ∂Ω, (34)

where f and g are chosen according to the following exact solution

u(x, y) = sin
πx
6

sin
7πx
4

sin
3πy
4

sin
5πy
4

.

The computational domain is bounded by the curve defined by the following parametric equation:

∂Ω = {(x, y) | x = ρ cos θ, y = ρ sin θ, 0 ≤ θ ≤ 2π}, (35)

where

ρ = 1 + cos2(4θ).
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Fig. 3. Left: the rate of convergence of LMAPS with various numbers of nearest neighbor points n in Example 1 on the domain [0, 1] × [0, 1], Sn = 10.
Right: the rate of convergence of LMAPS with various numbers of collocation points N in Example 1 on the domain [0, 1] × [0, 1], where n = 5, h =

1/(Sn + 1),N = (Sn + 2)2 .

Fig. 4. The profile of the domain and the distribution of interior and boundary points (left), and the profile of the solution to the PDE in Example 2 in the
extended domain (right).

The profiles of computational domain and the exact solution can be found in Fig. 4. This problem is designed to demonstrate
the utility of LMAPS in solving problems on irregular domains, and as in Example 1, to examine a case where the solution is
again rapidly oscillating on the domain.

We use the LMAPS and LMQwithMQ and IMQ as basis functions to solve the above problem. LetNt = 172 be the number
of test points. For simplicity, we can simply add the test points as part of the interior points. Hence, in this example we have
N = Ni + Nb + Nt . Table 4 shows that both ε and εx improve when N becomes larger using LMAPS and LMQ.

In Tables 5 and 6, we compute the ε and εx errors using LMAPS and LMQ with MQ and IMQ, respectively. The numerical
results show that the IMQ has slightly better results. In Fig. 5 we notice that LMAPS is clearly more stable and accurate than
LMQ in terms of shape parameter c . It is difficult to identify the optimal shape parameter copt using LMQ. Using LMAPS in
this example, finding copt is not a critical issue.

This final point deserves some attention. In having moved to a local scheme, we have gained an important advantage
beyond the design objective of improving the solvability of the linear system. In regard to the determination of the optimum
for the values of c , i.e., copt , we have a much simpler problem to solve. Since the matrices are much smaller, provided that
the spacing of the points in each local domain is approximately the same, the value of c that optimizes the solution of the
problem can also be expected to be the same. In effect we have regularized the construction of copt .

The result for copt should also hold provided that the shape of the local domains is not excessively stretched or distorted.
This would hardly be surprising, in as much as all the local methods seem to share a need to keep the mesh or grid from
being excessively distorted to minimize errors.

Example 3. We consider a more general type of partial differential equation

1u(x, y) + y cos(y)ux(x, y) + sinh(x)uy(x, y) + 10xyu(x, y) = f (x, y), (x, y) ∈ Ω,

∂u(x, y)
∂n

= g(x, y), (x, y) ∈ ∂Ω,
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Table 4
The ε and εx for different N using MQ and n = 9.

Ni Nb LMAPS LMQ
ε εx copt ε εx copt

384 80 3.07 × 10−3 8.34 × 10−2 0.4 2.22 × 10−3 5.31 × 10−2 0.5
6600 300 7.14 × 10−5 1.67 × 10−3 1.7 6.19 × 10−5 1.01 × 10−3 1.4

20161 900 5.02 × 10−5 8.91 × 10−4 0.6 2.57 × 10−5 3.68 × 10−4 0.8

Table 5
The ε and εx with different values of n using MQ and Ni = 6, 600, Nb = 300.

n LMAPS LMQ
ε εx copt ε εx copt

7 1.24 × 10−4 4.53 × 10−3 3.6 1.25 × 10−4 3.56 × 10−3 0.4
9 3.01 × 10−4 8.73 × 10−3 1.7 1.88 × 10−4 5.26 × 10−3 1.7

11 7.14 × 10−5 1.67 × 10−3 1.7 6.19 × 10−5 1.01 × 10−3 1.4
13 3.02 × 10−5 1.70 × 10−3 0.7 1.48 × 10−5 5.08 × 10−4 0.6
15 9.81 × 10−6 3.88 × 10−4 0.6 3.32 × 10−6 2.53 × 10−4 0.6

Table 6
The ε and εx with different values of n using IMQ and Ni = 6,600, Nb = 300.

n LMAPS LIMQ
ε εx copt ε εx copt

7 1.41 × 10−4 4.32 × 10−3 0.4 9.90 × 10−5 3.37 × 10−3 0.7
9 1.90 × 10−4 5.31 × 10−3 1.4 1.71 × 10−4 4.79 × 10−3 0.8

11 6.29 × 10−5 8.46 × 10−4 1.3 4.19 × 10−5 7.47 × 10−4 1.2
13 1.56 × 10−5 5.91 × 10−4 0.5 1.34 × 10−5 5.15 × 10−4 0.8
15 4.32 × 10−6 3.31 × 10−4 0.6 2.15 × 10−6 1.39 × 10−4 0.7

Fig. 5. The profiles of the ε and εx versus shape parameters c using LMAPS and LMQ with Ni = 6600, Nb = 300, n = 7 for Example 2.

where n is the outward normal derivative. The f and g are given according to the exact solution in Example 2. The domain
is a unit square. The nodes are distributed uniformly. Let Ni = S2

n and Nb = 4(Sn + 1). In this example, the MQ is chosen as
the basis function.

