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Abstract

We study the eigenvalue problem for a specially structured rank-k updated matrix, based on the Sherman—Morrison—
Woodbury formula.
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1. Introduction

In a recent paper [2], the eigenvalue problem of a special rank-one updated matrix was studied and the
result therein provided an alternative proof of the eigenvalue theorem [3-6] for the Google matrix whose
eigenvector associated with eigenvalue 1 is the so-called PageRank for the Google web search engine
[1,7,8]. The main result of [2] is the following theorem.

Theorem 1.1. Let A be an n X n real matrix with eigenvalues Ay, 25, . . ., A, counting algebraic multiplicities, and let
u and v be two n-dimensional real column vectors such that v is a left eigenvector of A associated with eigenvalue
A1. Then, the eigenvalues of the matrix

B=A4+uw"
are
{/11 + MTU,/AQ,)@,, .. .,/1,,}.

In this paper, we generalize Theorem 1.1 by considering the eigenvalue problem of the matrix

B:A—i—ulvlT—i—uzv;—i—---—i—ukva

with 2 < k < n, where uy,...,u; and vy,...,v; are real column vectors such that vy,. .., v, are left eigenvectors
of A.
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Instead of the Sherman—Morrison formula used in [2] for the inverse of a rank-one updated matrix, we need
the following Sherman—-Morrison—-Woodbury formula for the inverse of a rank-k updated matrix for our
purpose.

Lemma 1.1. If 4 is an invertible n X n real matrix, and U, V are two n X k real matrices, then the n X n matrix
A+ UV is invertible if and only if the k x k matrix I+ VYA™'U is invertible, and then

A+ =4 AU+ VAU VTA (1)

Although the proof of our main result Theorem 3.1 works for any k < n, in the next section we prove the
special case k = 2 first to illustrate the basic idea of our approach. Then we give the general result in Section 3.

2. Eigenvalues of rank-2 updated matrices
We first consider the special case k = 2 in this section. Let 4 be an n X n real matrix and let uy, u,, vy, v, be n-
dimensional real column vectors. We consider the eigenvalue problem for the matrix
B=4+ M]UT + uzv;

In the proof of our theorems below, we use the standard notation in matrix theory. For example, N(A4) denotes
the null space of 4 and M" is the orthogonal complement of a subset M in R".

Theorem 2.1. Let A be an n X n real matrix with eigenvalues Ay, 25, . . ., 1, counting algebraic multiplicities, and let
Uy, Uy, U1, 02 be real column vectors such that v, and v, are linearly independent left eigenvectors of A corresponding
to eigenvalues 2, and J, respectively. Then the eigenvalues of the matrix B = A + ujv] + usv} are

{M, V,/{g,, U 7211};

where u and v are the eigenvalues of the 2 X 2 matrix

/11 + uful ulTvz

W= = diag(1, ) + U™V (2)

ugvl /12 + ugl)z
with U and V denoting the n X 2 matrices

UZ[Ml,uz], V:[Ul,Uz].

Proof. For any complex number 4,
B—iAl=A-1+Ur" (3)
We first show that p and v are eigenvalues of B. Since v[4 = A4;v| and v;4 = Av,, we have

vIB = v A+ ojuo] +viuzvy = (A +ujv))o] + (i301)0)
and

B =04+ vuv] + vyusvy = (ujv:)v] + (o +u302)0; .

That is,

ViB=wrT, (4)
where W is the 2 x 2 matrix as defined by (2). Suppose 4 is an eigenvalue of W. Then there is a nonzero
2-dimensional column vector # such that # (W' — A1) =0, which and (4) imply that

n" V(B — ) =n" (W' =)V =0.

Since vy, v, are linearly independent, V7 is a left eigenvector of B associated with eigenvalue A. Therefore, both
w and v are eigenvalues of B.
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Next we show that a complex number 4 is an eigenvalue of Bif and only if 1 € {u,v,13,...,4,}. We consider
four cases separately.

(i)

(i)

(iif)

