This document was prepared by:
Krista Larock Wells
Associate Registrar

Clarkson University reserves the right to amend this entire document from time to time as deemed necessary.
Clarkson University does not discriminate on the basis of race, color, creed, religion, sex, sexual orientation, gender identity, gender expression, national or ethnic origin, age, disability, military or veteran status, predisposing genetic characteristics, domestic violence victim status, familial status, marital status, parental status, ancestry, source of income, or other classes protected by law in provision of educational opportunity or employment opportunities.

Clarkson University does not discriminate on the basis of sex or disability in its educational programs and activities, pursuant to the requirements of Title IX of the Educational Amendments of 1972, and Section 504 of the Rehabilitation Act of 1973, and the American Disabilities Act of 1990 respectively. This policy extends to both employment by and admission to the University.

Inquiries concerning Section 504, and the Americans with Disabilities Act of 1990 should be directed to ADA504@clarkson.edu.

Inquiries concerning the Age Discrimination Act, or other discrimination concerns should be directed to the Chief Human Resources Officer/Affirmative Action Officer at (315) 268-3788, Room 102 Graham Hall, Clarkson University, Box 5542, Potsdam NY 13699-5542 and/or Title IX to the Title IX Coordinator, Room 1003a ERC, Clarkson University, Box 5750, Potsdam, NY 13699-5750; or telephone (315) 268-4208, titleix@clarkson.edu.

Information on the processing of grievances and charges relating to the above policies can be obtained from the Human Resources/Affirmative Action Office.

Clarkson University is making a special effort to identify for employment opportunities and participation in its educational programs a broad spectrum of candidates including women, minorities, and people with disabilities.
Business - School of Business - Subject: Accounting

AC 1 (2 - 4)
Course ID: 007962
2015-06-30

Accounting Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
Components: Independent Study
Attributes: Transfer Credit Only

AC 2 (2 - 4)
Course ID: 007963
2015-06-30

Accounting Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
Components: Independent Study
Attributes: Transfer Credit Only

AC 202 (3)
Course ID: 007317
2022-02-10

Financial Accounting
In this course students will gain the fundamental knowledge of analyzing, recording, classifying, and summarizing accounting information into financial statements. These financial statements are important both inside and outside of the reporting entity, as they aid business managers, creditors, and investors in making many types of business decisions. This course will allow students to become proficient in preparing financial statements in accordance with Generally Accepted Accounting Principles by developing their ability to identify and interpret financial transactions, classify and record business transactions in a financial accounting system, and complete the accounting cycle.
Components: Lecture
Attributes: Offered Fall and Spring

AC 203 (3)
Course ID: 012743
2022-02-10

Managerial Accounting
The purpose of this course is to provide future managers with an introduction to and an appreciation of the vast array of tools and techniques that comprise managerial accounting. Managerial accounting information is used widely in an organization, from pricing products to allocating company resources. This course develops your understanding of procedures, methods, and information gathering techniques that managers and other business professionals use to analyze financial data in order to make managerial decisions and budget/forecast results of operations.
Components: Lecture
Attributes: Offered Fall and Spring
Requirement Group: Prerequisite: AC202

AC 205 (3)
Course ID: 007318
2016-01-04

Introduction to Financial and Managerial Accounting
[Cross-listed with EM 205] An introductory survey of accounting information to guide and improve decision making. Many course topics involve cost planning and control techniques used to evaluate and improve the financial performance of organizations and/or products.
Components: Lecture
Course Equivalents: EM 205
Attributes: Offered Each Term

AC 305 (3)
Course ID: 007321
2016-11-04

Cost Accounting
Cost accounting information is used for both internal and external reporting purposes and plays a vital role within an organization as a basis for making sound business decisions. This course is an extension of Managerial Accounting with its primary objective to develop an in-depth understanding of cost accounting tools and techniques at an advanced cost accounting level. More specifically, students will learn fundamental cost analysis principles, generalizations and theories and gain in-depth factual knowledge of various product costing management systems (terminology, classifications, methods & trends), and learn various cost allocation methods. Overall, students are introduced to various methods to assist in decision-making, both operational and strategic within the organization developing their skills, competencies, and points of view needed by accounting professions.
Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: AC203 or EM205 or AC205
Business - School of Business - Subject: Accounting

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC 311(3)</td>
<td>Intermediate Financial Accounting I</td>
<td>First course in a two-course sequence in financial reporting at the professional level. Seeks to develop student's understanding of the environment in which financial reporting choices are made and how they impact financial statement information. The course integrates the perspectives of accounting, corporate finance, and economics to help understand how business transactions get reported and their decision implications. Examines the principles and practices of external financial reporting, with particular emphasis on balance sheet valuation and income determination. Reviews basic accounting concepts and the essentials of the accounting process. Covers the measurement and disclosure problems associated with such topics as cash, receivables, inventories, long-lived assets, and intangibles.</td>
</tr>
<tr>
<td>AC 312(3)</td>
<td>Intermediate Financial Accounting II</td>
<td>Continues the two-course sequence begun in AC 311 by exploring additional coverage of generally accepted accounting principles such as current liabilities, long-term debt, stockholders' equity, earnings per share, accounting for income taxes, accounting changes, and the Statement of Cash Flows. Pro forma 'as if' disclosures, earnings, and financial statements are introduced as well as present value techniques to accounting valuations.</td>
</tr>
<tr>
<td>AC 407(3)</td>
<td>Taxation of Business Entities</td>
<td>Emphasis is placed on federal income tax responsibilities of individual taxpayers and small businesses. Topics covered include tax planning, compliance, sales taxes, and payroll taxes.</td>
</tr>
<tr>
<td>AC 421(3)</td>
<td>Accounting Information Systems</td>
<td>The course covers the design and installation of accounting systems that provide relevant and reliable information. Special emphasis is given to potential risks of errors or irregularities and the need for systems control. Projects may include analysis, design and implementation of an accounting system.</td>
</tr>
<tr>
<td>AC 431(3)</td>
<td>Advanced Accounting: Investment and Ownership Interests</td>
<td>This course examines the theory and practice of accounting for business combinations, consolidated financial statements, partnerships, foreign currency transactions, and foreign inter-company investments. Additional topics may also be covered. Current issues in these areas will also be discussed.</td>
</tr>
<tr>
<td>AC 436(3)</td>
<td>Auditing</td>
<td>A study of the independent auditor's examination of his or her clients' recording of events, periodic adjustments and formal statements. Topics will include the auditor's opinion, sampling as used in auditing, auditing and the computer.</td>
</tr>
</tbody>
</table>
Business - School of Business - Subject: Accounting

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC 487(1 - 3)</td>
<td>007328</td>
<td>2017-01-13</td>
<td>Special Project in Accounting, an investigation of a problem or in-depth topic undertaken by the student under the guidance of a faculty member. Prerequisites: junior standing, grade of at least C in all Clarkson accounting courses, and consent of the instructor. Components: Research, Attributes: Given When Needed</td>
</tr>
<tr>
<td>AC 490(1 - 3)</td>
<td>007329</td>
<td>2016-04-04</td>
<td>Instructor Consent Required, Internship in Accounting, an unpaid internship that is related to the student’s professional goals. Components: Independent Study, Attributes: Given When Needed</td>
</tr>
<tr>
<td>AC 603(2)</td>
<td>007332</td>
<td>2015-06-30</td>
<td>Management Accounting, [Cross-listed with AC 604] The purpose of this module is to build on the students' knowledge of basic accounting concepts, to enhance their ability to properly evaluate and use accounting data for internal planning, control and decision making. Topics include financial statement analysis; management control; agency costs and organizational behavior; goals and strategies; information economics; responsibility center, profit center and investment center accounting; divisional control and transfer pricing; multinational corporations and foreign currency translation. Consideration is also given to usefulness of information contained in general purpose financial statements. Components: Discussion, Lecture, Course Equivalents: AC 604, AC 604, Attributes: Offered Fall Term, Requirement Group: Restriction: Admission to the MBA program required</td>
</tr>
<tr>
<td>Course ID</td>
<td>Course Title</td>
<td>Offered Term</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>AC 604(3)</td>
<td>Financial and Managerial Accounting for Decision Making</td>
<td>2018-11-29</td>
<td></td>
</tr>
<tr>
<td>AC 610(3)</td>
<td>Fraud and Forensic Accounting</td>
<td>2017-07-14</td>
<td></td>
</tr>
<tr>
<td>AC 613(3)</td>
<td>Advanced Auditing and Research</td>
<td>2016-07-25</td>
<td></td>
</tr>
</tbody>
</table>

Financial and Managerial Accounting for Decision Making
(Cross-listed with AC 603) This course covers Financial and Managerial Accounting concepts for MBA students. The financial accounting portion; covers the fundamentals of the accounting cycle and the evaluation of the major financial statements for external reporting purpose. Furthermore, develop the ability to analyze the financial statements. The managerial cost accounting portion will cover job costing, process costing, cost-volume-profit analysis, budgeting and pro-forma financial statement development, flexible budgets and standard costing systems, cost allocation and responsibility accounting, and tools for short-term business decisions. The overall objective of the course is to develop students’ ability to construct accounting reports, understand accounting reports and make decisions from such accounting information.

Components:
- Lecture

Same As Offering: AC 604

Course Equivalents: AC 603

Attributes: Offered Summer Term

Fraud and Forensic Accounting
(Formerly MBA 610) This MBA course is designed as a seminar. The primary goal of this course is to assist students in recognizing fraud, which will aid in the prevention and detection of fraud. This course will focus on the professional responsibility of accountants to act ethically. The course materials will discuss what a fraud is, how frauds can be committed, how frauds can be uncovered, and what accountants and business executives can do to prevent frauds from occurring in their organizations. We will use a variety of materials that were provided by the Association of Certified Fraud Examiners. In addition, students will analyze fraud case studies.

Components:
- Lecture

Attributes: Offered Spring Term

Advanced Auditing and Research
(Formerly MBA 613) This course is an advanced case and research-oriented study of topics in Auditing. Through a series of cases and related research, students will engage in the practice of auditing using real-world situations as the foundation for technical and theoretical discussions of issues facing the contemporary auditor. Cases will be chosen to reflect current and emerging topics in the practice of public accounting, financial auditing, fraud investigation, and forensic accounting. Auditing communications tools and software-based audit techniques will also be emphasized.

Components:
- Lecture

Attributes: Offered Fall Term
Accounting Analytics
Understanding how to use data to formulate and solve business problems provides an opportunity for the accounting professional to become a forward-thinking strategic partner in the organization. This course is designed to prepare students with the necessary tools and skills needed to perform data analytics successfully. Based on case studies, students are required to think through the steps needed to provide data-driven insights and recommendations. Labs provide multiple datasets and tutorials. Students will conduct data analysis using Excel and Access (including SQL). The course will develop a student's data analytics mindset (critical thinking skills), that is the development of students' ability to ask questions that can be answered using data.
Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: IA 530 or equivalent.

Financial Statement Analysis
This course helps students utilize the information contained in financial statements to make decisions. It specifically discusses (1) institutional forces underlying the provision of financial statement data, (2) properties of numbers derived from financial statements, (3) key aspects of decisions using financial statement information and the environment in which they are made, (4) design of information appropriate to these decisions. The objective is to allow the student to employ these factors to exploit fully the richness of the information contained in financial statements, while appreciating its limits.
Components: Lecture
Attributes: Given When Needed

Cost Management
A graduate level course covering basic concepts and techniques of cost management. Topics include basic cost management concepts, cost-volume-profit analysis, strategy and the master budget, the role of costs in pricing decisions, job and activity based costing (ABC) costing systems, relevant costs for decision making, operational and management control systems, target costing, value engineering, theory of constraints, the Balanced Scorecard, and the management and control of quality. Explores the analysis and presentation of information from a behavioral as well as a quantitative perspective. Introduces basic financial and sustainability concepts and reporting issues.
Components: Lecture

Auditing
An examination of auditing standards and procedures currently followed by independent public accountants. Ethics, audit evidence and reporting standards are also considered.
Components: Lecture
Same As Offering: AC 636
Attributes: Given When Needed
Requirement Group: Prerequisites: AC 603 and AC 623 or the equivalent of these courses.
Business - CRC Business - Subject: Accounting

<table>
<thead>
<tr>
<th>Course ID</th>
<th>007339</th>
<th>2017-03-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC 636(3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Auditing
An examination of auditing standards and procedures currently followed by independent public accountants. Ethics, audit evidence and reporting standards are also considered.

Components: Lecture

Same As Offering: AC 636

Attributes: Given When Needed
Business - School of Business - Subject: Accounting

AC 648(3) Course ID: 007341 2015-06-30
Seminar in Accounting Information Systems & Auditing
A graduate level introduction to accounting information systems. Coverage includes the basic systems methodology and terminology necessary to prepare students for any of the professional accounting examinations. Emphasis is on the design, internal control mechanisms, documentation and audit problems associated with specific accounting subsystems, i.e. payroll, general ledger, inventory-production or procurement-receivables. The course introduces students to three typical aspects of information technology (IT) systems and audits: audits of computerized information systems, the computer facility, and the process of developing and implementing accounting information systems. A major course segment involves a detailed study, including hands-on experience using commercial software of at least one specific subsystem.
Component: Seminar
Attributes: Offered Spring Term

AC 650(3) Course ID: 011322 2015-07-08
Accounting Research & Theory
Introduces graduate students to accounting research and theory. Focuses on how research can help address management, uniformity and disclosure issues that regularly arise in business. Investigates ethical perspectives and emerging issues. Evaluates policy formulation of accounting standards and their impact on financial reporting. Students research, analyze, develop and present proposed solutions to accounting and related business cases encountered in practice.
Component: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: AC404 or equivalent

AC 687(1 - 3) Course ID: 007342 2021-07-26 Instructor Consent Required
Special Projects in Accounting
An investigation of a problem undertaken by the student which is acceptable to and under the guidance of the faculty member and chairperson. The course provides an opportunity for the student to investigate and analyze a problem area of accounting in depth on an independent study basis.
Component: Independent Study
Same As Offering: AC 687
Attributes: Given When Needed
Special Projects in Accounting

An investigation of a problem undertaken by the student which is acceptable to and under the guidance of the faculty member and chairperson. The course provides an opportunity for the student to investigate and analyze a problem area of accounting in depth on an independent study basis.

Requirement: Instructor and Program Chair permission

Components: Independent Study

Same As Offering: AC 687

Attributes: Given When Needed
Engineering - Mechanical & Aerospace Eng - Subject: Aeronautical Engineering

AE 1(2 - 4) Course ID: 007964 2015-01-13
Mechanical and Aeronautical Engineering Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
Components: Independent Study
Attributes: Transfer Credit Only

AE 2(2 - 4) Course ID: 007965 2015-01-13
Mechanical and Aeronautical Engineering Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
This course may be used as a Professional Elective.
Components: Independent Study
Attributes: Transfer Credit Only

AE 201(1) Course ID: 010193 2022-03-18
Measurement & Instrumentation
[Cross-listed with ME 201] This course provides an introduction to measurement and instrumentation in mechanical and aerospace engineering. Fundamental components of mechanical measurement systems are studied through laboratory experiments. Tests include electromechanical instruments, circuits, actuators, controls, and data acquisition systems. First order uncertainty analysis is performed and empirical results are compared with engineering principles from material science, statics, strength of materials, rigid body dynamics and electrical science.
Components: Lecture
Course Equivalents: ME 201
Attributes: Two communication units, Offered Spring Term
Requirement Group: Corequisites: ES220, ES222, ES223

AE 212(3) Course ID: 007347 2021-11-04
Introduction to Engineering Design
This course lays the foundation for the design curriculum of the MAE Department. Students are introduced to how to solve complex, open-ended engineering problems. Core topics covered are: the design process; engineering ethics and professional responsibilities; design for safety; mathematical and computer modeling; and written, oral and graphical communication. These topics are presented within the framework of at least two open-ended design projects which students must propose and accomplish through the completion of the preliminary design phase including a design report and presentation slides for each project.
Components: Lecture
Course Equivalents: CE 212, ME 212
Attributes: Offered Fall Term
Requirement Group: Prerequisite: ES100. Co-Requisite: ES220.

