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The eigenvalue problem of a specially updated matrix

Jiu Ding a,*, Guangming Yao b,1

a Department of Mathematics, The University of Southern Mississippi, Hattiesburg, MS 39406-5045, USA
b School of Mathematics and Computation, Harbin University, Harbin, China
Abstract

We study the eigenvalue problem for a specially structured rank-k updated matrix, based on the Sherman–Morrison–
Woodbury formula.
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1. Introduction

In a recent paper [2], the eigenvalue problem of a special rank-one updated matrix was studied and the
result therein provided an alternative proof of the eigenvalue theorem [3–6] for the Google matrix whose
eigenvector associated with eigenvalue 1 is the so-called PageRank for the Google web search engine
[1,7,8]. The main result of [2] is the following theorem.

Theorem 1.1. Let A be an n · n real matrix with eigenvalues k1,k2, . . . ,kn counting algebraic multiplicities, and let

u and v be two n-dimensional real column vectors such that v is a left eigenvector of A associated with eigenvalue

k1. Then, the eigenvalues of the matrix
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1 Pre
B ¼ Aþ uvT
are
fk1 þ uTv; k2; k3; . . . ; kng:

In this paper, we generalize Theorem 1.1 by considering the eigenvalue problem of the matrix
B ¼ Aþ u1vT
1 þ u2vT

2 þ � � � þ ukvT
k

with 2 6 k 6 n, where u1, . . . ,uk and v1, . . . ,vk are real column vectors such that v1, . . . ,vk are left eigenvectors
of A.
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Instead of the Sherman–Morrison formula used in [2] for the inverse of a rank-one updated matrix, we need
the following Sherman–Morrison–Woodbury formula for the inverse of a rank-k updated matrix for our
purpose.

Lemma 1.1. If A is an invertible n · n real matrix, and U, V are two n · k real matrices, then the n · n matrix

A + UVT is invertible if and only if the k · k matrix I + VTA�1U is invertible, and then
ðAþ UV TÞ�1 ¼ A�1 � A�1UðI þ V TA�1UÞ�1V TA�1: ð1Þ

Although the proof of our main result Theorem 3.1 works for any k 6 n, in the next section we prove the

special case k = 2 first to illustrate the basic idea of our approach. Then we give the general result in Section 3.
2. Eigenvalues of rank-2 updated matrices

We first consider the special case k = 2 in this section. Let A be an n · n real matrix and let u1,u2,v1,v2 be n-
dimensional real column vectors. We consider the eigenvalue problem for the matrix
B ¼ Aþ u1vT
1 þ u2vT

2 :
In the proof of our theorems below, we use the standard notation in matrix theory. For example, N(A) denotes
the null space of A and M? is the orthogonal complement of a subset M in Rn.

Theorem 2.1. Let A be an n · n real matrix with eigenvalues k1,k2, . . . ,kn counting algebraic multiplicities, and let
u1,u2, v1, v2 be real column vectors such that v1 and v2 are linearly independent left eigenvectors of A corresponding

to eigenvalues k1 and k2, respectively. Then the eigenvalues of the matrix B ¼ Aþ u1vT
1 þ u2vT

2 are
fl; m; k3; . . . ; kng;

where l and m are the eigenvalues of the 2 · 2 matrix
W ¼
k1 þ uT

1 v1 uT
1 v2

uT
2 v1 k2 þ uT

2 v2

� �
¼ diagðk1; k2Þ þ U TV ð2Þ
with U and V denoting the n · 2 matrices
U ¼ ½u1; u2�; V ¼ ½v1; v2�:
Proof. For any complex number k,
B� kI ¼ A� kI þ UV T: ð3Þ

We first show that l and m are eigenvalues of B. Since vT

1 A ¼ k1vT
1 and vT

2 A ¼ k2vT
2 , we have
vT
1 B ¼ vT

1 Aþ vT
1 u1vT

1 þ vT
1 u2vT

2 ¼ k1 þ uT
1 v1

� �
vT

1 þ uT
2 v1

� �
vT

2

and
vT
2 B ¼ vT

2 Aþ vT
2 u1vT

1 þ vT
2 u2vT

2 ¼ uT
1 v2

� �
vT

1 þ k2 þ uT
2 v2

� �
vT

2 :
That is,
V TB ¼ W TV T; ð4Þ
where W is the 2 · 2 matrix as defined by (2). Suppose k is an eigenvalue of W. Then there is a nonzero
2-dimensional column vector g such that gT(WT � kI) = 0, which and (4) imply that
gTV TðB� kIÞ ¼ gTðW T � kIÞV T ¼ 0:
Since v1, v2 are linearly independent, Vg is a left eigenvector of B associated with eigenvalue k. Therefore, both
l and m are eigenvalues of B.
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Next we show that a complex number k is an eigenvalue of B if and only if k 2 {l,m,k3, . . . ,kn}. We consider
four cases separately.

