Composting toilets use only three ounces of water, plus a biocompatible soap, in each flush (most toilets use a minimum of 1.5 gallons). Over 90% of waste going in the compost chamber breaks down into water vapor and carbon dioxide, and is vented outside.

Wind towers and **door louveres** (adjustable vent flaps on the north and east utility doors of building) are opened on warm days in spring and fall, generating passive air flow from the doors up through the towers and cooling the building without aid from the HVAC system.

Natural vegetation in the **bioretention pond** filters other runoff water from the property before returning it to the watershed. It also serves as critical habitat for amphibians who breed in shallow woodland pools each spring.

The green roof containing native plants reuses water and insulates the building, reducing energy demand and turning built infrastructure into active native habitat for bees, butterflies and birds.

Solar energy collection tubes harness the power of the sun to provide domestic hot water year-round and augment geothermal heating in the winter.

Echinacea, a big bushy flower, is a favorite of pollinators.

A specially engineered permeable parking lot allows rainwater to be filtered into the soil below and eliminates heat islands created by traditional asphalt.

Large native plant landscapes—the entire Water Ecology Center campus is planted with carefully curated native landscape plantings that support a host of native pollinators, bird species, and small land animals. They help bolster native plant species and resist the spread of invasive plants while providing a variety of productive shrubs and flowers for the enjoyment of visitors.

Geothermal technology—the consistent temperature of the earth keeps the water used to heat and cool the building at a constant 55 degrees, making it easier to heat and cool and thus saving energy.