AE 301(1) Course ID: 010195 2022-04-13
Experimental Methods
This is a hands-on experimental methods course with applications in aerospace engineering. Experiments involve flow visualization, airfoil wing pressure, air duct friction, aircraft structural stress and strain, lift and drag force, air velocity, wing vibration and wind tunnel testing. Course topics include workplace safety, test procedures, calibration, measurement uncertainty, error propagation, design of experiments, data acquisition, sampling, data analysis, and technical report writing.
Components: Lecture
Course Equivalents: ME 301
Attributes: Two communication units, Offered Fall Term
Requirement Group: Prerequisite: AE201 or ME201

AE 342(3) Course ID: 012886 2021-10-13
Introduction to Numerical Methods with Application
The goal of this course is to introduce the techniques needed for the numerical solution of ordinary and partial differential equations. These techniques will include the formulation of physical problems for numerical simulations, discretization and solution methods, and use of commercial software for solving engineering problems governed by differential equations. Specific topics covered are numerical differentiation, integration, interpolation, and associated errors, the solution of systems of non-linear algebraic equations, and the solution of initial and boundary value problems using finite difference and finite element methods.
Components: Laboratory, Lecture
Course Equivalents: ME 342
Attributes: Offered Fall and Spring
Requirement Group: Prerequisites: ES 100, or HP102 and HP103, or EM120 and EM121, or CS141, and MA 232 Corequisites: ES 220
AE 350 (3)
Course ID: 007348
2017-07-06
Aircraft Structural Analysis
(Cross-listed with ME 350) Properties of wing sections. Beam-column moments; torsion of thin-walled and skin-stringer multiple-cell sections; non-symmetrical bending of skin-stringer wing sections; flexural shear in open and closed thin-walled and skin-stringer sections; loads and stresses in rib system; cut-outs and shear lag; modified beam theory for wing design; deflection by energy method; fundamentals of static aeroelasticity.
Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: ES 222 and ES223

AE 365 (3)
Course ID: 007349
2017-02-24
Independent Projects I
(Cross-listed with ME 365) An opportunity for the student to become involved singly, or with a group, working on a special project under the guidance of a faculty member. Topics are often suggested by the faculty but suggestions from the students are encouraged. By permission of adviser only.
Components: Independent Study
Course Equivalents: ME 365
Attributes: Offered Each Term

AE 366 (3)
Course ID: 007350
2017-02-24
Independent Projects II
(Cross-listed with ME 366) Continuation of AE 365.
Components: Independent Study
Course Equivalents: ME 366
Attributes: Offered Each Term

AE 401 (1)
Course ID: 010197
2014-11-20
Advanced Experimental Methods in Mechanical and Aeronautical Engineering
(Cross-listed with ME 401) This course covers advanced experimental methods including Fourier analysis filtering, computer data acquisition. Experiments demonstrate principles of heat transfer, fluid mechanics, gas dynamics and aerodynamics. Experiments are documented using written memoranda and worksheets.
Components: Lecture
Course Equivalents: ME 401
Attributes: Offered Spring Term
Requirement Group: Prerequisites: AE/ME201 or AE/ME301 Corequisites: AE425 or AE455

AE 425 (3)
Course ID: 007353
2022-03-18
Aerodynamics
Topics covered include: Wing aerodynamics, thin airfoil theory, source panel methods, and supersonic and subsonic finite wing theories. Boundary layer theory and flow separation will also be discussed.
Components: Lecture
Course Equivalents: ME 326
Attributes: Offered Spring Term
Requirement Group: Prerequisites: ES330, ES340 and MA231

AE 427 (3)
Course ID: 007354
2016-09-13
Design of Propulsion Systems
(Cross-listed with ME 427) The course covers the preliminary design of various propulsion devices of historical and modern significance including propellers, ramjets, turbojets and its variations and rockets and its variations and supersonic nozzles. These systems will be designed in the context of aircraft, watercraft and land vehicle applications. Detailed design on components such as turbine blades, diffusers, compressor stages, combustors, fans and two-dimensional supersonic nozzle shapes will be addressed. Many lessons will include examination of actual component hardware. Instruction on design methodology is combined with fluid and thermodynamic analysis techniques to form computational schemes for testing design variations. Design decisions will be based on matching application performances, optimizing, meeting application constraints and iterative selection. A series of engineering homework assignments and design projects will be used to learn about each system. Most work will be individual with one or two projects requiring teamwork.
Components: Lecture
Attributes: Two communication units, Offered Spring Term
Requirement Group: Prerequisites: ME326 or ME431 or AE431, and ES340.
Aircraft Performance and Flight Mechanics

Components: Lecture
Attributes: Offered Spring Term

Stability and Control of Aerospace Vehicles

Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: AE455/ME455 or AE324/ME324, MA231, and MA232.

Gas Dynamics
The fundamental theories of modern compressible flow and their applications to aerodynamics are introduced. Topics include steady and unsteady supersonic flows, transonic flows, high-temperature gas dynamics, numerical methods and nozzle design.

Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: ES330, ES340 and MA 232 or equivalent.

Optimal Engineering
(Cross-listed with ME 443) An introduction to the optimal design of mechanical systems. This course involves the application of mathematical optimization techniques, including linear and nonlinear methods, to the design of devices and systems of interest to mechanical engineers. Emphasis is placed on the formulation of problems which can be solved by these techniques. Use is made of currently available optimal design computer programs.

Components: Lecture
Course Equivalents: ME 443
Attributes: Offered Fall Term
Requirement Group: Prerequisites: AE/ME350 or ME341.

Aircraft Design I
An introduction to basic methodology and decisions surrounding aircraft design leading to the conceptual and preliminary design of an aircraft. Topics include preliminary sizing, requirements and constraints, mission definition, layout, stability and performance estimation, structural issues, economics, trade studies, and ethical implications of the design and decision process.

Components: Research
Attributes: One communication unit, Offered Fall Term
Req. Designation: Technology

Aircraft Design II
Continuation of concepts introduced in Aircraft Design I on the basic methodology and decisions surrounding aircraft design with a focus on the specific design of an aircraft in the context of a company type of environment. The course is supplemented by lectures on various topics including conceptual design issues, detailed system considerations, trade studies, propulsion integration, structural issues, CFD methods, testing considerations, cost, and manufacturing.

Components: Laboratory, Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: AE450 Corequisites: AE427
Req. Designation: Technology
AE 455(3) Course ID:007363 2017-02-24
Mechanical Vibrations and Control
(Cross-listed with ME 455) Fundamentals, free vibration, harmonically excited vibration, transient vibration, multi-degree freedom systems, vibration measurements, introduction to control theory, linear feedback control, vibration control, adaptive and optimal control, numerical methods.
Components: Lecture
Course Equivalents: ME 455
Attributes: Offered Fall Term
Requirement Group: Prerequisites: ES223
Req. Designation: Technology

AE 457(3) Course ID:007364 2017-02-24
Composite Mechanics and Design
Components: Lecture
Course Equivalents: ME 457
Attributes: Offered Spring Term
Requirement Group: Prerequisites: ES222 and ES260
Req. Designation: Technology

AE 458(3) Course ID:007365 2017-07-06
Design of Aircraft Structures
Properties of fuselage sections; modified beam theory for fuselage design; linear elastic plate theory and analyses; linear elastic shell theory and analyses; numerical techniques for complex structures; failure modes of plates and shells; introduction to composite materials; design techniques for plates and shells
Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: AE350.
Req. Designation: Technology

AE 459(3) Course ID:013129 2021-10-11
Space Robotics
This course establishes principles underpinning space robotics with a thorough and modern approach; chapters build from general physical foundations through an extensive treatment of control systems, perception challenges, and conservation principles in dynamics. After introducing the principles and governing dynamic equations of space robotic systems, the latter part of the course focuses on real-life applications related to space systems including space mechanics and the dynamics of space vehicles. It introduces supervised and unsupervised machine learning (ML) algorithms including implementations of ML techniques for perception challenges that can be applied to a wide range of space vehicles and robotic systems. Applications of dynamics and control theory to real spacecraft systems are also covered. After completing this course, the students will be able to apply basic robotic and machine learning techniques in space robotic systems.
Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: AE350.
Req. Designation: Technology

AE 460(3) Course ID:012922 2019-01-14
Introduction to Spacecraft Engineering
One-semester elective course offered to Juniors and Seniors in the ME or AE programs. Introduces the major engineering subsystems and disciplines required to design and operate a space satellite e.g. configuration and structure, electrical power subsystem, attitude control subsystem etc. Also basic orbital mechanics, launch vehicles, space environment including ionizing radiation and Sun-Earth-spacecraft geometries, ground operations; overall mission and spacecraft system engineering.
Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: ME212 or AE212
Req. Designation: Technology
AE 465(3) - Advanced Independent Projects I

Course ID: 007366
Year: 2017-02-24
Instructor Consent Required

[Cross-listed with ME 465] An opportunity for the advanced student to undertake an independent investigation in a mechanical engineering field of his or her own choice. Assistance will be given only when the student requests it. The project may be a comprehensive literature investigation, involve laboratory experiments, or involve analytical work by permission of adviser only.

- **Components:** Independent Study
- **Course Equivalents:** ME 465
- **Attributes:** Offered Spring Term
- **Req. Designation:** Technology

AE 466(3) - Aircraft Accidents: Causes and Consequences

Course ID: 007367
Year: 2020-09-04

This course explores key accidents in aerospace history from technical, professional, and organizational perspectives. Students will complete hands-on analyses that apply content from the aeronautical engineering program. Topics include aviation regulations, professional ethics, human factors, and systems considerations.

- **Components:** Lecture
- **Attributes:** Offered Spring Term
- **Requirement Group:** Prerequisites: AE 458, AE 425, AE 429, AE 430, AE 450, AE 427
- **Req. Designation:** Technology

AE 470(3) - Orbital Mechanics

[Cross-Listed ME570] This course provides an overview of the fundamentals of orbital mechanics. Beginning from kinematics and rigid body dynamics, students are introduced to topics in orbital and attitude dynamics and control. In orbital dynamics and control, core topics covered include: the two-body problem, orbital motion, Kepler’s Laws, orbital elements, orbital perturbations, orbital maneuvers, interplanetary trajectories, and the restricted three-body problem. In attitude dynamics and control, core topics covered include: attitude stabilization, torques on a spacecraft, torque-free motion, spin and dual-spin stabilization, gravity-gradient stabilization, and active attitude control.

- **Components:** Lecture
- **Course Equivalents:** ME 570
- **Attributes:** Offered Spring Term
- **Requirement Group:** Prerequisites: ES223, AE/ME324, and MA330 or equivalents
- **Req. Designation:** Technology
AMST 1(2 - 4)

Course ID: 011750
2015-01-13

American Studies Elective

A college level course for which there is no comparable Clarkson course. Used for transfer credit only.

Components: Independent Study

Attributes: Transfer Credit Only

Req. Designation: Technology
ANTH 1 (2 - 4)
Anthropology Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

ANTH 2 (2 - 4)
Anthropology Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

ANTH 201 (3)
Introduction to Cultural Anthropology
Using case studies examining a number of different cultures, the course gives students the opportunity to explore the similarities and differences of cultures around the world by showing them the varieties of ways in which humans organize their lives and understand their worlds. The course also introduces students to the concepts and methods that anthropologists use to describe and understand those similarities and differences, providing them with the tools to better understand the complexity and the diversity of the human condition. The course gives students an introduction to the basic theoretical concepts and methods used in social analysis and it provides them the opportunity to see the use of those tools in a variety of specific, ethnographic cases drawn from a range of societies and cultures.
Components: Lecture
Attributes: Contemporary and Global Issues, Cultures and Societies, University Course, Given When Needed
Req. Designation: Technology
ANTH 220(3)
Course ID: 011410
2019-09-11
Understanding the Americas
When does America begin? With Columbus, with the arrival of the Mayflower, or with the arrival of hunters coming from Asia through the Bering Strait? The Americas are continents with a complex history before European arrival, and a complex history since then, in which commonalities and experiences between the peoples of the Americas are often overlooked. In contrast to the European Union, countries in the Americas are enforcing their borders to stem the huge population flows from desperate regions into more prosperous regions. In this course, we will be looking at the origins and experiences that tie the peoples of the Americas together as well as tear them apart. We will be reading an eclectic mix of fiction and nonfiction.

Components: Lecture
Attributes: One communication unit, Cultures and Societies, Science, Technology and Society, University Course
Req. Designation: Technology

ANTH 225(3)
Course ID: 011411
2015-03-03
Global Perspectives on Sexuality
Sexuality is often thought of one of the most private aspects of life. Yet, it is also the subject of politics, commerce, and public imagination at the state and global level. Exploring such topics as Human Trafficking, HIV/AIDS, Cybersex, and the emergence of new sexual identities, this course examines sexuality in a global context.

Components: Lecture
Attributes: Contemporary and Global Issues, Science, Technology and Society, University Course, Offered Even Springs
Req. Designation: Technology
Introduction to Race and Ethnicity

[Formerly LC315/Cross-Listed with SOC230] Variations in phenotype--skin color--have always existed, but has 'race'? What are the bases of racial identity in the contemporary United States? How have they changed? How are 'race' and 'ethnicity' related? In this course we will address broader questions about race by focusing on contemporary racial and ethnic divisions and by examining the history of these concepts in the Western Hemisphere.

Components: Lecture
Attributes: One communication unit, Contemporary and Global Issues, Individual and Group Behavior, University Course, Given When Needed
Req. Designation: Technology
Anthropology

Europe Through Film and Fiction

This introductory Anthropology course introduces students to the diversity of European cultures through film and fiction, and through various themes, including love across cultures, post Cold War transitions, the expansion of the European Union, the growing integration between European states, cultural conflicts, and the rise of anti-immigrant movements and politics in wide swaths of Europe.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>One communication unit, Cultures and Societies, Given When Needed</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>
ANTH 238(3) Course ID:010807 2018-09-17
Men and Masculinities
[Formerly LC393] Over the last few decades, manhood has come under attack. Instead of warrior heroes like John Wayne and James Bond, TV shows today feature a good number of losers like Homer Simpson and Fraizer and numerous men's movements have emerged centered on such issues as 'male bonding' and atonement. At the same time, other aspects of popular culture bombard us with an image of men as muscle-packed, mean, lean fighting machines and or exploitative pimps. While the average size of men's muscles seemed to have increased dramatically, what has happened to men's sense of self, how they see each other, and how they see women? Is this all the result of feminists attacking men as being domineering, oppressive chauvinists? Or is this a period of sorely needed male self-reflection? In this discussion-based course we take a critical look at the role of manhood in our society and elsewhere, by looking at how it is represented in popular culture, and lived in such institutions as sports, schools and college, military, prisons, marriage, politics or work, and
Components: Lecture
Attributes: Cultures and Societies, Given When Needed
Req. Designation: Technology

ANTH 240(3) Course ID:012844 2017-10-11
The Diversity of the U.S. in Ethnographic Perspective
The United States is often referred to as a 'melting pot' of cultures. This metaphor is said to represent the ways in which people of diverse racial and ethnic backgrounds make up the American nation. As components of diversity in the U.S., race and ethnicity are understood in varied ways. Racial and ethnic conflict, clashes, disparities, and inequalities sometimes manifest themselves across professions, housing, access to opportunities, and livelihoods in general. But a closer look can unveil the remarkably creative ways in which different groups of people establish meaningful connections to bridge differences, allowing productive syntheses to emerge in social, cultural, political, religious, and economic realms. This course offers a window into some of these clashes and collaborations through engaging readings and audiovisual materials putting U.S. diversity into context. Anthropologists and other social scientists usually call such a window an ethnographic one. In other words, the course will help you put diversity into perspective by bringing you
Components: Lecture
Attributes: Contemporary and Global Issues, Cultures and Societies, University Course, Given When Needed
Req. Designation: Technology

ANTH 255(3) Course ID:012887 2019-09-30
Culture and the Environment
[Cross-listed with ANTH555] As our world faces ever-more urgent challenges related to climate change and environmental instability, the very categories of "nature," "environment," and "climate" deserve critical and innovative thought. Central to this rethinking is a consideration of the cultural, political, and economic aspects of these terms, thereby creating space for careful critiques and alternative engagements. Anthropologists have long been active in examining cultural beliefs and practices related to environments. Today, these perspectives are changing to reflect a better understanding of human relationships with non-human actors and processes. This class provides an introduction to Environmental Anthropology, with particular attention to the power and politics of knowledge production about environments and climates. It begins with a historical look at the sub-discipline, followed by a discussion of more recent theoretical and methodological approaches to rethinking how we study and engage with the environment.
Components: Lecture
Course Equivalents: ANTH 555
Attributes: Contemporary and Global Issues, Cultures and Societies, University Course, Offered Fall and Spring
Req. Designation: Technology

ANTH 285(3) Course ID:010809 2019-09-11
Food and Society or What to Think About What You Eat
[Cross-listed with SOC 285] [Formerly LC 397, ANTH 385] Food is central to how we understand ourselves and our world. This class examines the cultural politics of food, exploring the social, political, and economic implications of global food production and consumption. We will examine the nature and history of contemporary food networks and the impacts of these patterns on our society, economy, health, and environment. In so doing, we will use food as a lens through which to understand larger relationships and processes, from social inequality to climate change.
Components: Lecture
Attributes: Contemporary and Global Issues, Science, Technology and Society, University Course, Offered Fall Term
Req. Designation: Technology
School of Arts and Sciences - Humanities & Social Sciences - Subject: Anthropology

ANTH 311(3)

Course ID: 012843
2020-01-15

Ethnography

(Cross-listed with ANTH511) Ethnographic methods, the key research methodology of cultural anthropologists, are now used in a wide variety of disciplines, such as education, to health, environment, business, to name just a few. An exploration of anthropological research and writing through the analytical and practical study of "fieldwork" and "ethnography", this course examines a variety of anthropological research methods and genres of representation, and teaches students how to conduct an ethnographic fieldwork project of their own. This course is in large part a workshop in which students will learn and mobilize various ethnographic methods and techniques, identify a research project and conduct ethnographic fieldwork. The culminating experience of the course is the writing of a 10-15 pages mini ethnography, based on the fieldnotes that students are writing.

Components: Lecture
Course Equivalents: ANTH 511
Attributes: One communication unit, Individual and Group Behavior, Given When Needed
Req. Designation: Technology

ANTH 320(3)

Course ID: 010455
2020-09-22

Racial Inequality in the United States

(Formerly LC356) What is the status of racial equality today, four decades after the civil rights struggle? Have we ceased to judge people 'by the color of their skin,' have we achieved a society where all members share 'equal opportunities' to succeed? Has the 'appreciation of cultural diversity' in America abolished notions of white superiority and practices of white privilege? Or have we returned, albeit in a more invisible form, to the hypocrisy of the 1896 Apartheid doctrine of 'separate but equal'? Or, is racism permanent and racial inequality a critical element in the fabric of American society? This course attempts to arrive at an understanding of how systems of racial inequality are maintained in a seemingly democratic system that allegedly upholds the civil rights of all its citizens. We will first assess the extent of racial inequality in the contemporary US and then review current theories that explain the persistence of inequality. Facing the paradox of explaining the social reality of race while asserting its biological

Components: Lecture
Attributes: One communication unit, Cultures and Societies, Individual and Group Behavior, University Course, Offered Spring Term
Req. Designation: Technology

ANTH 325(3)

Course ID: 011484
2022-02-11

Sex and Commerce

This course, designed for upper division students who have been taking courses on sexuality and/or gender, examines in depth the commercial aspects of sex. From looking at the concept of marriage as an economic transaction, to the ways in which sex is sold or is used as a vehicle to sell, this course provides an in depth discussion of the question of pornography, sex-trafficking, and prostitution. It raises fundamental questions about sexuality, love, and gender.