(i) Assume k 5 ki for all i = 1, . . . ,n. Then the inverse matrix (A � kI)�1 exists. If k is an eigenvalue of B,
then
det½I þ V TðA� kIÞ�1U � ¼ 0 ð5Þ

by the Sherman–Morrison–Woodbury formula applied to (3). Since VTA = diag(k1,k2)VT,
V TðA� kIÞ ¼ diagðk1 � k; k2 � kÞV T;
which implies that
V TðA� kIÞ�1 ¼ diag
1

k1 � k
;

1

k2 � k

� �
V T:
It follows that
det½I þ V TðA� kIÞ�1U � ¼ det I þ diag
1

k1 � k
;

1

k2 � k

� �
V TU

� �

¼ det diag
1

k1 � k
;

1

k2 � k

� �� �
� det diagðk1; k2Þ þ U TV � kI

� 	

¼ 1

ðk1 � kÞðk2 � kÞ � detðW � kIÞ:
So, equality (5) implies that det(W � kI) = 0. That is, k is an eigenvalue of the 2 · 2 matrix W. Therefore
k = l or m. This proves that all the other eigenvalues of B are inside the eigenvalue set {k1,k2, . . . ,kn}
of A.

(ii) Suppose k = ki for some i = 3, . . . ,n. Then the matrix A � kI is singular. Since
A� kI ¼ B� kI � UV T; ð6Þ
if ki is not an eigenvalue of B, then the Sherman–Morrison–Woodbury formula applied to (6) implies
that
det I � V TðB� kIÞ�1U
h i

¼ 0: ð7Þ
Since VT(B � kI) = (WT � kI)VT from (4),
V TðB� kIÞ�1 ¼ ðW T � kIÞ�1V T:
Thus,
det½I � V TðB� kIÞ�1U � ¼ det½I � ðW T � kIÞ�1V TU � ¼ det½ðW T � kIÞ�1� � det½diagðk1 � k; k2 � kÞ�

¼ ðk1 � kÞðk2 � kÞ
detðW � kIÞ :
It follows from (7) that k = k1 or k2, which is a contradiction if ki 5 k1, k2. This says that ki is an eigen-
value of B under the additional assumption that ki 5 k1, k2.

(iii) Now suppose k = ki = k1 for some i = 3, . . . ,n. Then the algebraic multiplicity of the eigenvalue k for A is
at least two. First assume that dim N(A � kI) < dim N[(A � kI)2]. Then there is a nonzero vector
u 2 N[(A � kI)2] such that v � (A � kI)u 5 0. Since ðk2 � k1Þ2vT

2 u ¼ vT
2 ðA� kIÞ2u ¼ 0, there holds

ðk2 � k1ÞvT
2 u ¼ 0. Therefore, by (3),
ðB� kIÞv ¼ ðB� kIÞðA� kIÞu ¼ ½ðA� kIÞ2 þ UV TðA� kIÞ�u ¼ ðA� kIÞ2uþ ðk2 � k1Þu2vT
2 u

¼ ðk2 � k1ÞvT
2 u � u2 ¼ 0:
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That is, k is an eigenvalue of B with eigenvector v. Next assume that dim N(A � kI) = dim N[(A �
kI)2] P 2. If k1 = k2, then dim N(A � kI) P 3. Since dim{v1,v2}? = n � 2, dim N(B � kI) P 1 by (3).
In other words, k is an eigenvalue of B. If k1 5 k2, then there is u 5 0 such that (A � kI)u = 0 and
vT

1 u ¼ 0 since dim{v1}? = n � 1. Since ðk2 � k1ÞvT
2 u ¼ vT

2 ðA� kIÞu ¼ 0, we also have vT
2 u ¼ 0. Hence,
ðB� kIÞu ¼ ðA� kIÞuþ UV Tu ¼ 0:
That is, k is an eigenvalue of B with eigenvector u. By the same token, if ki = k2 for some i = 3, . . . ,n,
then ki is an eigenvalue of B.