Assume J # J; for all i =1,...,n. Then the inverse matrix (4 — AI)"' exists. If / is an eigenvalue of B,
then
det[l + V(4 —)"'U =0 (5)
by the Sherman—Morrison-Woodbury formula applied to (3). Since V'4 = diag(/,, 2,) V",
VA — M) = diag(hy — A, 4 — VT,
which implies that
V(4 — )" = diag L
) M—A Ay — A ’
It follows that
1 1
det[l + V(4 — 1) U] = det {1 + diag (— . ) VTU}
M—A 2 — 4
1
=————det(W - Al).
(A=A (A2 —2) ( )
So, equality (5) implies that det(W — AI) = 0. That is, / is an eigenvalue of the 2 X 2 matrix . Therefore
A= or v. This proves that all the other eigenvalues of B are inside the eigenvalue set {4, 4,,...,4,}
of A.
Suppose A = 4, for some i = 3,...,n. Then the matrix 4 — A/ is singular. Since
A—M=B—M—-UVT, (6)
if 4; is not an eigenvalue of B, then the Sherman-Morrison—-Woodbury formula applied to (6) implies
that
det|7 — V™ (B— 1) U} =0. (7)
Since VI(B — 1) = (W' — 2DV from (4),
VIB - =T =T
Thus,
det[l — VT(B— 1)U = det[l — (W' — 1)V U] = det|(W" — 1)7'] - det[diag(4; — 4, 45 — 2)]
(=2 (A —A)
det(w — AI)
It follows from (7) that 4 = 4; or Z,, which is a contradiction if A; # 41, 4,. This says that 4; is an eigen-
value of B under the additional assumption that 4; # A1, /».
Now suppose A = A; = 4; for some i = 3,...,n. Then the algebraic multiplicity of the eigenvalue A for 4 is

at least two. First assume that dimN(4 — AI) <dim N[(4 — /1)*]. Then there is a nonzero vector
u € N[(A — AD)?] such that v= (4 — Au # 0. Since (A — ) vlu = vl (4 — A)’u =0, there holds
(2 — A)vyu = 0. Therefore, by (3),

(B— Yo = (B— M)A~ )u=1[(A—M)+UV(4—2)u=(4d— 2 u+ (g —A)usviu

= (22 — )LI)U—ZFM Uy = 0.
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That is, 4 is an eigenvalue of B with eigenvector v. Next assume that dim N(4 — AI) = dim N[(4 —
/11)2] > 2. If 1y =/7,, then dimN(4 — AI) > 3. Since dim{v;, 02} =n — 2, dimN(B — ) =1 by (3).
In other words, 4 is an eigenvalue of B. If 41 # 4,, then there is u # 0 such that (4 — A)u =0 and
vTu = 0 since dim{v;}" =n — 1. Since (1, — 4;)viu = v} (4 — Al)u = 0, we also have vJu = 0. Hence,

(B—u=(A—u+UVTu=0.

That is, 4 is an eigenvalue of B with eigenvector u. By the same token, if 4, = /1, for some i =3,...,n,
then /4; is an eigenvalue of B.
(iv) Finally, we show that for 2= A, or 4,, if A # /4, for all i=3,...,n, and if 1 is not an eigenvalue of W,

then 1 is not an eigenvalue of B. We prove the claim for 2 = 4, only since the proof for the other case is
exactly the same. What we need to show is that the matrix B — A/ is nonsingular. Let w € R" be a non-
zero vector. First assume that w = Vi for some nonzero vector i € R, Since 1 # p, v, the 2 x 2 matrix
W — I is nonsingular, so (W' — AI) # 0. Since the rank of V is 2, equality (4) gives

Wi (B =) =" V(B — ) =n" (W = AVT #0.

Now assume that w ¢ span{v,v.}. Suppose w' (B—A)=w'(4—A)+w'UV"'=0. Then
wid — D)= —w UV, so

WA = 2D (A — WD)’ = —wT UV (4 — 1) (A — Jnl) =0 (8)
since V(A4 — 2. I)(A — 2,I) = 0. Eq. (8) and the fact that the algebraic multiplicity of the eigenvalue ; of
A is at most 2 imply that w(4 — 2,1) = " V" for some 5 € R*. Therefore,

7]T VT = WT(A - /121) = WT(A - /111) + (;\.1 - )uz)WT = —WTUVT + (/11 - iz)WT. (9)

If 2y =/, then w'(4 — A,1)*>=0 by (9), which contradicts the fact that dimN[(4 — 4, 1)*]=2. If
A1 # Ao, then (9) gives

V(n+UTw)
M—A

which contradicts the assumption that w ¢ span{v;,v,}. This concludes the proof of the theorem. [

Remark 2.1. Actually, in case (iv) of the above proof, since the algebraic multiplicity of 4, is at most 2, by the
theory of Jordan forms for matrices, if w & span{v;,v,}, then (8) implies that w'(4 — A,I)(4 — J11)* # 0. This
observation will be used later to shorten the proof of Theorem 3.1.

An immediate consequence of Theorem 2.1 is

Corollary 2.1. Suppose in addition that u{v, = 0 and ujv; = 0. Then the eigenvalues of B are

{/11 + M—lrlil,)vz + M;FUQ,)L3, e ,}vn}.

3. Eigenvalues of rank-k updated matrices
The same idea as used in the proof of Theorem 2.1 can be applied to establishing the following general
result.