Components: Lecture
Attributes: One communication unit, Contemporary and Global Issues, Individual and Group Behavior, University Course, Given When Needed
Req. Designation: Technology

ANTH 332(3)

Course ID: 010202
2020-09-22

Cities and Social Justice

(Formerly LP310) Understanding Cities: New York, Los Angeles, Berlin. For many Americans, cities have become synonymous with violence, poverty and decay, homelessness and racial tension, as well as excessive consumerism. But they are also places of intense cultural activities. In any case, cities are where most jobs are concentrated and where most of us will eventually live. Understanding how cities work and the problems they face is therefore critical for all of us. Using a comparative and international perspective, this course explores such issues as cities' management of natural and vital resources (e.g. water or electricity), the built environment and its relationship to social identities and social engineering, global networks of cities in terms of labor markets, capital, and commodities, and their effects on urban lives, cities as sustainable environments, and last but not least, the cities as sites of social and racial in/justice. Students are to conduct team-based research projects that tackle real-life problems in one of the three cities or Potsdam

Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology
ANTH 360(3) Course ID:013123 2021-09-14
The Ethics of Eating
Walking through the grocery store, we're confronted by a range of ethical claims--from Fair Trade to Cage-Free, food companies ask us to demonstrate who we are and what we value. In this class, students learn about how eating is positioned as an (un)ethical act. Focusing on the methods and approaches of cultural anthropology, students explore food and eating in a variety of cultural contexts, with particular attention to the inequalities embedded in food systems. The course culminates with a research paper in which students themselves detail their own understanding of what it means to eat ethically.

Components: Lecture

Attributes: One communication unit, Contemporary and Global Issues, Cultures and Societies, Offered Even Springs

Req. Designation: Technology

ANTH 499(0) Course ID:010900 2010-06-03
Minor Portfolio
In this course, students complete their Liberal Arts Minor Portfolios under the direction of their minor advisor. The course is graded on a Pass-No Credit Basis.

Components: Independent Study

Req. Designation: Technology

ANTH 511(3) Course ID:013025 2020-01-15
Ethnography
[Cross-listed with ANTH311] This course will cover the same subject area and topics as ANTH311. Additional materials at the graduate level will be expected of those who register under this catalog number. (The attached syllabus includes the additional requirements for graduate students.)

Components: Lecture

Course Equivalents: ANTH 311

Attributes: Given When Needed

Req. Designation: Technology

ANTH 555(3) Course ID:012969 2019-09-30
Culture and the Environment
[Cross-listed with ANTH255] This course will cover the same subject area and topics as ANTH 255. Additional materials at the graduate level will be expected of those who register under this catalog number. (The attached syllabus includes the additional requirements for graduate students.)

Components: Lecture

Course Equivalents: ANTH 255

Attributes: Given When Needed

Req. Designation: Technology

ANTH 585(3) Course ID:011824 2019-11-06 Instructor Consent Required
Food and Society or What to Think About What You Eat
This course will cover the same subject area and topics as ANTH 285. Additional materials at the graduate level will be expected of those who register under this catalog number.

Components: Lecture

Attributes: Given When Needed

Req. Designation: Technology

ANTH 586(3) Course ID:011859 2015-03-05
Food and Society or What to Think About What You Eat
[Cross-listed with EV 586, SOC 586] Patterns of food production and consumption have dramatic impact on individuals, societies, and the environment. In this class we will examine aspects of food consumption and production in the United States. We will examine the nature and history of contemporary patterns of consumption and production and the impacts of these patterns and changes on our health and our environment. Topics to be discussed include the role of food in American society, the transformation of eating habits over the 20th century--including the rise of processed and fast food and also ethnic and organic food and vegetarian alternatives--the nature and impact of industrial agriculture and of genetically modified organisms, and the political economy of food. Graduate students will have additional course work.

Components: Lecture

Attributes: Offered Spring Term

Req. Designation: Technology
<table>
<thead>
<tr>
<th>ARTS 1</th>
<th>Course ID: 011787</th>
<th>2015-01-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art Elective</td>
<td>A college level course for which there is no comparable Clarkson course. Used for transfer credit only.</td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Transfer Credit Only</td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARTS 2</th>
<th>Course ID: 011565</th>
<th>2015-01-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art Elective</td>
<td>A college level course for which there is no comparable Clarkson course. Used for transfer credit only. This course may be used to satisfy a Knowledge Area requirement.</td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Transfer Credit Only</td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARTS 100(3)</th>
<th>Course ID: 011436</th>
<th>2015-01-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Art</td>
<td>Credit for this course is awarded only in the following cases: 1) receipt of a 4 or 5 on the AP Art History Exam, 2) receipt of a score of 5 through 7 on the International Baccalaureate Visual Arts Higher-Level Examination, or 3) satisfactory completion of a college-level introductory art appreciation or art history course.</td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Independent Study</td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Imaginative Arts, Transfer Credit Only</td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARTS 101(3)</th>
<th>Course ID: 011437</th>
<th>2015-01-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Music Theory</td>
<td>Credit for this course is awarded only in the following cases: 1) receipt of a 4 or 5 on the AP Music Theory Exam or 2) satisfactory completion of a college-level introductory music theory course.</td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Independent Study</td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Imaginative Arts, Transfer Credit Only</td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
</tr>
</tbody>
</table>
Air Force Heritage and Values I
This is a survey course focusing on the organizational structure and missions of Air Force organizations, military customs and courtesies, officership and core values, and an introduction to written and oral communication skills. AFROTC cadets must take AS 103 Leadership Laboratory in conjunction with this course.

Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology

Air Force Heritage and Values II
This is a continuation of the overview of the organizational structure and missions of Air Force organizations, military customs and courtesies, officership, and core values to include further emphasis on basic communications principles. AFROTC cadets must take AS 104 Leadership Laboratory in conjunction with this course.

Components: Lecture
Attributes: Offered Spring Term
Req. Designation: Technology

Leadership Laboratory
Leadership Laboratory is the application of personal leadership skills, demonstration of command, effective communication, individual leadership instruction, physical fitness training, and knowledge of US Air Force customs and courtesies.

Components: Laboratory
Attributes: Offered Fall Term
Req. Designation: Technology

Leadership Laboratory
Leadership Laboratory is the application of personal leadership skills, demonstration of command, effective communication, individual leadership instruction, physical fitness training, and knowledge of US Air Force customs and courtesies.

Components: Laboratory
Attributes: Offered Spring Term
Req. Designation: Technology

Team and Leadership Fundamentals I
Team and Leadership Fundamentals is a survey course designed to provide a fundamental understanding of both leadership and team building. Communication skills are emphasized throughout the course. AFROTC cadets must take AS 203 Leadership Laboratory in conjunction with this course.

Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology

Team and Leadership Fundamentals II
This is a continuation of the AS 201 survey course designed to provide a fundamental understanding of both leadership and team building. Communication skills are emphasized throughout the course. AFROTC cadets must take AS 204 Leadership Laboratory in conjunction with this course.

Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: AS201 or consent of the instructor.
Req. Designation: Technology

Leadership Laboratory
Leadership Laboratory is the application of personal leadership skills, demonstration of command, effective communication, individual leadership instruction, physical fitness training, and knowledge of US Air Force customs and courtesies.

Components: Laboratory
Attributes: Offered Fall Term
Req. Designation: Technology
AS 204(0)
Course ID: 008045
2015-01-20
Leadership Laboratory
Leadership Laboratory is the application of personal leadership skills, demonstration of command, effective communication, individual leadership instruction, physical fitness training, and knowledge of US Air Force customs and courtesies.
Components: Laboratory
Attributes: Offered Spring Term
Requirement Group: Corequisites: AS202.
Req. Designation: Technology

AS 301(3)
Course ID: 008046
2019-06-13
Leading People and Effective Communication I
This course is a study of leadership and quality management fundamentals, professional knowledge, leadership ethics, and communication skills required of an Air Force junior officer. Case studies are used to examine Air Force leadership and management situations as a means of demonstrating and exercising practical application of the concepts. AFROTC cadets must take AS 301 Leadership Laboratory in conjunction with this course.
Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: AS202 or consent of the instructor.
Req. Designation: Technology

AS 302(3)
Course ID: 008047
2019-06-13
Leading People and Effective Communication II
This is a continuation of the study of leadership and quality management fundamentals, professional knowledge, leadership ethics, and communication skills. AFROTC cadets must take AS 304 Leadership Laboratory in conjunction with this course.
Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: AS301 or consent of the instructor.
Req. Designation: Technology

AS 303(0)
Course ID: 008048
2015-02-12
Leadership Laboratory
Leadership Laboratory is the application of personal leadership skills, demonstration of command, effective communication, individual leadership instruction, physical fitness training, and knowledge of US Air Force customs and courtesies. This course provides advanced leadership experiences in officership activities, giving students the opportunity to apply leadership and management principles learned in AS 301.
Components: Laboratory
Attributes: Offered Fall Term
Requirement Group: Corequisites: AS301.
Req. Designation: Technology

AS 304(0)
Course ID: 008049
2015-01-20
Leadership Laboratory
Leadership Laboratory is the application of personal leadership skills, demonstration of command, effective communication, individual leadership instruction, physical fitness training, and knowledge of US Air Force customs and courtesies. This course provides advanced leadership experiences in officership activities, giving students the opportunity to apply leadership and management principles learned in AS 301 and AS 302.
Components: Laboratory
Attributes: Offered Spring Term
Requirement Group: Corequisites: AS302.
Req. Designation: Technology

AS 401(3)
Course ID: 008050
2019-06-13
National Security, Leadership Responsibilities, and Commissioning Preparation I
This course covers the Armed Forces as an integral element of contemporary society with specific emphasis on the military profession, civil-military interaction, and the formulation, organization, and implementation of US national security policy. In addition, students study leadership and management, ethical decision making, and communication skills. AFROTC cadets must take AS 403 Leadership Laboratory in conjunction with this course.
Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: AS302 or consent of the instructor.
Req. Designation: Technology
National Security, Leadership Responsibilities, and Commissioning Preparation II
This is a continuation of the study of the military profession, civil-military interaction, and US national security policy. Midway through the course, the focus shifts to orient junior officers toward their first duty assignment in the Air Force. AFROTC cadets must take AS 404 Leadership Laboratory in conjunction with this course.

Components: Lecture
Attributes: Offered Spring Term
Prerequisites: AS401 or consent of the instructor.
 Req. Designation: Technology

Leadership Laboratory
Leadership Laboratory is the application of personal leadership skills, demonstration of command, effective communication, individual leadership instruction, physical fitness training, and knowledge of US Air Force customs and courtesies. This course provides advanced leadership experiences in officership activities, giving students the opportunity to apply leadership and management principles learned throughout their AFROTC experience.

Components: Laboratory
Attributes: Offered Fall Term
Corequisites: AS401.
 Req. Designation: Technology

Leadership Laboratory
Leadership Laboratory is the application of personal leadership skills, demonstration of command, effective communication, individual leadership instruction, physical fitness training, and knowledge of US Air Force customs and courtesies. This course provides advanced leadership experiences in officership activities, giving students the opportunity to apply leadership and management principles learned throughout their AFROTC experience.

Components: Laboratory
Attributes: Offered Spring Term
Corequisites: AS402.
 Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Title</th>
<th>Designation</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEM 1OPS(2.5)</td>
<td>Inventory Management</td>
<td>Lecture</td>
<td>2016-01-02</td>
</tr>
<tr>
<td>BEM 10TH(2.5)</td>
<td>Contemporary International Politics</td>
<td>Lecture</td>
<td>2016-01-02</td>
</tr>
<tr>
<td>BEM 3OPS(2.5)</td>
<td>Operational Logistics Management</td>
<td>Lecture</td>
<td>2016-01-02</td>
</tr>
<tr>
<td>BEM 4ECO(2.5)</td>
<td>Derivatives</td>
<td>Lecture</td>
<td>2016-01-02</td>
</tr>
<tr>
<td>BEM 5MGT(2.5)</td>
<td>Management and Language</td>
<td>Lecture</td>
<td>2016-01-02</td>
</tr>
<tr>
<td>BEM 9FIN(2.5)</td>
<td>Equity Investments</td>
<td>Lecture</td>
<td>2016-01-02</td>
</tr>
<tr>
<td>BEM 10MGT(2.5)</td>
<td>Strategic Design Management</td>
<td>Lecture</td>
<td>2016-01-02</td>
</tr>
<tr>
<td>BEM 14STR(2.5)</td>
<td>Applied Sustainable Value Analysis in the Automobile Industry</td>
<td>Lecture</td>
<td>2016-01-02</td>
</tr>
<tr>
<td>BEM 18MGT(2.5)</td>
<td>Creating and Sustaining a Successful Enterprise</td>
<td>Lecture</td>
<td>2016-01-02</td>
</tr>
<tr>
<td>Course ID</td>
<td>Course Offered</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Components: Lecture</td>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components: Lecture</td>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components: Laboratory</td>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components: Lecture</td>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
School of Arts and Sciences - CRC Bioethics Program - Subject: Bioethics

BIE 400(3) Course ID:012903 2018-10-23

Responsible Conduct of Research
This course is designed to provide students with an introduction to the ethics of scientific research, including research involving human participants and animal subjects. The course will start with a discussion of responsible conduct of research (also known as research integrity and commonly referred to by the acronym RCR). As close to ninety percent of the work that research ethicists do focuses on the education, promotion and adjudication of RCR issues, these issues are applicable to all aspects of the research endeavor and all fields of scientific study. Understanding these issues and being able to apply the basic principles to critically analyze cases is thus an essential starting point for anyone interested in research and research ethics. The course will also delve briefly into some of the basic ethical, legal, and social issues surrounding research using animal subjects or human volunteers.

Components:
- Lecture

Attributes:
- Offered Spring Term

Req. Designation:
- Technology

BIE 410(3) Course ID:012949 2019-07-31 Instructor Consent Required

Biomedical Ethics
This online course covers seminal developments and areas of inquiry within biomedical ethics, starting with a look at the history of medicine and ethics followed by a tracing of the foundational arguments related to areas of inquiry central to biomedical ethics. This course will be taught simultaneously with the Master's level course of the same name (BIE 510: Biomedical Ethics), with undergraduate students receiving additional training in critical thinking and moral reasoning.

Requirement: Approval of Bioethics Department Chair or Instructor.

Components:
- Lecture

Attributes:
- Offered Fall Term

Req. Designation:
- Technology

BIE 500(3) Course ID:012162 2022-06-07

Proseminar in Health and Human Values
An intensive week long introduction to historical and current topics in bioethics, taught seminar style with a clinical visit to Icahn School of Medicine at Mount Sinai in New York City. This overview of bioethics involves special seminars, case discussions and ethics rounds. There will also be training in the computer skills (demonstrations, workshops) essential to mastering distance learning.

Components:
- Seminar

Attributes:
- Offered Summer Term

Req. Designation:
- Technology

BIE 510(3) Course ID:012163 2020-08-18

Biomedical Ethics
An advanced introduction to bioethics and clinical ethics focusing on such formalizations of medical morality as the Hippocratic Oath, the AMA codes, the Belmont Report and Beauchamp and Childress Principles, and the idea of casuistry. Major cases in bioethics will also be reviewed and the evolution of the core concepts and infrastructure of medical ethics and bioethics will be examined.

Components:
- Lecture

Same As Offering:
- BIE 510

Attributes:
- Offered Fall Term

Req. Designation:
- Technology

BIE 510(3) Course ID:012163 2020-08-18

Biomedical Ethics
An advanced introduction to bioethics and clinical ethics focusing on such formalizations of medical morality as the Hippocratic Oath, the AMA codes, the Belmont Report and Beauchamp and Childress Principles, and the idea of casuistry. Major cases in bioethics will also be reviewed and the evolution of the core concepts and infrastructure of medical ethics and bioethics will be examined.

Components:
- Lecture

Same As Offering:
- BIE 510

Attributes:
- Offered Fall Term

Req. Designation:
- Technology
Healthcare Policy

This course provides an understanding of the public policy-making process and the political and regulatory environment in which healthcare organizations function. It also provides an understanding of managerial processes, politics, and structure of the healthcare organizations where ethical policies and practices are implemented and carried out on an ongoing basis. Policies for consideration include resource allocation, end-of-life decision-making, accountability and performance measurement, and conflict of interest.

Components:	Lecture
Attributes:	Offered Winter Term
Req. Designation:	Technology

Public Health Ethics

In this course, students learn about ethics and public health and the ways in which these two fields interconnect. The course focuses on ethical theory and the discipline and history of public health, using case studies to illustrate the application of ethical theory to public health practice.

Components:	Lecture
Attributes:	Offered Winter Term
Req. Designation:	Technology

Bioethics and the Law

This course provides an introduction to the major legal issues and concepts arising in the field of bioethics. Emphasis will be placed on (1) mastery of key legal concepts and rules that pertain to bioethics (i.e., what the law is) and (2) demonstration of ability to critically analyze the law from a normative bioethical perspective (i.e., argue for what the law ought to be).