(iv) Finally, we show that for k = k1 or k2, if k 5 ki for all i = 3, . . . ,n, and if k is not an eigenvalue of W,
then k is not an eigenvalue of B. We prove the claim for k = k1 only since the proof for the other case is
exactly the same. What we need to show is that the matrix B � kI is nonsingular. Let w 2 Rn be a non-
zero vector. First assume that w = Vg for some nonzero vector g 2 R2. Since k 5 l, m, the 2 · 2 matrix
W � kI is nonsingular, so gT(WT � kI) 5 0. Since the rank of V is 2, equality (4) gives
wTðB� kIÞ ¼ gTV TðB� kIÞ ¼ gTðW T � kIÞV T 6¼ 0:
Now assume that w 62 span{v1,v2}. Suppose wT(B � kI) = wT(A � kI) + wTUVT = 0. Then
wT(A � k1I) = � wTUVT, so
T 2 T T
w ðA� k2IÞðA� k1IÞ ¼ �w UV ðA� k1IÞðA� k2IÞ ¼ 0 ð8Þ

since VT(A � k1I)(A � k2I) = 0. Eq. (8) and the fact that the algebraic multiplicity of the eigenvalue k1 of
A is at most 2 imply that wT(A � k2I) = gTVT for some g 2 R2. Therefore,
gTV T ¼ wTðA� k2IÞ ¼ wTðA� k1IÞ þ ðk1 � k2ÞwT ¼ �wTUV T þ ðk1 � k2ÞwT: ð9Þ

If k1 = k2, then wT(A � k1I)2 = 0 by (9), which contradicts the fact that dim N[(A � k1 I)2] = 2. If
k1 5 k2, then (9) gives
w ¼ V ðgþ U TwÞ
k1 � k2

;

which contradicts the assumption that w 62 span{v1,v2}. This concludes the proof of the theorem. h

Remark 2.1. Actually, in case (iv) of the above proof, since the algebraic multiplicity of k1 is at most 2, by the
theory of Jordan forms for matrices, if w 62 span{v1,v2}, then (8) implies that wT(A � k2I)(A � k1I)2 5 0. This
observation will be used later to shorten the proof of Theorem 3.1.

An immediate consequence of Theorem 2.1 is

Corollary 2.1. Suppose in addition that uT
1 v2 ¼ 0 and uT

2 v1 ¼ 0. Then the eigenvalues of B are
fk1 þ uT
1 v1; k2 þ uT

2 v2; k3; . . . ; kng:
3. Eigenvalues of rank-k updated matrices

The same idea as used in the proof of Theorem 2.1 can be applied to establishing the following general
result.

Theorem 3.1. Let A be an n · n real matrix with eigenvalues k1,k2, . . . ,kn counting algebraic multiplicities, and

for 1 6 k 6 n let u1, . . . , uk and v1, . . . , vk be real column vectors such that v1, . . . , vk are linearly independent left

eigenvectors of A corresponding to the eigenvalues k1, . . . ,kk, respectively. Then the eigenvalues of the matrix

B ¼ Aþ
Pk

i¼1uivT
i are
fl1; l2; . . . ; lk; kkþ1; . . . ; kng;
where l1, . . . ,lk are the eigenvalues of the k · k matrix
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W ¼ diagðk1; . . . ; kkÞ þ UTV ð10Þ

and
U ¼ ½u1; . . . ; uk�; V ¼ ½v1; . . . ; vk�:
Proof. The special cases k = 1 and k = 2 have been covered by Theorems 1.1 and 2.1, respectively, so we
assume k P 2. Exactly the same process in the proof of Theorem 2.1 can be used again to show that

(i) l1, . . . ,lk are eigenvalues of B,
(ii) if k 62 {k1,k2, . . . ,kn}, then k is not an eigenvalue of B except for k = lj for some j = 1, . . . ,k, and

(iii) ki is an eigenvalue of B for i = k + 1, . . . ,n if ki 5 kj for all j = 1, . . . ,k.