In Tables 7 and 8, we observe that there are little improvements in accuracy for increasing n and Sn using LMAPS and
LMQ. On the other hand, with increase of n or Sn, the computational cost will increase.

The left figure of Fig. 6 shows the ε as a function of shape parameter in MQ RBF with different n. The optimal shape
parameter becomes smaller when larger number of nearest points are used, the range of reasonable shape parameter also
becomes smaller. The right figure of Fig. 6 shows the rate of convergence of LMAPSwith various numbers of nearest neighbor
points n, where Sn = 10 is considered. The accuracy of the LMAPS is improving as n increasing, but both RMSE and RMSEx
become stable very quickly. In Fig. 7 we show the rate of convergence of LMAPS and LMQ with respect to the mesh size h.
Note that the performance of LMAPS and LMQ as shown in Fig. 7 are very close to each other.

Numerical studies show that implementation of the LMAPS shares certain observed behaviors with other local meshless
approaches discussed in the literature. These include the behavior of the shape parameter associated with interpolation
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Table 7
The ε and εx are obtained using different numbers of interpolation points and Sn = 30.

n LMAPS LMQ
ε εx copt ε εx copt

9 8.36 × 10−4 3.48 × 10−3 2.0 6.51 × 10−4 3.43 × 10−3 0.6
15 4.77 × 10−4 2.05 × 10−3 0.7 4.01 × 10−4 1.49 × 10−3 0.6
21 4.62 × 10−4 1.38 × 10−3 0.3 3.08 × 10−4 1.09 × 10−3 0.5
27 3.68 × 10−4 1.03 × 10−3 0.2 8.70 × 10−4 1.48 × 10−3 0.4
33 3.09 × 10−4 9.74 × 10−4 0.2 4.14 × 10−4 1.20 × 10−3 0.3

Table 8
The ε and εx using different Sn and n = 9.

Sn LMAPS LMQ
ε εx copt ε εx copt

10 6.81 × 10−3 4.57 × 10−2 0.8 9.07 × 10−3 3.12 × 10−2 1.3
25 8.25 × 10−4 5.89 × 10−3 2.9 1.02 × 10−3 5.01 × 10−3 0.6
40 4.82 × 10−4 2.24 × 10−3 1.2 3.32 × 10−4 1.90 × 10−3 0.6
55 3.09 × 10−4 1.26 × 10−3 0.9 1.63 × 10−4 9.96 × 10−4 0.6
70 2.16 × 10−4 7.63 × 10−4 0.6 1.00 × 10−4 6.09 × 10−4 0.6

Fig. 6. Left: profiles of ε versus shape parameters c using LMAPS with different numbers of nearest points in local domains with Sn = 30, n = 9, 15, and
n = 21 for Example 3. Right: the rate of convergence of LMAPS with various numbers of nearest neighbor points n in Example 3, Sn = 10 is used.

Fig. 7. Profiles of the optimal ε (left) and εx (right) using LMAPS (solid line) and LMQ (dotted line) using h = 1/(Sn + 1), n = 9 for Example 3.

and the rate of convergence of the local approach compared with the corresponding convergence of the global method. The
LMAPS, however, is clearly more stable in terms of finding a suitable shape parameter c , and also yields a slightly more
accurate approximation than LMQ.
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5. Conclusions

For solving large-scale, realistic problems, the localized approaches is essential. Global methods are known to have
many limitations regarding the computability of solutions, including ill-conditioning due to a dense matrix formulation,
and difficulty in selecting optimal shape parameter if MQ RBFs are used.

The formulation of localized method offers an alternative to solve these larger problems without and of the limitations
that are inherent in attempting to solve the fully coupled linear systems. Clearly, in these problems the accuracy of the
numerical results were not in anymanner unduly affected by localizing the computation, inmuch the samemanner as finite
difference or finite element methods do not. Clearly, the intrinsic nature of the elliptic and parabolic type PDEs considered
in this study requires the coupling of the interior nodes to the boundary, i.e., avoiding the isolation of nodes, the analytical
bounds on accuracy, stability and convergence remain to be worked out.

We have pushed the limit in solving large problems using nearly one million interpolation points with nothing more
exceptional than a personal computer, obtaining excellent results in a reasonable amount of time. In the local approach,
searching the local domain for each node is the most time consuming process. In Example 1, kd-tree uses 655.70 s to find
and store all local domains for 922,592 interpolation nodes, and the LMAPS method uses 836.80 s to solve this nearly one
million-node problem. The numerical performance of LMAPS and LMQ are similar; however, the LMAPS is more insensitive
in terms of finding the suitable shape parameter of MQ or IMQ. In the local methods the size of matrix in the local linear
system is relatively small, and does not vary much. This allows for an optimal choice of c compared with the large dense
linear systems.

It is apparent thatmeshlessmethods using local schemes can competewith the traditional numericalmethods for solving
large-scale PDEs such as the finite element, finite difference or finite volume methods. It is fairly evident that the proposed
MAPS can be easily extended to solving three-dimensional problems with irregular domains, and this is indeed where its
strength may lie. As such, the approach offers the prospects of an efficient algorithm for solving more challenging problems
in science and engineering.
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