Components:	Lecture
Attributes:	Offered Spring Term
Req. Designation:	Technology

Neuroethics

The course will familiarize students with the most pertinent issues in Neuroethics, but will emphasize those issues which have some immediate application in clinical settings, such as criteria for brain death, the ethics of enhancement and justification of memory manipulation. The overall objective of the course is to demonstrate continuity between neuroethics and other areas of bioethics, and to identify the application of major ethical principles to this new branch of ethics.

Components:	Lecture
Attributes:	Offered Even Springs
Req. Designation:	Technology

Medicine and Social Justice

This course examines issues of social justice in medicine, beginning with a review of classical (Aristotle) and contemporary (Rawls) works on political philosophy, ethics and justice. Students will also read some of the theoretical work of authors who focus their attention on justice in medicine (including Daniels and Menzel). Building on these philosophic underpinnings, students will then explore the issues that lie at the heart of justice in medicine: the right to health and healthcare, aggregation and utility, personal responsibility, prioritarianism, and the allocation of medical resources.

Components:	Lecture
Attributes:	Offered Fall Term
Req. Designation:	Technology

Reproductive Ethics

The course examines the philosophical, ethical, and legal problems arising from assisted reproductive technologies. We begin with the notion of procreative liberty. Procreative liberty is conceived as the right to make one's own reproductive decisions, whether to have or to avoid having offspring. We will not be discussing the right to avoid reproduction by contraception or abortion, as these topics would require a longer course, or even a course of its own. Instead, this course focuses on the right to reproduce: its nature, scope, and limits.

Components:	Lecture
Attributes:	Offered Even Summers
Req. Designation:	Technology
School of Arts and Sciences - CRC Bioethics Program - Subject: Bioethics

BIE 555(3) Course ID:012174 2019-07-22
Research Ethics
This course is designed to teach students about the ethics of scientific research, particularly research involving human participants. Upon completion of the course, students should be able to: (a) discuss in depth the principles of bioethics and how these principles should be applied to the ethical design and conduct of research involving human participants or animal subjects; (b) identify, define, and analyze ethical issues in the context of novel and potentially problematic areas of scientific research; (c) identify, through case studies, ethical issues that arise in different contexts and begin to reason through an appropriate course of action. In addition, students will be taught basic practical skills in research, writing and reviewing articles, and providing training and education in bioethics.

Components: Lecture
Same As Offering: BIE 555
Attributes: Offered Fall Term
Req. Designation: Technology

BIE 555(3) Course ID:012174 2019-07-22
Research Ethics
This course is designed to teach students about the ethics of scientific research, particularly research involving human participants. Upon completion of the course, students should be able to: (a) discuss in depth the principles of bioethics and how these principles should be applied to the ethical design and conduct of research involving human participants or animal subjects; (b) identify, define, and analyze ethical issues in the context of novel and potentially problematic areas of scientific research; (c) identify, through case studies, ethical issues that arise in different contexts and begin to reason through an appropriate course of action. In addition, students will be taught basic practical skills in research, writing and reviewing articles, and providing training and education in bioethics.

Components: Lecture
Same As Offering: BIE 555
Attributes: Offered Fall Term
Req. Designation: Technology

BIE 563(1.5) Course ID:012175 2016-07-01
Pediatric Ethics
This course covers standards for surrogate decision making for children; ethical issues with respect to very premature neonates; withholding and withdrawing life sustaining care; genetic testing and screening; and adolescent confidentiality, truth-telling, and decision making. This course will include guest participation by members of the Icahn School of Medicine faculty, including experts in neonatology, adolescent health, genetics, and pediatric oncology.

Components: Lecture
Attributes: Offered Even Springs
Req. Designation: Technology

BIE 569(1.5) Course ID:012180 2022-06-07
Statistical Methods in Healthcare
The purpose of this course is to cover statistical topics applicable to healthcare settings, not typically covered in an introductory statistics course. These topics include a review of descriptive and inferential statistics, study designs commonly applied in healthcare, measures of disease frequency and health risk, and power analysis.

Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology

BIE 570(3) Course ID:012181 2022-06-07
Bioethics Policy: Foundations
This course will address prospective rules designed to govern populations, as opposed to the individual patient-provider encounter or ethics review of scientific research protocols. Often, bioethics policies have the force of law (e.g., statute, agency regulation, court precedent); at other times, they are voluntarily adopted by institutions or groups (e.g., hospitals, insurers, IRBs, research funders, the AMA). In this course, we will focus on the moral philosophical and behavioral foundations of contemporary bioethics policy, drawing on concepts from philosophy, economics, and psychology that are increasingly used in domestic and international policymaking.

Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Title</th>
<th>Components</th>
<th>Attributes</th>
<th>Req. Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>012182</td>
<td>Interpersonal Skills and Communication</td>
<td>Lecture</td>
<td>Offered Spring Term</td>
<td>Technology</td>
</tr>
<tr>
<td>012772</td>
<td>Contemporary Issues in Bioethics</td>
<td>Lecture</td>
<td>Offered Spring Term</td>
<td>Technology</td>
</tr>
<tr>
<td>012183</td>
<td>Bioethical Issues at the End of Life</td>
<td>Lecture</td>
<td>Offered Even Summers</td>
<td>Technology</td>
</tr>
<tr>
<td>012774</td>
<td>Independent Study in Bioethics</td>
<td>Independent Study</td>
<td>Given When Needed</td>
<td>Technology</td>
</tr>
<tr>
<td>012997</td>
<td>Managerial Epidemiology</td>
<td>Lecture, Course Equivalents: HC 680</td>
<td>Offered Spring Term</td>
<td>Technology</td>
</tr>
<tr>
<td>013035</td>
<td>Special Topics in Bioethics</td>
<td>Lecture</td>
<td>Given When Needed</td>
<td>Technology</td>
</tr>
</tbody>
</table>
School of Arts and Sciences - CRC Bioethics Program - Subject: Bioethics

BIE 580(3) Course ID:012184 2022-06-07
Research Ethics II
This course teaches students about the ethics and policies governing scientific research, particularly research involving human participants or animal subjects. This course builds upon the knowledge and themes introduced in BIE 555 (Research Ethics I). Research Ethics II covers these topics in greater depth and explores the key US and international laws and policies that regulate the design, conduct, and oversight of trials involving human participants or animal subjects. In addition, students examine in-depth specific areas or types of biomedical research that are potentially controversial or ethically problematic.
Components: Lecture
Attributes: Offered Winter Term
Requirement Group: Prerequisites: BIE555
Req. Designation: Technology

BIE 590(3) Course ID:012185 2022-06-07
Clinical Ethics
This course deals with the practical applications of clinical ethics, including clinical ethics consulting and its recording and documentation, the work of ethics committees and IRBs, and other practical aspects of clinical ethics.
Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology

BIE 610(3) Course ID:012187 2022-06-07
Online Practicum in Clinical Ethics
[Formerly BIE 610C] This course is designed to help students develop many of the competencies required to perform clinical ethics consultation (CEC) at a basic level. Upon completion of the course, students should be able to: (a) assess their own strengths and weaknesses with respect to CEC competencies; (b) apply a systematic method to analyze and document CEC cases; (c) practice techniques to help avoid common CEC quality gaps; and (d) recognize complex cases for which advanced-level CEC competencies are required. While the course emphasizes process skills for CEC, students will also gain experience that will augment their clinical ethics content knowledge, emotional intelligence, and critical thinking.
Components: Practicum
Requirement Group: Prerequisites: BIE590
Req. Designation: Technology

BIE 611(3) Course ID:012189 2022-06-07
Online Practicum in Research Ethics
[Formerly BIE 610R] A supervised practical experience in research ethics designed to teach specific skills. Exposes students to the process of ethical review of research involving human volunteers or animal subjects, and helps students develop some of the basic skills that a working research ethics professional needs. Through online discussion and participatory exercises, students gain a practical understanding of: (a) research ethics committee structure and function, (b) applicable state and federal regulations regarding the conduct of research involving human volunteers or animal subjects, and (c) relevant organizational and management skills needed to lead a research ethics committee. In addition, students learn practical skills in qualitative and quantitative research, report and grant writing, and bioethical training and education.
Components: Practicum
Attributes: Offered Spring Term
Requirement Group: Prerequisites: BIE580
Req. Designation: Technology

BIE 612(3) Course ID:012188 2022-06-07
Online Practicum in Policy
[Formerly BIE 610P] This course is designed as an opportunity for students to develop and refine the skills of policy analysis that they have learned in prior courses — in particular, in the prerequisites to this course — and to apply them to a range of current issues in bioethics policy. The course covers a broad range of policy issues in the biosciences, including both public and institutional bioethics policies.
Components: Practicum
Attributes: Offered Spring Term
Req. Designation: Technology

BIE 620(3) Course ID:012191 2016-07-25
On-Site Practicum in Clinical Ethics
[Formerly BIE 620C] A supervised practical experience in clinical ethics designed to teach skills in clinical ethics consultation.
Components: Practicum
Attributes: Offered Spring Term
Requirement Group: Prerequisites: BIE 590 Corequisites: BIE610
Req. Designation: Technology
BIE 621(3) On-Site Practicum in Research Ethics

Course ID: 012192
2016-07-25

A supervised practical experience. Helps students develop and refine the practical skills introduced in BIE 611 (Online Research Ethics Practicum) through hands-on experience. These skills include: teaching and education, review and oversight of institutional research projects involving human volunteers or animal subjects, and sound management of the research endeavor, including organizational management and policy analysis, arbitration, and mediation.

- **Components:** Practicum
- **Attributes:** Offered Spring Term
- **Requirement Group:** Prerequisites: BIE580 Corequisites: BIE611
- **Req. Designation:** Technology

BIE 630(3) Masters Project I

Course ID: 012194
2017-02-17

The Master's project in bioethics involves three terms of independent research (under the direction of a faculty supervisor) culminating in a written document that addresses some aspect of clinical ethics, research ethics, or bioethics policy.

- **Components:** Independent Study
- **Attributes:** Offered Fall Term
- **Req. Designation:** Technology

BIE 635(3) Master's Project II

Course ID: 012793
2017-02-17

The Master's project in bioethics involves three terms of independent research (under the direction of a faculty supervisor) culminating in a written document that addresses some aspect of clinical ethics, research ethics, or bioethics policy.

- **Components:** Independent Study
- **Attributes:** Offered Winter Term
- **Requirement Group:** BIE 635 Prerequisites: BIE630
- **Req. Designation:** Technology

BIE 640(3) Masters Project III

Course ID: 012195
2017-02-17

The Master's project in bioethics involves three terms of independent research (under the direction of a faculty supervisor) culminating in a written document that addresses some aspect of clinical ethics, research ethics, or bioethics policy.

- **Components:** Independent Study
- **Attributes:** Offered Spring Term
- **Requirement Group:** BIE 640 Prerequisites: BIE630 and BIE635
- **Req. Designation:** Technology

BIE 650(3) Capstone

Course ID: 012196
2016-07-25

Capstone practicum in which students demonstrate their mastery of clinical ethics, research ethics or bioethics policy. Each student presents their Masters Project.

- **Components:** Lecture
- **Attributes:** Offered Spring Term
- **Req. Designation:** Technology

BIE 670(3) Proseminar in Biomedical Ethics (Spanish)

Course ID: 012810
2017-03-26

Onsite introduction to biomedical ethics, methodology and history, as well as the responsible conduct of research. Designed to orient trainees, to serve as a springboard for the Caribbean Research Ethics Education Initiative, and to introduce trainees to the subsequent online courses and the faculty that teach them.

- **Components:** Lecture
- **Attributes:** Offered Summer Term
- **Req. Designation:** Technology

BIE 671(3) Responsible Conduct of Research (Spanish)

Course ID: 012802
2017-03-26

This online course provides trainees with an introduction to the ethics of scientific research, starting with a discussion of responsible conduct of research (commonly referred to by the acronym RCR).

- **Components:** Lecture
- **Attributes:** Offered Fall Term
- **Req. Designation:** Technology
School of Arts and Sciences - CRC Bioethics Program - Subject: Bioethics

BIE 672(3) Course ID:012803 2017-03-26
Human Subjects Research (Spanish)
This online course builds upon some of the themes that were first introduced in Responsible Conduct of Research and provides trainees with additional experience in the design, conduct and oversight of trials involving human participants.

Components: Lecture
Attributes: Offered Winter Term
Req. Designation: Technology

BIE 673(3) Course ID:012804 2017-06-23
Bioethics Policy and Pedagogy (Spanish)
The purpose of this online course is to provide students with basic skills in bioethics policy making and pedagogy. The first half of this course provides trainees with an understanding of the public policy making process and the political and regulatory environment in which researchers and research ethics committees function. The second half of the course is designed to give trainees practical experience in teaching bioethics and research ethics to adult learners, covering such topics as theories of active learning, knowledge taxonomies, course planning and development, assessment and grading, and observation and feedback.

Components: Lecture
Attributes: Offered Summer Term
Req. Designation: Technology

BIE 674(3) Course ID:012805 2017-03-27
Online Practicum and Project (Spanish)
During this online course, trainees will carry out individual projects in their home countries and institutions, building off the knowledge and skills learned in Bioethics Policy and Pedagogy.

Components: Lecture
Attributes: Offered Summer Term
Req. Designation: Technology

BIE 675(3) Course ID:012736 2017-03-26
Capstone (Spanish)
The purpose of this onsite course is to assess how well students have learned the knowledge and the practical skills necessary for functioning as policymakers and research ethics educators in their home countries, and in promoting institutional change.

Components: Lecture
Attributes: Offered Summer Term
Req. Designation: Technology

BIE 683(3) Course ID:012807 2017-04-17
Bioethics Policy and Pedagogy (English)
The purpose of this online course is to provide students with basic skills in bioethics policy making and pedagogy. The first half of this course provides trainees with an understanding of the public policy making process and the political and regulatory environment in which researchers and research ethics committees function. The second half of the course is designed to give trainees practical experience in teaching bioethics and research ethics to adult learners, covering such topics as theories of active learning, knowledge taxonomies, course planning and development, assessment and grading, and observation and feedback.

Components: Laboratory
Attributes: Offered Winter Term
Req. Designation: Technology

BIE 684(3) Course ID:012808 2017-03-27
Online Practicum and Project (English)
During this online course, trainees will carry out individual projects in their home countries and institutions, building off the knowledge and skills learned in Bioethics Policy and Pedagogy.

Components: Laboratory
Attributes: Offered Spring Term
Req. Designation: Technology

BIE 685(3) Course ID:012809 2017-03-27
Capstone (English)
The purpose of this onsite course is to assess how well students have learned the knowledge and the practical skills necessary for functioning as policymakers and research ethics educators in their home countries, and in promoting institutional change.

Components: Independent Study
Attributes: Offered Spring Term
Req. Designation: Technology
School of Arts and Sciences - CRC Bioethics Program - Subject: Bioethics

BIE 693(3)
Course ID: 012211
2016-12-30
International Research Ethics I
In this online course, fellows will be able to identify and explain the prominent ethical, social and legal issues in research ethics and apply ethical and professional principles to those issues.
Components: Lecture
Attributes: Offered Winter Term
Req. Designation: Technology

BIE 694(3)
Course ID: 012212
2017-03-01
International Research Ethics II
In this online course, a continuation of Research Ethics I, fellows will master the knowledge base that will allow them to function as ethicists on research ethics committees. They will understand the legal and ethical complexities of contemporary research issues occurring in their home countries and how the local prevailing approaches and standards compare and contrast to international ones.
Components: Lecture
Attributes: Offered Spring Term
Req. Designation: Technology
Institute for STEM Education - CRC Education Program - Subject: Educational Biology

<table>
<thead>
<tr>
<th>Course ID: 012225</th>
<th>2021-10-08</th>
</tr>
</thead>
</table>

MAT Project in Biology (Content Area)
The MAT Project is a one-term research project whose purpose is to allow students time and supervision to develop breadth and/or depth of knowledge to become a better teacher in their certification field. What the project will entail varies greatly from student to student. The course is intended to be custom-tailored to meet the specific needs of an individual intern. MAT projects are well-grounded in research and theory, but also include a strong and extensive applied aspect, directly addressing the question: What would this look like in the classroom?

Components: Seminar

Attributes: Offered Spring Term

Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program by instructor consent.

** Req. Designation:** Technology
Engineering - CRC Engineering Programs - Subject: Business of Energy

BOE 606(0) Course ID:013006 2020-01-02
MS-BOE Graduate Project - Studies
This non-credit Seminar project provides a capstone experience for Business of Energy MS students. The purpose is to further develop the student's communication, critical thinking, and interaction skills via a capstone experience on a Business of Energy topic that holds a special interest to the student. The candidate and faculty advisor agree on project scope and evaluation process. The candidate performs required analytical and/or experimental studies to complete a Graduate Project Paper and Presentation.

Components: Seminar
Attributes: Given When Needed
Req. Designation: Technology

BOE 610(3) Course ID:012232 2018-11-06
Fundamentals of the Business of Energy
An initial umbrella course designed to acquaint the student with the complexities of the present-day power system and how we arrived at this point. It will include a brief history of the industry evolution and will encompass various fuels, types of generation, regulatory authorities, power transmission, distribution, control & dispatch, planning, power markets and revenue flows.

Components: Lecture
Same As Offering: BOE 610
Req. Designation: Technology

BOE 611(3) Course ID:012233 2016-07-01
Planning and Operations of Power Systems
Operations and planning of power systems will introduce and discuss the decision process regarding generation types, fuels and transmission. Comparisons will be introduced establishing the difference between traditional vertically integrated utilities and unbundled resource suppliers. The principles of electric power systems will be studied along with the impact of deregulation.

Components: Lecture
Same As Offering: BOE 611
Req. Designation: Technology

BOE 612(3) Course ID:012234 2016-07-01
Power Markets
This course will deal with the intricacies of the workings of the power markets (including gas). It will introduce and discuss the evolution from regulated pricing to market pricing. It will introduce and discuss market-based products necessary for reliable operation; hedging principles; and out-of-market products necessary for a fair and reliable market.