Now suppose ki = kj for some k + 1 6 i 6 n and 1 6 j 6 k. We show that kj is an eigenvalue of B. We just
prove the case j = 1 since the proof for j = 2, . . . ,k is exactly the same. Without loss of generality, we may
assume that k1 = k2 = � � �= kl and k1 5 kj for all j = l + 1, . . . ,k. Then, since k1 = ki, the algebraic multiplicity
of the eigenvalue k1 for A is at least l + 1. Let u 2 N[(A � k1I)2]. Since vT

j ðA� k1IÞ2 ¼ ðkj � k1Þ2vT
j ,
vT
j u ¼ 1

ðkj � k1Þ2
vT

j ðA� k1IÞ2u ¼ 0; j ¼ lþ 1; . . . ; k: ð11Þ
Suppose first that dim N(A � k1I) < dim N[(A � k1I)2]. Then there is u 2 N[(A � k1I)2] such that
v � (A � k1I)u 5 0. Since vT

j ðA� k1IÞ ¼ 0 for j = 1, . . . , l and vT
j ðA� k1IÞ ¼ ðkj � k1ÞvT

j for j = l + 1, . . . ,k,
we have
ðB� k1IÞðA� k1IÞ ¼ ðA� k1IÞ2 þ UV TðA� k1IÞ ¼ ðA� k1IÞ2 þ
Xk

j¼lþ1

ðkj � k1ÞujvT
j :
The above equality and (11) imply that (B � k1I)v = 0. That is, k1 is an eigenvalue of B with eigenvector v.
Now suppose dim N(A � k1I) = dim N[(A � k1I)2]. Then N(A � k1I) = N[(A � k1I)2] with dimension at

least l + 1. Since dim{v1, . . . ,vl}
? = n � l, there is a nonzero vector u 2 N(A � k1I) such that u 2 {v1, . . . ,vl}

?.
Moreover, by (11), u 2 {vl+1, . . . ,vk}?. Therefore,
ðB� k1IÞu ¼ ðA� k1IÞuþ UV Tu ¼ 0:
So k1 is an eigenvalue of B with eigenvector u.
Finally we show that if for some j = 1, . . . ,k, kj is not an eigenvalue of W defined by (10) and kj 5 ki for all

i = k + 1, . . . ,n, then kj is not an eigenvalue of B. We assume j = 1 for the sake of simplicity of notation.
First let w = Vg for some nonzero vector g 2 Rk. Since W � k1I is nonsingular, gT(WT � k1I) 5 0. The

assumption that the rank of V is k and equality (10) give
wTðB� k1IÞ ¼ gTV TðB� k1IÞ ¼ gTðW T � k1IÞV T 6¼ 0:
Next assume w 62 span{v1, . . . ,vk}. Suppose wT(B � k1I) = wT(A � k1I) + wTUVT = 0. Then wT(A � k1I) =
�wTUVT, so
wT
Yk

j¼2

ðA� kjIÞ � ðA� k1IÞ2 ¼ �wTUV T
Yk

j¼1

ðA� kjIÞ ¼ 0 ð12Þ
since V T
Qk

j¼1ðA� kjIÞ ¼ 0. On the other hand, since k1 5 ki for all i = k + 1, . . . ,n, the condition
w 62 span{v1, . . . ,vk} implies that wT

Qk
j¼2ðA� kjIÞ � ðA� k1IÞ2 6¼ 0. This gives a contradiction to (12). h

In particular, we have

Corollary 3.1. Let A be an n · n real matrix with eigenvalues k1,k2, . . . ,kn counting algebraic multiplicities. For

i = 1,2, . . . , k let ui and vi be n-dimensional real column vectors such that vi’s are linearly independent left

eigenvectors of A associated with eigenvalues ki respectively. If uT
i vj ¼ 0 for all i 5 j, then the eigenvalues of the

matrix
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Aþ
Xk

i¼1

uivT
i

are
fk1 þ uT
1 v1; . . . ; kk þ uT

k vk; kkþ1; . . . ; kng:
Remark 3.1. We point out that the assumption that v1, . . . ,vk are linearly independent is not necessary and can
be removed from the fact that eigenvalues of a matrix are continuous functions of its entries and any square
matrix is a limit of a sequence of matrices with all distinct eigenvalues so that their corresponding eigenvectors
are linearly independent.
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