Theorem 3.1. Let A be an n X n real matrix with eigenvalues Ay, 25, . . ., A, counting algebraic multiplicities, and
for 1 <k<nletuy,...,upand vy,...,v; be real column vectors such that vy, . ..,v; are linearly independent left
eigenvectors of A corresponding to the eigenvalues i,. .., respectively. Then the eigenvalues of the matrix
B=4+ Zf;lul—viT are

{ﬂlv#Z?'"7:ukv)‘k+l7---7j'n}a

where Wy, . .., are the eigenvalues of the k X k matrix
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W = diag(di,..., %) + UV (10)
and
U=luy,...,ux]y, V=1[v1,...,0)

Proof. The special cases k =1 and k =2 have been covered by Theorems 1.1 and 2.1, respectively, so we
assume k > 2. Exactly the same process in the proof of Theorem 2.1 can be used again to show that

(1) wq,-- ., are eigenvalues of B,
(ii) if 2 & {A1,42,...,4,}, then 4 is not an eigenvalue of B except for A= p; for some j=1,...,k, and
(iii) 4, is an eigenvalue of Bfori=k+1,...,nif 4; # A;forallj=1,... k.

Now suppose 4; = 4; for some k+ 1 <i<nand 1<;j<k Weshow that /;is an eigenvalue of B. We just
prove the case j =1 since the proof for j= 2 .,k is exactly the same. Wlthout loss of generality, we may
assume that 4, = A, =---= 4;and 4, # /; for all j=1+1,...,k. Then, since 4; = 4;, the algebraic multiplicity
of the eigenvalue 1; for A is at least /+ 1. Let u € N[(4 — /111) ]. Since v] (4 — i) = (% — /ll)zvlT,

1
Tu=—" T A= Du=0, j=I1+1,... k. 11
J (l/ _ 11)2 j( 1 ) J ( )
Suppose first that dimN(4 — A1) <dim N[(4 — A;1)*]. Then there is wu e N[(A — 2,])*] such that
v= (A — /i )u # 0. Since UJT(A —MI)=0 for j=1,...,] and va(A —ul) =4 —/II)UJT for j=1+1,....k,
we have
K
(B— D) (A= Ad) = (4= D)’ + UV (A = ind) = (4= D)’ + > (3 = )uyo].
j=111
The above equality and (11) imply that (B — A;)v = 0. That is, 4, is an eigenvalue of B with eigenvector v.
Now suppose dimN(4 — /1) = dim N[(A — A,1)*]. Then N(A — A1) = N[(A — /,1)*] with dimension at
least / + 1. Since dim{vy,...,v,}" = n — [, there is a nonzero vector u € N(A — A,I) such that u € {vy,...,v}"
Moreover, by (11), u € {v;41,...,vc}". Therefore,

(B—2Du=(A—Du+UVu=0.
So 2, is an eigenvalue of B with eigenvector u.
Finally we show that if for some j = 1,...,k, J;is not an eigenvalue of ¥ defined by (10) and 4; # 2; for all
i=k+1,...,n, then 4; is not an elgenvalue of B We assume j = 1 for the sake of simplicity of notation.

First let w = Vi for some nonzero vector 7 € RX. Since W — A1 is nonsingular, 7 (W' — A1) # 0. The
assumption that the rank of V is k£ and equality (10) give

W (B —MI) =n V(B —20) =q" (W' = 1 )VT £0.

Next assume w & span{vy,...,v;}. Suppose w' (B — i) = w' (4 — D) + w'UVT = 0. Then w'(4 — 1) =
—WTUVT SO

k k

wi [ = 20) - (4= ) = =w'ovT [J(4 - 21) =0 (12)
j=2 j=1

since VTHj (4—21)=0. On the other hand, since /11 # J; for all i=k+1,...,n, the condition

w ¢ span{vy,...,v;} implies that WTH (A=A - (4- JuI)* # 0. This gives a contradiction to (12). O

In particular, we have

Corollary 3.1. Let A be an n X n real matrix with eigenvalues Ay, Ao, . . ., A, counting algebraic multiplicities. For
i=1,2,....k let u; and v; be n-dimensional real column vectors such that v;s are linearly independent left
eigenvectors of A associated with eigenvalues 2; respectively. If ulv; = 0 for all i # j, then the eigenvalues of the
matrix
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k
A+ E uv)
i=1
are

{i] + MTUl, e ,)Lk —+ u/—(rl)k,)ukJr], .. .,i,,}.

Remark 3.1. We point out that the assumption that vy,. .., v, are linearly independent is not necessary and can
be removed from the fact that eigenvalues of a matrix are continuous functions of its entries and any square
matrix is a limit of a sequence of matrices with all distinct eigenvalues so that their corresponding eigenvectors
are linearly independent.
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