Components: Lecture
Req. Designation: Technology
BoE 613(3) Course ID:012235 2020-09-23
Regulation & Restructuring
This course will explore the history of legislation, regulation and regulatory authorities in the development of the power industry and its impact on the economy and consumers. The evolution of the relationships between regulators and the regulated; the restructuring of the natural gas and electric industry over the last three decades; and the current regulatory status of both the infrastructure and power markets will also be studied.
Components: Lecture
Same As Offering: BOE 613
Req. Designation: Technology

BoE 614(3) Course ID:012236 2016-08-27
Electric Power Industry Economics and Finance
This course will evaluate the weaving thread of economics and finance as an integral part of operations and strategic planning in the complex energy industry. It will investigate supplier economics and finance under regulation and deregulation environments. It will evaluate market transactions, payment paths, settlements, capital requirements, financial instruments, and procedures that are identified with the industry. It will review economic issues confronting power transmission owners/providers under regulated models and merchant function models. The course will identify and encourage a knowledge-based review of new technologies and green energy as they relate to financial and economic decision making. Energy policies, metering technology, micro-grids, government influences, fuels and storage will all be explored as they relate to various present and future economic and financial models.
Components: Lecture
Same As Offering: BOE 614
Req. Designation: Technology
Business - CRC Engineering Programs - Subject: Business of Energy

BOE 614(3) Course ID:012236 2016-08-27

Electric Power Industry Economics and Finance
This course will evaluate the weaving thread of economics and finance as an integral part of operations and strategic planning in the complex energy industry. It will investigate supplier economics and finance under regulation and deregulation environments. It will evaluate market transactions, payment paths, settlements, capital requirements, financial instruments, and procedures that are identified with the industry. It will review economic issues confronting power transmission owners/providers under regulated models and merchant function models. The course will identify and encourage a knowledge-based review of new technologies and green energy as they relate to financial and economic decision making. Energy policies, metering technology, micro-grids, government influences, fuels and storage will all be explored as they relate to various present and future economic and financial models.

Components: Lecture
Same As Offering: BOE 614
Req. Designation: Technology
Engineering - CRC Engineering Programs - Subject: Business of Energy

BOE 615(3) Course ID:012237 2016-07-01

Challenges to Upgrading Aging Infrastructure

This course will examine and evaluate the changing energy horizon as the industry embraces expanding technology, renewable energy, smart grid technology, etc.; to be exercised upon an aging infrastructure. The student will see the critical need for system knowledge and planning to continue to meet the needs and reliability of a sophisticated complex industry struggling to meet the needs of its customers and economic growth.

- **Components:** Lecture
- **Req. Designation:** Technology

BOE 616(0) Course ID:012854 2020-01-02

MS-BOE Graduate Project - Defense

This non-credit Seminar project provides a capstone experience for Business of Energy MS students. The candidate will deliver and defend results from studies documented in a Graduate Project Paper and Presentation. The candidate receives a pass/fail grade which appears on the official transcript.

- **Components:** Independent Study
- **Attributes:** Given When Needed
- **Req. Designation:** Technology

BOE 623(3) Course ID:012973 2019-10-18

Statistical Methods for Reliability and Life Data Analysis

[Cross-listed with EE603 and ME578]

Reliability analysis is concerned with understanding the failure modes that affect an engineered product, estimating the expected life of the product under service conditions, and predicting the failure rate of the product as a function of time in service. The primary response variable in reliability analysis is time to failure, which may be measured in controlled laboratory experiments, or observed empirically from post-introduction studies of products "in the field". The analysis of data for which the primary variable of interest is time to failure requires specialized statistical concepts and tools; this course will cover some of the most useful approaches.

- **Components:** Lecture
- **Course Equivalents:** EE 603, EE 603, ME 578, ME 578
- **Attributes:** Offered Winter Term
- **Requirement Group:** Prerequisites: EE602, ME577, or CS506 or instructor consent.
- **Req. Designation:** Technology
Introduction to Biomedical & Rehabilitation Engineering, Science and Technology

Introductory course focused on biomedical and rehabilitation engineering, science and technology (BEST). With remarkable progress in medical technology for saving lives and improving quality of life, this course will focus on advances in biomedical engineering and its application to rehabilitation technology. Using ten most significant technological innovations, a quantitative focus will consider fundamental scientific bases and engineering concepts for devices and technologies as well as the societal context of which these innovations arose. We will explore various factors that impact the technological solution including culture, medical ethics, regulatory issues, economics and marketing. Students will focus on one specific problem, apply design principles and develop a solution while considering the factors which impact the design.

Components:
Lecture

Attributes:
Two communication units, Science, Technology and Society, Offered Each Term

Req. Designation: Technology

Biomedical Engineering Fundamentals

(Cross-listed with BY 440, ES 402, EE400) This interdisciplinary course will introduce students to basic principles of biomedical rehabilitation engineering. The course will present principles of disability and the diverse roles of engineering in medicine and rehabilitation. Students will use engineering methods to study anatomical and physiological systems including applications in rehabilitation engineering, bioinstrumentation, biosignal and image processing, biomechanics, and biomaterials.

Components:
Lecture

Course Equivalents: BY 440, BR 500, BY 540, ES 402

Attributes:
Offered Spring Term

Requirement Group: Prerequisites: MA131/132, PH131/132, junior or senior standing.

Req. Designation: Technology

BEST Capstone Design I

Biomedical Engineering, Science, and Technology (BEST) senior capstone design course. Students will be divided into multi-disciplinary teams charged with investigating a BEST-related open ended project. Students focus on one aspect of design/production/marketing appropriate for their background and be conversant on other area of the project, including design, human interface, regulatory, ethics, marketing and economics. Includes written reports and oral presentations

Components:
Project Team

Attributes:
Offered Fall Term

Req. Designation: Technology

Biomedical Engineering Fundamentals

(Cross-listed with BY 540) This interdisciplinary course will introduce students to the fundamental and quantitative basics of biomedical rehabilitation engineering. The course will present principles of disability and the diverse roles of engineering in medical and rehabilitation. Students will use engineering methods to study anatomical and physiological systems including applications in rehabilitation engineering, bioinstrumentation, biosignal, and image processing, biomechanics and biomaterials. Graduate students will be required to additionally write a comprehensive paper and present that paper in a short talk to the class.

Prerequisites: MA131/132, PH131/132, junior or senior standing.

Components:
Lecture

Course Equivalents: BY 440, BR 400, BY 540, ES 402

Req. Designation: Technology
Institute for STEM Education – CRC Education Program – Subject: Business & Marketing Education

BUS 527(3) Course ID: 013004 2022-04-08
Current Topics in Business and Marketing I
Students will investigate topics central to accounting, finance, and financial literacy for the PreK-12 learner. Accounting and finance principles will be aligned to industry standards and New York state teaching and learning standards. The course is designed for MAT, Business and Marketing students.
Components: Seminar
Attributes: Given When Needed
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program.
Req. Designation: Technology

BUS 562(3) Course ID: 013005 2021-10-08
Current Topics in Business and Marketing II
Current topics in the fields of business and marketing will be explored with attention paid to fundamental concepts as well as future trends. This course is designed for MAT, Business and Marketing students.
Components: Seminar
Attributes: Given When Needed
Req. Designation: Technology

BUS 574(3) Course ID: 013070 2020-11-03
Work Based Learning – Program Organization
This is the first of two courses that, when successfully completed, enable you to apply for an extension to your New York State Teacher Certification and allow you to place students in a variety of work based learning experiences including, internships, community based work experiences and cooperative work experiences.
Components: Field Studies
Attributes: Given When Needed
Req. Designation: Technology

BUS 575(3) Course ID: 013071 2020-11-03
Work Based Learning – Program Operation
This is the second of two courses that, when successfully completed, enable you to apply for an extension to your New York State Teacher Certification and allow you to place students in a variety of work based learning experiences including, internships, community based work experiences and cooperative work experiences.
Components: Field Studies
Attributes: Given When Needed
Req. Designation: Technology

BUS 580(3) Course ID: 013069 2021-10-08
MAT Project in Business and Marketing
The MAT project is a one term research project whose purpose is to allow students time and supervision to develop breadth and/or depth of knowledge to become a better teacher in their certification area. The course is intended to be custom-tailored to meet the specific needs of each individual intern. MAT projects are well grounded in research and theory, and include a strong and intensive applied aspect directly addressing the question: "What would this look like in the classroom?"
Components: Seminar
Requirement Group: Must be enrolled in the MAT program
Req. Designation: Technology
School of Arts and Sciences - Biology - Subject: Biology

BY 1 (1 - 6) Course ID: 008054 2022-06-07

Biology Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
Component(s): Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

BY 2 (1 - 6) Course ID: 008055 2022-06-07

Biology Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
This course may be used to satisfy a Science Foundation Curriculum Requirement.
Component(s): Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

BY 100 (4) Course ID: 007379 2015-01-19

Biology Elective with Laboratory Experience
Credit for this course is awarded only on the basis of an incoming student's performance on the Biology Advanced Placement (AP) exam or in the International Baccalaureate (IB) Biology course. See the AP/IB policy for specifics. Biology, Biomolecular Science, and Environmental Science (EHS and ES&P) majors may not use credit for BY100 as one of their required Biology Electives.
Component(s): Lecture
Attributes: Transfer Credit Only
Req. Designation: Technology

BY 110 (3) Course ID: 009554 2019-04-19

Biology and Society
Definition of science, the scientific method, overview and scope of modern biology, introduction to biomolecules and cell structure, Mendelian inheritance and genetics, human physiology, evolution, and ecology. Course topics are presented from the perspective of current issues in biotechnology, medicine, and human impact on the biosphere. This course is intended for students who are not majoring in the biological sciences and may not be taken by students with credit for BY100 or BY140.
Component(s): Lecture
Attributes: Transfer Credit Only
Requirement Group: Restriction: Students may not enroll in this course if they have credit for BY140 or BY160.
Req. Designation: Technology

BY 112 (1) Course ID: 007383 2015-02-03

Laboratory for Biology and Society
Companion laboratory course to BY110 introducing students to the scientific method of laboratory and field experimentation used by contemporary biologists.
Component(s): Laboratory
Attributes: Offered Each Term
Requirement Group: Corequisite: BY110.
Req. Designation: Technology

BY 115 (3) Course ID: 012764 2019-04-19

Introduction to Environmental Sustainability
This course will provide students with a basic understanding of environmental science and sustainability concepts. Students will gain an understanding of the impacts that humans have on atmosphere, lithosphere, and hydrosphere. The course will also focus on sustainability concepts that are particularly relevant to business practices and engineering. Specific case studies will also be used to increase understanding of how businesses are tailoring their practices to meet sustainability goals. The course will be lecture based, and active learning exercises will be implemented to enhance understanding of sustainability concepts. Students will be evaluated through homeworks, examinations, and a group project.
Component(s): Lecture
Attributes: Offered Spring Term
Requirement Group: Restriction: Students may not enroll in this course if they have credit for BY140 or BY160.
Req. Designation: Technology
Introduction to Biotechnology Sciences and their Applications

Students in today’s competitive market often need to possess multifaceted knowledge and skills. The interdisciplinary structure of BY120 encourages collaborations across schools and fields. The syllabus is designed to meet the needs and spark the interest of non-biology majors in biotechnology. By creating a stimulating, lecture-based, solid foundation in basic molecular biology and providing insight into the innovative discipline of biotechnology, students will be inspired and encouraged to apply their own academic backgrounds in a creative manner to drive innovations and applications in this field forward and to investigate possible employment niches for themselves. Aside from covering the fundamentals, the lectures will venture into bioinformatics, DNA amplification and sequencing technologies, genetic engineering and gene expression systems, large scale production, molecular diagnostics, personalized medicine, commercial products, gene therapy, stem cells, transgenic animals and plants, synthetic biology, patenting, as well as...
BY 214(3)
Course ID: 007391
2016-01-19

Genetics
The overall goal of this course is to provide a comprehensive introduction to the science of genetics. Classical principles of Mendelian genetics will be covered, however, the emphasis will be placed on fundamentals of molecular genetics and recent advances. Major topics include gene structure and function, genetic recombination, genetic engineering, genomics, gene and chromosome mutations, regulation of gene transcription, cell cycle and cancer genetics, developmental genetics, and an introduction to population genetics.

Components: Lecture
Attributes: Science, Technology and Society, Offered Each Term
Requirement Group: Prerequisites: BY160 or consent of the instructor
Req. Designation: Technology

BY 218(3)
Course ID: 013089
2021-02-22

Cell Biology
This course examines the fundamental principles of eukaryotic cell biology at the molecular level, with an emphasis on roles in human homeostasis and disease. Topics will include: structure and function of the plasma membrane, transmembrane transport, protein trafficking, the cytoskeleton, signal transduction pathways, cellular energetics, and the control of cell division and cellular proliferation. Students will be introduced to the process of experimental cell biology, methods, and data analysis in relation to societal issues.

Components: Lecture
Attributes: Offered Fall Term
Requirement Group: BY160 or Instructor Consent
Req. Designation: Technology

BY 220(3)
Course ID: 013091
2021-02-22

Intro to Evolution
An introduction to evolutionary biology, in particular how scientists observe evolution, what drives it, and what we can learn from it. We will begin with a brief evolutionary history of life on earth - from the first microbes, to multicellular life, to the transition from water to land, dinosaurs, and the emergence of humans - exploring and interpreting the various types of evidence that support this history. We will focus on the basic processes that drive evolutionary change - mutation, natural selection, and genetic drift, as well as some additional complexities such as the evolutionary consequences of sex and ecological interactions, highlighting interesting and unique examples of biodiversity from across the tree of life, as well as applied examples from healthcare and environmental science. Note that BY 214 is not a prerequisite for this course.

Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisite: BY140
Req. Designation: Technology

BY 222(3)
Course ID: 007393
2015-02-12

Ecology
Ecology is the study of factors that control the distribution and abundance of species in nature. Ecological interactions will be explored at the individual through ecosystem level in terrestrial, freshwater, and marine habitats. Emphasis will be on fundamental ecology, but applications to human-related problems will be explored.

Components: Lecture
Attributes: One communication unit, Offered Fall Term
Requirement Group: Prerequisite: BY140 or Corequisite: BY140
Req. Designation: Technology

BY 224(2)
Course ID: 007394
2015-02-12

Ecology Laboratory
Field and laboratory exploration of physical, chemical, and biological factors influencing animal and plant species, populations, and communities in upstate New York. Students will learn field and laboratory techniques in ecology and general identification of some organismal groups. Course will include required field trips to surrounding habitats and laboratory experiments.

Components: Laboratory
Attributes: One communication unit, Offered Fall Term
Requirement Group: Corequisites: BY222
Req. Designation: Technology
BY 226(3) Course ID: 013082 2021-09-06
Plant Biotechnology
This course will provide knowledge and understanding of molecular biology in plants, focusing on biotechnological tools for crop improvement. Despite wide application of "omics" tools in applied plant research, a one-gene-at-a-time approach is still required for understanding the mechanisms of how gene expression is regulated and how gene products function. This course covers the basic principles and application of gene expression measurements, mechanisms of regulating gene expression, recombinant DNA technology and genetic transformation and their application to crop improvement, and genome editing with RNAi and CRISPR. This course will provide an opportunity for students to develop critical thinking on biotechnological tools for plant improvement by understanding experimental techniques and how they can be applied to revealing mechanisms that regulate gene expression.

Components:
- Lecture

Requirement Group:
- Prerequisite: BY 220

Req. Designation:
- Technology

BY 280(3) Course ID: 010176 2016-04-19
Environmental Science
This course will investigate the key concepts and principles of environmental science, emphasizing human impacts to the earth. The themes will include, energy flows through nature, and biogeochemical systems and how they have been perturbed by human activities. Technology and population growth have enabled humans to increase both the rate and scale of their impact on the environment. Quantitative analysis or air, soil, and water quality on local, regional, and global scales will be a significant component of the course. Emerging principles in environment science, including sustainability, industrial ecology, risk assessment, and the precautionary principle will be introduced. The course will prepare students to qualitatively and quantitatively analyze fluid and contaminant flow in varied biological and geologic systems.

Components:
- Lecture

Course Equivalents:
- EV 280

Attributes:
- Offered Fall Term

Requirement Group:
- Prerequisites: sophomore standing, CM131/CM132 or CM103/CM104, or consent of the instructor.

Req. Designation:
- Technology

BY 300(1) Course ID: 007396 2015-02-03
Recent Advances in Biological Research
The objective of this course is to present recent advances in biological and biomolecular research, and to describe opportunities for graduate study and undergraduate summer research. Students will receive one credit for attending biology seminars (6 per semester), reading a journal article prior to each presentation, writing short review of each seminar, and participating in discussions. This course can be taken for credit more than once.

Components:
- Lecture

Attributes:
- One communication unit, Offered Each Term

Requirement Group:
- Prerequisites: BY140 and BY160

Req. Designation:
- Technology

BY 302(3) Course ID: 007398 2015-01-23
Plant Science of Northern New York
Upon completion of the course, the student will be aware of the classification of plants, recognize and appreciate the life cycles of the main plant phyla, plant physiology, plant metabolism, understand the relationships among plant tissue and organ structures and function, and the plant community structure along environmental gradients in a temperate zone such as the region in northern New York.

Components:
- Lecture

Requirement Group:
- Prerequisites: BY 140 and BY 142

Req. Designation:
- Technology
Introductory Zoology

In this course, we will conduct a diversity survey of animal life with emphasis on invertebrates. Course content will primarily consist of comparing the major animal phyla emphasizing integration of form, function, ecology, and phylogeny.

Components: Lecture
Attributes: Offered Spring When Needed
Requirement Group: Prerequisites: BY140/142 and BY160/162, or consent of the instructor
Req. Designation: Technology
Biochemistry for Health Sciences

This course provides the fundamental knowledge that is essential to the study of biochemistry at advanced levels. This course integrates biochemistry with physiology and cell biology and is aimed specifically at introductory health science students. It provides a general introduction to the biochemical basis of various cellular functions and their relevance to disease. Topics covered include structure, function and chemistry of biomolecules, energy metabolism, molecular genetics, the biochemistry of cancer, and recent biotechnology. The course is intended for health science students who have no previous background in sciences. It assumes no prior knowledge and covers some chemistry and molecular biology basics.

Components: Lecture
Course Equivalents: CM 305
Attributes: Offered Spring Term
Req. Designation: Technology
Inst for a Sustainable Environ - Biology - Subject: Biology

BY 309(3) Course ID: 007880 2019-09-26
Introduction to Environmental and Occupational Health
(Cross-listed with EHS309) Study of the recognition, evaluation and control of chemical, biological, radiological, physical and ergonomic hazards found in the work environment and surrounding community. Key aspects of the course will include hazard assessment, basic anatomy and physiology associated with routes of entry and toxicology of hazardous agents, environmental, health and safety regulations, exposure monitoring instrumentation, and effective controls to minimize the risk of illness or injury.
Components: Lecture
Course Equivalents: EHS 309
Attributes: Offered Spring Term
Requirement Group: Prerequisites: CM132 or CM104/106
Req. Designation: Technology

BY 312(3) Course ID: 011816 2022-03-23 Instructor Consent Required
Adirondack Ecology and Environmental Science
(Cross-listed with EV 312) This course introduces ecological and environmental science concepts relevant for understanding the structure and function of terrestrial, aquatic, and human systems in the Adirondack Park. Students will learn to identify important plant and animal species representative of the Adirondack Mountains, and learn major features of ecological systems in the Park. The course will also provide the students an assessment of human impacts on the ecology of the Adirondack Park.
Enrollment is limited to those students participating in the Adirondack Semester Program.
Components: Lecture
Course Equivalents: EV 312
Attributes: Given When Needed
Req. Designation: Technology
School of Arts and Sciences - Biology - Subject: Biology

BY 313(3) Course ID:011376 2015-03-05
Biogeochemical Earth Systems Science
[Cross-listed with CE 313, EV 313] This course will investigate the key concepts and principles of environmental science emphasizing the earth's biogeochemical cycles and how they have been perturbed by human activities. Quantitative analysis or air, soil and water quality on local, regional and global scales will be a significant component of the course. Emerging principles in environmental science, including sustainability, industrial ecology, risk assessment and the precautionary principle will be introduced. In addition to the quantitative aspects, the course will consider the historical, social, and political contexts in which the practice of environmental science takes place.

Components: Lecture
Course Equivalents: EV 313, CE 313
Attributes: Offered Spring Term
Requirement Group: Prerequisites: CM132 (or CM104), or consent of the instructor
Req. Designation: Technology

BY 314(4) Course ID:007401 2014-11-19
Bioinformatics
[Cross-listed with CM 314] This course and companion lab provides students with an introduction to the theory and methods of DNA and protein sequence analysis. Students receive experience retrieving information from sequence and genome databases. Methods of sequence alignments include dynamic programming and statistical methods of molecular evolutionary change are outlined. Emphasis is also placed on calculating the statistical significance of results. Protein structural alignments and displays, and structural prediction are covered. Gene prediction algorithms, methods of phylogenetic analysis and database similarity searching are explained. The course introduces students to the analysis of genomes for protein families and domains and to the analysis of gene expression patterns.

Components: Laboratory, Lecture
Requirement Group: Prerequisites: BY160 and BY214.
Req. Designation: Technology

BY 319(1) Course ID:011492 2014-11-19
Current Readings in Animal Behavior
[Cross-listed with PY 319] The field of animal behavior is a rapidly advancing one, especially at the interface of neurobiology and cognition, and the interface of cognition and functional analysis of behavior (behavioral ecology and sociobiology). This one credit hour course is designed as a 'journal club' with a focus on the latest developments in theory and empirical research on animal behavior. The course is intended for any student who has a sincere interest in integrative animal behavior.

Components: Lecture
Course Equivalents: PY 319
Requirement Group: Prerequisites: BY222 or PY151
Req. Designation: Technology

BY 320(3) Course ID:007404 2015-01-20
Microbiology
This course will provide a fundamental introduction to the study of microbial life forms. The diverse biology of these organisms will be reviewed and application to human health and society, the natural environment, and biotechnology will be emphasized. Upon completion of the course, students will be capable of assessing microbial growth and metabolism and understand its applications in natural and engineered environments.

Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: BY160, BY214 and CM132 or CM104 or consent of the instructor.
Req. Designation: Technology

BY 322(2) Course ID:007405 2015-01-20
Microbiology Laboratory
Laboratory exercises will stress the classical techniques for handling bacteria and demonstrate concepts presented in the lecture series: both clinical and environmental aspects of applied microbiology will be explored. Upon completion of the course, students will be capable of safely manipulating microbes in a laboratory setting, as well as become competent in techniques used to observe and culture microbes.

Components: Laboratory
Attributes: Two communication units, Offered Spring Term
Requirement Group: Prerequisites: BY162, CM132 or CM104 or consent of the instructor.
Req. Designation: Technology
Parasitology

The natural history, ecology and molecular biology of parasites are explored with an emphasis on life cycles, host/parasite interactions and evolution of parasitism. Basic principles of epidemiology, transmission, diagnosis, treatment and prevention are examined in parasites of medical, veterinary, and economic importance. Lectures will be supplemented by demonstrations of fixed materials and by exercises in identification and diagnoses.

Components: Lecture
Attributes: Offered Even Falls
Requirement Group: Prerequisite: BY 140 and BY 160
Req. Designation: Technology

Conservation Biology

BY 328 provides an overview of the core theory of conservation biology, and how conservation biology is applied for environmental conservation and management. Major topics of this course will include conservation prioritization, the problems of small population size on the long-term persistence of a species, conservation genetics, habitat fragmentation and nature reserve design, invasive species, consequences of extinctions on an ecosystem processes and community structure, and the possible effects on biodiversity of global climate change. A course emphasis will be on the challenge of translating the core lessons of conservation biology to effective policy and environmental management.

Prerequisites: BY222 or consent of the instructor.
Components: Lecture
Attributes: Science, Technology and Society, Offered Even Springs
Requirement Group: Prerequisites: BY222 or consent of instructor.
Req. Designation: Technology

Great Lakes Water Protection

(Cross-listed with EV 330) The Laurentian Great Lakes contain 20% of the world's surface fresh water and serve both water supply and waste disposal services for over 30 million residents in the United States and Canada. Technological advances have controlled the outflow of the Great Lakes at the St. Lawrence River and this has brought with it social benefits and environmental costs. The United States and Canada share the management of this resource and have shared notable success controlling environmental consequences of development yet are faced with emerging issues. The LGL/SLR system will be examined from a multidisciplinary, multinational perspective to illustrate that a shared resource can be maintained. Students will be able to understand the forces (geomorphic, biological, chemical, social, economic, and political) that have shaped and impacted a globally significant resource.

Components: Lecture
Course Equivalents: EV 330
Attributes: One communication unit, Contemporary and Global Issues, Science, Technology and Society, University Course, Offered Spring Term
Requirement Group: Prerequisite: At least Sophomore standing.
Req. Designation: Technology

Behavioral Ecology and Sociobiology

(Cross-listed with PY 340) This course is concerned with the adaptive functions of animal behavior, emphasizing ecological and evolutionary perspectives. Topics covered include foraging behavior, sexual selection, social systems, parental care, and cooperation and conflict. One major focus will be on evaluating the arguments of proponents and critics of sociobiology on whether the field is useful at explaining human behavior.

Components: Lecture
Course Equivalents: PY 340
Attributes: Individual and Group Behavior, Offered Odd Springs
Requirement Group: Prerequisites: BY140 or PY151 or consent of instructor.
Req. Designation: Technology

The Human Genome

This course explores our current understanding of genomics as applied to the human genome. We will begin with an introduction to genome structure and function, and then apply that knowledge to understanding patterns of human history and evolutionary adaptation, exploring the genetic causes of disease with genome-wide association studies, and discuss the multifaceted impacts of the personal genomics revolution.

Components: Lecture
Attributes: Science, Technology and Society, Offered Spring Term
Requirement Group: Prerequisites: BY140 or permission of the instructor
Req. Designation: Technology
BY 350(3) Course ID:007411 2015-02-12
Comparative Vertebrate Anatomy
This course compares anatomical structures throughout different classes of vertebrates. We begin by defining anatomical terms and identifying what constitutes a vertebrate. We will also learn how vertebrate organ systems develop and the physical constraints placed on development of these systems. The anatomical study will be broken down into major organ systems that will be discussed one at a time. For each of the organ systems, there will be a discussion of relevant structure and function followed a description of the major changes in form and function throughout vertebrate evolution. Since there are numerous classes of vertebrates, we will concentrate on representatives from some of the better studies examples.
Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: BY160 or consent of the instructor. Corequisite: BY352.
Req. Designation: Technology

BY 352(2) Course ID:007412 2015-02-12
Comparative Vertebrate Anatomy Lab
Through the use of dissection and histological observation, we will observe and make direct comparisons of anatomical structures from representative vertebrates. The organ systems that are dissected in this course will follow the topics presented in BY350. After the first two introductory labs, you will dissect specific organ systems one at a time in each of your specimens. This will allow you to make direct comparisons between comparable structures in different vertebrates. The animals that will be dissected (Necturus – Mud Puppy, Dogfish shark, pigeon, and cat) are representative vertebrates chosen to illustrate changes to the organ systems as vertebrates became more complex.
Components: Laboratory
Attributes: Offered Fall Term
Requirement Group: Prerequisites: BY160 or consent of the instructor. Corequisite: BY350.
Req. Designation: Technology

BY 357(3) Course ID:011519 2014-11-19
Human Cognitive Evolution
[Cross-listed with PY 357] Evolutionary psychology is concerned with the adaptive problems and selective pressures our ancestors encountered in their environments, the psychological mechanisms that evolved to help them solve those problems, and the way those evolved mechanisms function in current environments. This way of thinking about the brain, mind, and behavior is changing how scientists approach old topics, and is opening up new ones. This course will focus on current developments and selected topics in evolutionary psychology (e.g., foraging, mate choice, parental investment, cooperation and culture) and explore the evolution of cognition from a broad comparative perspective.
Components: Lecture
Course Equivalents: PY 357
Requirement Group: Prerequisites: PY151 or junior or senior standing.
Req. Designation: Technology

BY 358(3) Course ID:007413 2014-11-20
Animal Learning and Cognition
[Cross-listed with PY 358] This course focuses upon how animals acquire, process, store and recall information about their environment and social partners. Topics that will be examined include how animals perceive and classify stimuli; how they learn and remember; how they orient and navigate; how they measure time, number, and amount; how they acquire abstract concepts; how they perceive social relationships; and how they communicate. A diversity of invertebrate and vertebrate organisms will be included (sea slugs to primates!), and there will be an emphasis on understanding taxon-specific specializations as well as general patterns across animals.
Components: Lecture
Course Equivalents: PY 358
Requirement Group: Prerequisites: BY140 or PY151 or consent of the instructor.
Req. Designation: Technology
Perception deals with our conscious experience of the world, ourselves and each other. This course will examine how perceptions are measured (psychophysics); how visual, auditory, touch and pain sensory stimulation is actively organized into conscious perceptions; developmental aspects of perception; the role of cognitive factors, such as attention; and how altered conscious states (e.g., achieved through meditation, hallucinogenic drugs) affect perception. Fundamental principles of perception discussed in this course will be used to explain how we experience the world, ourselves, and each other.

Components:
- Lecture

Course Equivalents: PY 359

Attributes: Offered Fall Term

Requirement Group: Prerequisites: PY151 or junior or senior standing.

Req. Designation: Technology
School of Arts and Sciences - Biology - Subject: Biology

BY 360(3) Course ID:007414 2015-01-20
Comparative Physiology
In this course, students will be instructed in all the main branches of modern animal physiology with a strong emphasis on the integration of physiological knowledge, ecology, and evolutionary biology. In addition to an in-depth treatment of mammalian physiology, students will be exposed to the various physiological systems that have evolved in other vertebrate, as well as invertebrate, animals. The primary goal is to understand how these physiological systems allow animals to survive in the environments that they inhabit.
Prerequisite: BY160 or consent of the instructor.
Components: Lecture
Course Equivalents: BY 560
Attributes: Offered Spring Term
Requirement Group: Prerequisites: BY160 or consent of instructor.
Req. Designation: Technology

BY 362(2) Course ID:007415 2015-01-20
Comparative Physiology Laboratory
In this laboratory-based course, students will gain practical exposure to basic research techniques used in the study of animal physiology. Class activities include studying action potential propagation, the mammalian dive reflex, electrooculography and the physiological effects of exercise.
Components: Laboratory
Attributes: One communication unit, Offered Spring Term
Req. Designation: Technology

BY 363(3) Course ID:012755 2016-09-23
Pharmacology of Infectious Disease
This course will introduce students to the basic principles of immunology and pharmacology with an emphasis on current treatment strategies employed to combat infectious disease. Students will learn how vaccines are used to prevent infection, in addition to the deployment of small molecule drugs and newer antibody-based therapies for the treatment of existing infectious disease. Course information will be disseminated to students in the form of lectures, readings from review and original research articles, and through group discussion that involves case studies and problem-based learning.
Components: Lecture
Attributes: Offered Even Springs
Requirement Group: Prerequisites: BY160
Req. Designation: Technology
Mathematical Biology Seminar

[Cross-listed with MA 368] The objective of this course is to present recent advances in research that combines biological and mathematical analysis, and to describe opportunities for interdisciplinary summer research in biology and mathematics. Students will receive one credit for attending seminars (6 per semester), reading a journal article prior to each presentation, writing a short review of each seminar, and participating in discussions. This course can be taken for credit more than once.

Components: Seminar
Course Equivalents: MA 368
Req. Designation: Technology
Techniques in Immunological Research
This course will provide students with a basic understanding of molecular, cellular and imaging techniques used at the Trudeau Institute to help researchers study the immune system. Students will learn principles and procedures relating to molecular biology, cellular biology, histology, flow cytometry, light microscopy, and cell sorting. The course will cover basic quantification of gene expression at the transcriptional and post-translational level. The course will also cover basic quantification of cell populations using flow cytometers to collect and analyze subpopulations of cells from tissues. Histology and light microscopy techniques will be used to locate similar cell populations within a tissue section. Students will gain confidence in the selection and application of the appropriate cell imaging techniques required to assess mammalian cell tissues.

Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Enrollment is limited to students participating in the Trudeau Semester.
Req. Designation: Technology

Plant Biotechnology
This course will provide knowledge and understanding of plant biotechnological tools for plant improvement. Topics include the basic principles and application of tissue culture, recombinant DNA technology and genetic transformation and their application to crop improvement, genome editing with RNAi and CRISPR, and social and environmental impacts of biotechnology. This course will provide an opportunity for students to develop critical thinking on biotechnological tools for plant improvement.

Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: BY214
Req. Designation: Technology

Plant Biotechnology Lab
This course will provide you with a hands-on experience and knowledge and understanding of plant biotechnological tools for plant improvement. During this course, you will drive one big project which transforms a dwarf Arabidopsis mutant. By doing this project, you will learn hormone physiology and the function of a green revolution gene. Topics include the basic principles and application of tissue culture, recombinant DNA technology and genetic transformation using both bacteria and Agrobacterium and their application to crop improvement. This course will provide an opportunity for students to develop critical thinking on biotechnological tools for plant improvement.

Components: Laboratory
Attributes: Offered Spring Term
Requirement Group: Prerequisites: BY162. Corequisite: BY385.
Req. Designation: Technology

Sustainability & Environmental Conservation in Kenya
Students explore the economic, political, and social development of Kenya, and the environmental and social consequences of the Kenya’s development path, with in focus on different strategies for environmental conservation, agriculture development., and infrastructure development. The objectives are to understand (1) how a model developing nation with an export and tourism-based economy functions, (2) what are the environmental and social consequences of development and (3) how an African nation’s economy and its social & environmental welfare are linked to the political and economic policies of the US and other developed nations.

Components: Lecture
Attributes: Contemporary and Global Issues, Cultures and Societies, University Course, Offered Even Springs
Req. Designation: Technology

Directed Study in Bioscience
Students study specialized topics in bioscience not otherwise available in formal courses. Under supervision of a faculty member, a semester-long course of study tailored to professional interests is designed based on readings from relevant texts and primary literature.

Prerequisites: Consent of the instructor.
Components: Independent Study
Attributes: Given When Needed
Req. Designation: Technology
Professional Assessment
This course is designed to assess the professional development of biology majors by (1) completion of a standardized test to assess their level of knowledge in the field of biology, (2) submission of a professional resume, and (3) submission of a personal statement for graduate/professional school or employment.

Components: Independent Study
Attributes: Given When Needed
Requirement Group: Restriction: Senior standing or consent of the Biology Department Chair.
Req. Designation: Technology

Undergraduate Research in Bioscience
Students conduct an original bioscience research project based on investigation of a specific problem related to areas of faculty expertise. Research methodology may involve field, laboratory, computational, or theoretical approaches. Presentation of research results at a scientific meeting or local symposium is strongly encouraged.

Prerequisite: consent of the instructor.

Components: Research
Attributes: Given When Needed
Req. Designation: Technology
Biomedical Analysis and Instrumentation

Biomedical Analysis and Instrumentation is a lecture course designed to provide advanced undergraduates and graduate students in basic sciences, biosciences and bioengineering disciplines with scientific and engineering aspects of instrumentation, sample analysis, measuring and processing signals from living organisms. Functioning and calibration of biomedical transducers and devices actually used in clinical practice for analyzing clinical biomarkers for disease diagnostics will be reviewed. Emerging research in bioinstrumentation, biomedical technologies, stand alone and wearable sensing devices, analytical method development and validation will also be covered. Special emphasis will be placed on measurement principles of medical instrumentation used in health technologies ranging from laboratory scale to next generation wearables. Training in professional ethics, grant writing, patenting, innovation, entrepreneurial activities and FDA regulation for new device development, laboratory management, as well as communication

Components: Lecture

Course Equivalents: CM 406, CM 506, BY 506

Attributes: Offered Even Springs

Req. Designation: Technology
BY 410(1 - 6)
Course ID: 007429
2017-01-13
Instructor Consent Required

Undergraduate Thesis Research in Bioscience

A formal thesis project is arranged under supervision of a faculty member who guides the student in planning and execution of original research work and preparation of a written thesis. This course is primarily intended for junior or senior biology majors who wish to pursue graduate or professional studies in bioscience. Work done in satisfaction of the requirements for a degree will be assigned a grade when the thesis is submitted and approved.

Prerequisite: consent of the instructor.

Components: Research
Attributes: Given When Needed
Req. Designation: Technology

BY 412(4)

Course ID: 007431
2015-02-12

Molecular Biology Laboratory

This course will provide students with a hands-on introduction to modern molecular biology techniques. Students will learn techniques such as bacterial transformation and plasmid DNA purification, restriction digest and gel electrophoresis, isolation of DNA and RNA from eukaryotic cells, Southern hybridization, reverse transcription, polymerase chain reaction, and cloning PCR products, and web-based analytical programs. The lectures and reading will cover the theory and applications of these molecular techniques.

Components: Laboratory
Attributes: One communication unit, Offered Fall Term
Requirement Group: Prerequisites: BY214 or consent of the instructor.
Req. Designation: Technology
Principles of Toxicology and Epidemiology

[Cross-listed with EHS 518] See EHS 416 Occupational Toxicology for description.

Components: Lecture

Course Equivalents: EHS 416, EHS 518, BY 518

Attributes: Offered Spring Term

Requirement Group: Prerequisites: EHS 309 or consent of the instructor.

Req. Designation: Technology
BY 419(3)
Course ID: 007402
2015-02-12
Immunology
An overview of the immune system, with emphasis on current concepts and literature. Topics covered include: cells and tissues of the immune system; structure and function of antibodies; genetic basis of antibody diversity; humoral and cellular immunity; cellular interactions; major histocompatibility complex; the complement system; transplantation; tumor immunity.

Components:
Lecture
Attributes:
One communication unit, Offered Fall Term
Requirement Group:
Prerequisites: BY 140, BY 160 and BY 214, or consent of the instructor
Req. Designation:
Technology

BY 420(3)
Course ID: 007436
2021-09-14
Advanced Evolutionary Biology
An in-depth look into the mechanisms driving evolution at both the phenotypic and genomic level, and how an understanding of evolution is crucial for many applied problems in environmental science and human health. Topics include ecological drivers of evolution, how and why DNA sequences and genomes change, population genetics and evolutionary theory, the evolution of gene families and networks, and horizontal gene transfer. The processes driving evolution will also be explored using computer simulations and evolution experiments with microbes. Students registering in the graduate section of this course will be required to complete extended versions of assignments and exams.

Components:
Lecture
Attributes:
Offered Spring Term
Requirement Group:
Prerequisites: BY220 or permission of the instructor.
Req. Designation:
Technology

BY 424(2)
Course ID: 012788
2020-04-15
Experimental Evolution Laboratory
[Cross-listed with BY524] An introduction to experimental approaches used in evolutionary biology. Students will conduct lab experiments using microbes to investigate a range of topics in experimental evolution, observing and exploring evolution as it happens in real time. Topics explored will include adaptive diversification, the evolution of fitness trade-offs, evolutionary loss of redundant traits, and evolutionary rescue.

Components:
Laboratory
Course Equivalents:
BY 524
Attributes:
Offered Fall Term
Requirement Group:
Corequisites: BY420 and BY522
Req. Designation:
Technology

BY 425(3)
Course ID: 010432
2015-03-05
Biological Systems and Environmental Change
Human activities are resulting in dramatic global environmental change, in the forms of biodiversity loss, altered biogeochemical cycles, introduced invasive species, chemical toxification of the environment, climate change, unsustainable exploitation of natural resources, and habitat loss, degradation, and fragmentation. In this course, we will examine how these forms of environmental change disturb biological systems by critically reading key research papers, and discussing their implications for future research and policy action.

Components:
Lecture
Course Equivalents:
BY 525
Attributes:
Contemporary and Global Issues, Science, Technology and Society, University Course, Offered Odd Springs
Requirement Group:
Prerequisites: BY222 or graduate standing.
Req. Designation:
Technology

BY 427(3)
Course ID: 012915
2018-11-02
Advanced Mass Spectrometry: Practical Applications
Practical Applications will introduce the students to mass spectrometry and its applications within different fields, including pharmaceutical and biotech industry, academia, government, forensics, etc. Various types of instruments will be discussed, as well as their their application within different fields. The course will then focus on different types of well-known “omics”, such as proteomics, metabolomics, glycomics, or lipidomics, but also on specialized types of “omics” such as peptidomics, post-translational modification-omics (PTM-omics), interactomics, foodomics, microbiomics, venomics, DNA–RNA– & Protein- adductomics, genomics, proteogenomics or transcriptomics. Particular applications of all these kinds of “omics” in biotechnology & pharmaceutical industry, healthcare, biowarfare and forensics will also be discussed.

Components:
Lecture
Course Equivalents:
CM 422, CM 522, BY 527
Attributes:
Offered Spring Term
Requirement Group:
Prerequisites: CM/BY460/560, or consent of the instructor
Req. Designation:
Technology
BY 428(3)
Course ID: 012959
2019-09-25
Kinesiology
Knowledge of the correlates of structure and function is fundamental to the measurement and evaluation of human movement in movement science, health care professions, and product design. This course focuses on application of concepts of human movement to specific regions and joints of the human musculoskeletal system. Included are 1) application of the concepts of biological tissues and tissue mechanics in understanding non-pathological and pathological human movement of each joint and region, and 2) use of tools of measurement and evaluation in studying non-pathological and pathological human movement.

Components: Lecture
Attributes: Offered Even Springs
Requirement Group: Prerequisites: BY471 and PH131 or PH141.
Req. Designation: Technology

BY 430(3)
Course ID: 007399
2017-01-13
Developmental Biology
The course will focus on how an organism develops into a complex multicellular organism from a single cell. We will begin with the genetics of development and discuss mechanisms by which genes become sequentially activated as embryogenesis proceeds. The mechanics and genetics of both invertebrate and vertebrate development will be discussed beginning with fertilization and ending as embryogenesis is completed. We will also discuss some additional developmental events that occur during embryogenesis and later in adults. Because of technological advances in developmental biology, topics in this field have also become important societal issues. Throughout the semester, we discuss the ethical implications of using these advances and their impact on society.

Components: Lecture
Course Equivalents: BY 510
Requirement Group: Prerequisites: BY160 or consent of the instructor.
Req. Designation: Technology

BY 431(3)
Course ID: 007439
2014-12-05
Limnology
Limnology is the study of physical, chemical, and biological properties of fresh water bodies, e.g. lakes, rivers, reservoirs, and wetlands. This introductory course will provide an array of topics that will, by the multi-disciplinary nature of limnology, call upon students' knowledge of biology, chemistry and physics and place them within the context of aquatic science. The focus of the instruction will be aquatic ecology at all levels of biological organization. Upon completion of the course, the student will be able to characterize the physical, chemical and biological/ecological properties of a freshwater through the selection and application of appropriate sampling methods. Some fieldwork will be required.

Components: Lecture
Requirement Group: Prerequisites: BY222 or CM132 or consent of the instructor. Corequisite: BY 432
Req. Designation: Technology

BY 432(2)
Course ID: 011944
2014-12-05
Limnology Laboratory
This co-requisite of Limnology (aquatic science) will provide students the opportunity to engage in water sampling of regional lakes and rivers, analysis of samples in the laboratory, introduction to data synthesis, and report writing. Some fieldwork will be required.

Components: Laboratory
Requirement Group: Corequisite: BY431
Req. Designation: Technology
Biomedical Engineering Fundamentals

This interdisciplinary course will introduce students to basic principles of biomedical rehabilitation engineering. The course will present principles of disability and the diverse roles of engineering in medicine and rehabilitation. Students will use engineering methods to study anatomical and physiological systems including applications in rehabilitation engineering, bioinstrumentation, biosignal and image processing, biomechanics, and biomaterials.

Components:
- Lecture

Course Equivalents:
- BR 400, BR 500, BY 540, ES 402

Requirement Group:
- Prerequisites: MA131/132, PH131/132, junior or senior standing.

Req. Designation: Technology
BY 445(3)
Course ID: 012827
2017-08-15
Biological Oceanography

The goal of this course is to introduce students to the fundamentals of ocean science through an integrative approach that emphasizes physical (circulation, tides & waves), chemical (biogeochemistry) and biological (marine life) principles. Through a series of inquiry based and computational exercises, an exploration of the scientific literature and the use of flipped classrooms, we will consider the future of the world's oceans in light of the contemporary challenges they face such as global climate change, pollution and an ever expanding aquaculture trade.

Components: Lecture
Attributes: Offered Even Springs
Requirement Group: Prerequisites: BY140, BY160, and MA180 or MA131
Req. Designation: Technology

BY 448(3)
Course ID: 007445
2016-01-06
Medical Microbiology

This course will systematically examine human pathogens with a focus on why the biologic properties of organisms are important to disease in humans, including the basic principles of the host immune response, laboratory diagnosis, bacteriology, virology, mycology and parasitology. This class will emphasize basic science with clinical practice to understand the clinical relevance of the organisms examined using clinical cases from literature reports to illustrate the epidemiology, diagnosis, and treatment of infectious diseases. The course will emphasize student interaction and exploration of the scientific literature.

Components: Lecture
Attributes: One communication unit, Offered Spring Term
Requirement Group: Prerequisites: BY 160 and BY 214 (or instructor approval)
Req. Designation: Technology
BY 450(3)
Course ID: 007446
2014-11-20
Biochemistry I
(Cross-listed with CM 460) This course is a one semester introduction to the molecular basis of biological processes. The first part of the course will cover the structure and function of the four major classes of biomolecules – proteins, carbohydrates, lipids, and nucleic acids. The second part covers the organization and regulation of the major energy generating and biosynthetic pathways.
Components: Lecture
Course Equivalents: BY 650, CM 460, CM 560
Requirement Group: Prerequisites: CM241 or consent of the instructor.
Req. Designation: Technology

BY 451(3)
Course ID: 007447
2019-04-17
Biochemistry II
(Cross-listed with CM 461) A continuation of Biochemistry I focusing on autotrophic and anabolic metabolism.
Components: Lecture
Course Equivalents: CM 461
Attributes: Offered Spring Term
Requirement Group: Prerequisite: BY450 or equivalent
Req. Designation: Technology
Pharmacology

The science of Pharmacology concerns the molecular mechanisms by which drugs act on the human body and the applications of drugs in clinical therapy. This course will introduce students to general principles of drug action and survey selected classes of drugs according to their physiological effects and uses in the treatment of certain diseases.

Components: Lecture

Requirement Group: Prerequisites: BY160 and CM241 or consent of the instructor

Req. Designation: Technology
Pharmacology Lab
The goal of this course is to facilitate a greater understanding of key concepts in pharmacodynamics, pharmacokinetics that are discussed in the lecture component and observe how they are applied in the context of the clinical environment. The lab will be simulation-based, employing virtual organ bath experiments to derive and interpret dose-response curves, and virtual patient software to investigate drug pharmacokinetics and dosing strategies.

Components: Laboratory
Attributes: Offered Even Springs
Requirement Group: Corequisites: BY 160 and BY 452
Req. Designation: Technology
BY 454(3) Course ID:007448 2021-01-15

Biological Psychology
(Cross-listed with PY 454) A comprehensive investigation of the neuroanatomical and neurophysiological foundations of behavior. Topics include, but are not limited to: perception, motivation, emotion, states of consciousness, learning, memory and mental illness.

Components: Lecture
Course Equivalents: PY 454
Attributes: Offered Fall Term
Requirement Group: Prerequisites: PY151 or junior or senior standing.
Req. Designation: Technology
Cell and Molecular Biology of Cancer
This course will focus on the cellular and molecular alterations that cause human cancer. Topics include cell cycle regulations, oncogenes and tumor suppressor genes, cancer viruses, multistep tumorigenesis, invasion and metastasis, and new developments in cancer diagnosis and therapy. Emphasis will be placed on student interaction and exploring the scientific literature.

Components: Lecture
Attributes: One communication unit, Offered Spring Term
Requirement Group: Prerequisites: BY160 and BY214 or consent of the instructor.
Req. Designation: Technology
Cognitive Neuroscience

[Cross-listed with PY 458] This course introduces a sampling of the theories and research concerning how various mental processes are accomplished within the brain. Emphasis will be placed on developing an understanding of both the physiological bases of the techniques and the issues involved in relating measures of brain activity to cognitive functioning. Students will be exposed to current topics of study in a number of areas of cognition: perception, language, memory, among others. In this course we will study a number of different techniques for studying the brain, including electrophysiological recording techniques, functional imaging techniques, and methods that involve brain lesions and disrupting neural activity.

Components: Lecture
Course Equivalents: PY 458
Attributes: Individual and Group Behavior, Science, Technology and Society
Requirement Group: Prerequisites: PY151 or junior or senior standing.
Req. Designation: Technology
BY 460(3)

Course ID: 007449

Course Title: Neurobiology

Course Description:
Neurons are electrically excitable cells that initiate or control many complex functions such as sensory perception, locomotion, memory, and learning. This course introduces the study of neuronal mechanisms at the cellular and molecular level. Topics include: membrane biophysics, ion channels, electrical signaling, synaptic transmission, glia, sensory transduction, neuromodulation, and neuronal plasticity.

Components: Lecture

Course Equivalents: BY 561, PY 460

Requirement Group: Prerequisites: BY 160 or BY 360 or consent of instructor.

Req. Designation: Technology

BY 465(3)

Course ID: 012835

Course Title: Molecular and Genome Evolution

Course Description:
An overview of the molecular underpinnings of evolution, and how those molecular changes can be used to characterize and understand the evolutionary history of genes, proteins, and organisms. Topics include how and why DNA sequences and genomes change, molecular phylogenetics and evolutionary models, gene duplication and the evolution of gene families, and horizontal gene transfer. For BY 565, additional readings and an additional written and oral report will be required.

Components: Lecture

Course Equivalents: BY 565

Attributes: Offered Spring Term

Requirement Group: Prerequisite: BY 420

Req. Designation: Technology
Biochemistry & Biotechnology Laboratory

This course is a one semester course in the fundamental laboratory approaches for biochemistry and biotechnology. While largely a hands-on course, laboratory experiments will be supplemented with lectures that integrate the theoretical and practical principals covered in the exercises. Topics include protein purification, characterization and analysis, enzyme kinetics and molecular modeling.

Components:
- Laboratory

Course Equivalents:
CM 470

Attributes:
- Two communication units, Offered Spring Term

Requirement Group:
- Prerequisites: CM221 and CM223 or BY450/CM460 or consent of the instructor.

Req. Designation:
- Technology
Anatomy and Physiology I

Course ID: 007453
2018-10-23

Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: BY 160 or by consent of the instructor
Co-requisite: BY 473
Req. Designation: Technology

This course is the first course in a two semester sequence that studies the anatomy and physiology of the human body in detail. Topics covered in this semester include basic cellular activities, anatomy and physiology of skeletal, muscular, circulatory and lymphatic systems. This course is appropriate for students in the pre-PT program as well as pre-health majors in any other health-related field that require a two-semester Anatomy and Physiology sequence.

Anatomy and Physiology II

Course ID: 007454
2015-01-20

Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: BY471 and BY473, or consent of the instructor. Co-requisite: BY474.
Req. Designation: Technology

This course is the second course in a two semester sequence that studies the anatomy and physiology of the human body in detail. Topics covered in this semester include the anatomy and physiology of major organ systems as well as homeostasis. This course is appropriate for students in the pre-PT program as well as pre-health majors in any other health-related field that require a two-semester anatomy and physiology sequence.

Anatomy and Physiology I Lab

Course ID: 007455
2018-10-23

Components: Laboratory
Attributes: Offered Fall Term
Requirement Group: Prerequisites: BY 160, or by permission of the instructor
Co-requisite: BY471
Req. Designation: Technology

Companion laboratory course to Anatomy and Physiology I, introducing students to anatomical terminology and histology. The students will focus on anatomy of the human skeletal, muscular and circulatory systems.

Anatomy and Physiology II Laboratory

Course ID: 007456
2018-10-23

Components: Laboratory
Attributes: One communication unit, Offered Spring Term
Requirement Group: Prerequisite: BY471 and BY473, or consent of the instructor. Co-requisite: BY472.
Req. Designation: Technology

Companion laboratory course to Human Anatomy and Physiology II, introducing students to anatomical terminology, histology, and organ physiology. The students will focus on human physiology of the major organ systems and the technology used to analyze them.

Current Topics in Biology & Medicine

Course ID: 010508
2019-12-02

Components: Lecture
Course Equivalents: BY 576
Attributes: One communication unit, Offered Spring Term
Requirement Group: Prerequisites: BY160 or BY214 or consent of instructor.
Req. Designation: Technology

(Cross-listed with BY576) This is a discussion-based seminar course that broadly examines advances and implications of modern biology of interest to society, scientists, and students planning a career in medicine, research, or teaching. Students are required to read a variety of current texts, participate in class discussions, and write a substantive essay. Example topics include the discovery of DNA, genome sequencing, applications of bioinformatics, the revolution in applied biotechnology, human physiology under extreme conditions, intellectual history of biology and medicine as explored by prominent science writers, the prognosis for life on earth.
School of Arts and Sciences - Biology - Subject: Biology

BY 480(3) Course ID:007400 2015-03-03

Advanced Cell Biology
This course will focus on understanding how cells function normally, and how cell dysfunction can cause human disease. Topics include DNA replication and repair, cell cycle control and cancer, cell communication and intracellular signaling, regulation of gene expression, the cell surface and the cytoskeleton. Current methods used in cell and molecular biology research will be discussed. The course will emphasize student interaction and exploration of the scientific literature.

Components: Lecture
Attributes: One communication unit, Offered Fall Term
Requirement Group: Prerequisites: BY160/162 and BY214 or consent of the instructor.
Req. Designation: Technology
Molecular Genetics

This course will provide students with detailed information on the structure, packages, and expression of genes within the genome of both prokaryotes and eukaryotes. Topics will include chromatin packaging and structure; DNA replication mutation and repair; transcription; RNA splicing; translation; and control of gene expression. Included with each of these topics will be primary research papers, which will discussed during class. During discussions, experiments in the papers will be analyzed as to how they work (focusing on current biotechnology) and critical analysis of the conclusions. Evaluation will involve exams based on material presented during the course as well as participation in discussions and written analysis of presented research papers. This course contains advanced topics and is designed primarily for graduate or advanced undergraduate students.

Components:
Lecture

Course Equivalents:
BY 582

Attributes:
Offered Spring Term

Requirement Group:
Prerequisites: BY160, BY214, BY450, CM103 or 131, and CM104 or 132.

Req. Designation:
Technology
Neural Engineering

This course applies engineering principles to the study of neuroscience and to the design of devices or techniques intended to replace missing or augment existing functions such as seeing, hearing, speaking, and walking. The course provides a detailed overview of sensorimotor systems, neurophysiology, neuroanatomy, neuropathology, and clinical neurology. The class sequences through the various sensory and movement systems, providing a quantitative basis for how the nervous systems works for these systems, for how it dysfunctions, for the disability produced, and finally for how function can be restored by neuroprostheses. Students will prepare and present a paper on a neural engineering topic.

Components: Lecture
Course Equivalents: EE 585, EE 485, ES 485
Req. Designation: Technology
BY 486(3) Course ID: 011809 2015-02-12

Molecular Biotechnology

Molecular biotechnology is a rapidly evolving scientific discipline impacting on many aspects of our daily life. This course will review basic concepts and methodologies in recombinant DNA technology, cover the use of molecular biotechnology for the production of useful products in areas of microbial, plant and animal biotechnology and address social and economic issues rising with the availability of these technologies.

Components: Lecture

Attributes: Offered Fall Term

Requirement Group: Prerequisites: BY160 and BY214, or consent of the instructor.

Req. Designation: Technology

BY 488(3) Course ID: 011810 2015-02-12

Stem Cells and Regenerative Medicine

This course will cover biological and medical perspectives of stem cells from their fundamental basic biology and mechanisms of organ regeneration through the use of induced-pluripotent stem cells (iPSCs) for therapeutic benefit. It will deal with mammalian and human embryonic stem cells (hESCs) and focus on how iPSCs generate distinct fates during human development and how this can be used for regenerative therapy of common human diseases.

Components: Lecture

Attributes: Offered Fall Term

Requirement Group: Prerequisites: BY160 and BY214, or consent of the instructor.

Req. Designation: Technology

BY 490(3) Course ID: 007459 2015-03-05

Term Integrated Project in Bioscience

This problem-based course will task students to analyze and suggest solutions to a complex problem in the field of infectious disease research. The course is intended to reinforce what they have learned in the other courses during the Trudeau Semester in Bioscience. Enrollment is limited to students participating in the Trudeau Semester.

Components: Project Team

Attributes: One communication unit, Contemporary and Global Issues, Science, Technology and Society, University Course, Given When Needed

Requirement Group: Enrollment is limited to students participating in the Trudeau Semester.

Req. Designation: Technology

BY 495(1 - 2) Course ID: 011277 2015-01-23 Instructor Consent Required

Undergraduate Teaching Assistantship in Bioscience

Students obtain teaching experience by assisting a faculty member in teaching a lecture or laboratory course. Pedagogical activities may include leading laboratory or discussion sections, designing and testing laboratory exercises, and assisting in student assessment.

Prerequisites: Consent of the instructor.

Components: Independent Study

Attributes: Given When Needed

Req. Designation: Technology

BY 498(0) Course ID: 007463 2015-08-19 Instructor Consent Required

Internship in Bioscience

During the fall semester, spring semester, or summer, a student must complete an off-campus professional experience directly related to a career in the basic or applied biosciences that meets the professional goals of the student and the Clarkson university-wide requirements for a professional experience. The experience should involve minimally 120 hours of training and work, and must be pre-approved by the student's faculty advisor or Chair of Biology. A formal report upon completion of the internship is required.

Prerequisites: Consent of the instructor.

Components: Independent Study

Attributes: Given When Needed

Req. Designation: Technology

BY 499(0) Course ID: 007464 2015-08-18 Instructor Consent Required

Professional Experience in Bioscience

During the fall semester, spring semester, or summer, a student must complete a professional experience that is not necessarily directly bioscience-related, but clearly meets the professional goals of the student and the Clarkson university-wide requirements for a professional experience. The experience should involve minimally 120 hours of training and work, and must be pre-approved by the student's faculty advisor or Chair of Biology. A formal report upon completion of the internship is required.

Components: Independent Study

Attributes: Given When Needed

Req. Designation: Technology
Biomedical Analysis and Instrumentation

Biomedical Analysis and Instrumentation is a lecture course designed to provide advanced undergraduates and graduate students in basic sciences, biosciences and bioengineering disciplines with scientific and engineering aspects of instrumentation, sample analysis, measuring and processing signals from living organisms. Functioning and calibration of biomedical transducers and devices actually used in clinical practice for analyzing clinical biomarkers for disease diagnostics will be reviewed. Emerging research in bioinstrumentation, biomedical technologies, stand alone and wearable sensing devices, analytical method development and validation will be also be covered. Special emphasis will be placed on measurement principles of medical instrumentation used in health technologies ranging from laboratory scale to next generation wearables. Training in professional ethics, grant writing, patenting, innovation, entrepreneurial activities and FDA regulation for new device development, laboratory management, as well as communication

Components:	Lecture
Course Equivalents:	BY 406, CM 406, CM 506
Attributes:	Offered Even Springs
Req. Designation:	Technology
Developmental Biology
This course will cover the same subject area and topics as that of BY 310. Additional materials at the graduate level will be expected of those who register under this catalog number.

Components: Lecture
Course Equivalents: BY 430
Req. Designation: Technology

Molecular Biology Laboratory
This course will deal with the same subject area and topics as that of BY 412. Additional materials at the graduate level will be expected of those who register under this catalog number.
Prerequisites: graduate standing.

Components: Laboratory
Attributes: Offered Fall Term
Req. Designation: Technology

Bioinformatics
This course and companion lab will cover the same subject area and topics as BY314. Additional materials at the graduate level will be expected of those who register under this catalog number.
Prerequisite: Graduate standing.

Components: Laboratory, Lecture
Attributes: Offered Spring Term
Req. Designation: Technology
Principles of Toxicology and Epidemiology
[Cross-listed with IH 416, BY 416, IH 518] This course covers the same topics as IH416 (BY416) and includes additional material on the graduate level.

Components: Lecture
Course Equivalents: BY 416, EHS 416, EHS 518
Req. Designation: Technology
Immunology
Course: BY 519(3)
Course ID: 007467
Offered: 2015-02-12
This course will cover the same subject area and topics as that of BY 419. Additional materials at the graduate level will be expected of those who register under this catalog number.

Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology

Microbiology
Course: BY 520(3)
Course ID: 007468
Offered: 2014-12-05
This course will cover the same subject area and topics as that of BY 320. Additional materials at the graduate level will be expected of those who register under this catalog number.

Components: Lecture
Req. Designation: Technology

Advanced Evolutionary Biology
Course: BY 522(3)
Course ID: 007487
Offered: 2021-09-14
[Cross-Listed with BY420] An in-depth look into the mechanisms driving evolution at both the phenotypic and genomic level, and how an understanding of evolution is crucial for many applied problems in environmental science and human health. Topics include ecological drivers of evolution, how and why DNA sequences and genomes change, population genetics and evolutionary theory, the evolution of gene families and networks, and horizontal gene transfer. The processes driving evolution will also be explored using computer simulations and evolution experiments with microbes. Students registering in the graduate section of this course will be required to complete extended versions of assignments and exams.

Components: Lecture
Attributes: Offered Spring Term
Req. Designation: Technology

Experimental Evolution Laboratory
Course: BY 524(2)
Course ID: 012789
Offered: 2017-02-03
[Cross-listed with BY424] An introduction to experimental approaches used in evolutionary biology. Students will conduct lab experiments using microbes to investigate a range of topics in experimental evolution, observing and exploring evolution as it happens in real time. Topics explored will include adaptive diversification, the evolution of fitness trade-offs, evolutionary loss of redundant traits, and evolutionary rescue.

Components: Laboratory
Course Equivalents: BY 424
Attributes: Offered Fall Term
Req. Designation: Technology

Biological Systems and Environmental Change
Course: BY 525(3)
Course ID: 010433
Offered: 2014-12-05
Human activities are resulting in dramatic global environmental change, in the forms of biodiversity loss, altered biogeochemical cycles, introduced invasive species, chemical toxification of the environment, climate change, unsustainable exploitation of natural resources, and habitat loss, degradation, and fragmentation. In this course, we will examine how these forms of environmental change disturb biological systems by critically reading key research papers, and discussing their implications for future research and policy action.

Components: Lecture
Course Equivalents: BY 425
Req. Designation: Technology

Advanced Mass Spectrometry
Course: BY 527(3)
Course ID: 012916
Offered: 2018-11-02
Practical Applications will introduce the students to mass spectrometry and its applications within different fields, including pharmaceutical and biotech industry, academia, government, forensics, etc. Various types of instruments will be discussed, as well as their application within different fields. The course will then focus on different types of well-known "omics", such as proteomics, metabolomics, glycomics, or lipidomics, but also on specialized types of "omics" such as peptidomics, post-translational modification-omics (PTM-omics), interactomics, foodomics, microbiomics, venomics, DNA- RNA- & Protein-adductomics, genomics, proteogenomics or transcriptomics. Particular applications of all these kinds of "omics" in biotechnology & pharmaceutical industry, healthcare, biowarfare and forensics will also be discussed.

Components: Lecture
Course Equivalents: CM 422, CM 522, BY 427
Attributes: Offered Spring Term
Req. Designation: Technology
Conservation Biology
BY528 provides a graduate-level overview of the core theory of conservation biology, and how conservation biology is applied for environmental conservation and management. Major topics of this course will include conservation prioritization, the problems of small population size on the long-term persistence of a species, conservation genetics, habitat fragmentation and nature reserve design, invasive species, consequences of extinctions on an ecosystem processes and community structure, and the possible effects on biodiversity of global climate change. A course emphasis will be on the challenge of translating the core lessons of conservation biology to effective policy and environmental management. BY528 students will do additional readings, mathematical simulation exercises, and recitations beyond BY428 students.

Prerequisite: Graduate Standing.

| Components: | Lecture |
| Req. Designation: | Technology |

Limnology
Limnology (aquatic science) is the study of physical, chemical, and biological properties of fresh water bodies, e.g. lakes, rivers, reservoirs, and wetlands. This introductory course will provide an array of topics that will, by the multi-disciplinary nature of limnology, call upon students' knowledge of biology, chemistry and physics and place them within the context of aquatic science. The focus of the instruction will be aquatic ecology at all levels of biological organization. Upon completion of the course, the student will be able to characterize the physical, chemical and biological/ecological properties of freshwater through the selection and application of appropriate sampling methods. This course covers the same subject area as BY 431 and includes additional materials at the graduate level.

Prerequisite: BY222 or CM132 or consent of the instructor.

Components:	Lecture
Requirement Group:	Corequisite: BY 532
Req. Designation:	Technology

Limnology Laboratory
This co-requisite of Limnology (aquatic science) will provide students the opportunity to engage in water sampling of regional lakes and rivers, analysis of samples in the laboratory, introduction to data synthesis, and report writing. Some fieldwork will be required.

Components:	Laboratory
Requirement Group:	Corequisite: BY 531
Req. Designation:	Technology
Introduction to Biomedical Rehabilitation Engineering and Science

(Cross-listed with BR 500) This interdisciplinary course will introduce students to basic principles of biomedical rehabilitation engineering. The course will present principles of disability and the diverse roles of engineering in medicine and rehabilitation. Students will use engineering methods to study anatomical and physiological systems including applications in rehabilitation engineering, bioinstrumentation, biosignal and image processing, biomechanics, and biomaterials.

Prerequisites: MA131/132, PH131/132, junior or senior standing.

Components:
- Lecture

Course Equivalents: BY 440, BR 400, BR 500, ES 402

Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>BY 548(3)</td>
<td>007473</td>
<td>2014-09-18</td>
</tr>
<tr>
<td>Medical Microbiology</td>
<td>Lecture</td>
<td>Req. Designation: Technology</td>
</tr>
<tr>
<td>BY 552(3)</td>
<td>013112</td>
<td>2021-06-01</td>
</tr>
<tr>
<td>Pharmacology</td>
<td>Lecture</td>
<td>Attributes: Given When Needed</td>
</tr>
<tr>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BY 555(3)</td>
<td>010885</td>
<td>2016-08-15</td>
</tr>
<tr>
<td>Cell and Molecular Biology of Cancer</td>
<td>Lecture</td>
<td>Attributes: Offered Spring Term</td>
</tr>
<tr>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BY 560(3)</td>
<td>007475</td>
<td>2015-01-20</td>
</tr>
<tr>
<td>Comparative Physiology</td>
<td>Lecture</td>
<td>Attributes: Offered Spring Term</td>
</tr>
<tr>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BY 561(3)</td>
<td>007491</td>
<td>2016-11-01</td>
</tr>
<tr>
<td>Neurobiology</td>
<td>Lecture</td>
<td>Req. Designation: Technology</td>
</tr>
<tr>
<td>BY 565(3)</td>
<td>012836</td>
<td>2017-09-28</td>
</tr>
<tr>
<td>Molecular and Genome Evolution</td>
<td>Lecture</td>
<td>Course Equivalents: BY 460, PY 460</td>
</tr>
<tr>
<td>Attributes: Offered Spring Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anatomy & Physiology I
This is the first semester of a two-semester sequence covering the basic principles of Human Anatomy and Physiology. The course will focus on the anatomical organization and physiology of the human body using a systems approach. Lectures will emphasize a basic understanding of how anatomical organization at the cell, tissue and organ level correlates with physiological processes. Clinical connections will be drawn wherever relevant. In addition to covering the same subject areas as that of BY471, some advanced topics will be discussed and the students will be given additional reading and writing assignments. This course can assist students in finding a relevant research question to pursue investigation in the field of biomedical science.
Prerequisite: Graduate standing, or permission of the instructor

Components:
- Lecture

Attributes:
- Offered Fall Term

Req. Designation: Technology

Anatomy & Physiology II
This is the second semester of a two-semester sequence covering the basic principles of Human Anatomy and Physiology. The course will focus on the anatomical organization and physiology of the human body using a systems approach. Lectures will emphasize a basic understanding of how anatomical organization at the cell, tissue and organ level correlates with physiological processes. Clinical connections will be drawn wherever relevant. In addition to covering the same subject areas as that of BY472, some advanced topics will be discussed and the students will be given additional reading and writing assignments. This course can assist students in finding a relevant research question to pursue investigation in the field of biomedical science.
Prerequisites: Graduate standing, or permission of the instructor

Components:
- Lecture

Attributes:
- Offered Spring Term

Req. Designation: Technology

Anatomy & Physiology I Laboratory
This is the first semester of a two-semester sequence covering the basic principles of Human Anatomy and Physiology. This is the corresponding laboratory for BY571 and will involve anatomical study using a computer-assisted methodology and demonstrations of anatomical models and specimens. In addition to covering the same subject areas as that of BY473, some advanced topics will be discussed and the students will be given additional reading and writing assignments.

Components:
- Laboratory

Attributes:
- Offered Fall Term

Requirement Group: Corequisite: BY 571

Req. Designation: Technology

Anatomy & Physiology II Laboratory
This is the corresponding laboratory for BY572. The laboratory exercises will focus on physiology and will involve study using a computer-assisted methodology. The students will learn the principles and methodologies of various physiological measurements including bioelectric signals, pulmonary function tests and nerve reflexes. The course will require students to submit a written project and give an oral presentation for successful completion. In addition to covering the same subject areas as that of BY474, some advanced topics will be discussed and the students will be given additional reading and writing assignments.

Components:
- Laboratory

Attributes:
- Offered Spring Term

Requirement Group: Corequisite: BY 572

Req. Designation: Technology

Current Topics in Biology and Medicine
[Cross-listed with BY476] This course will cover the same subject area and topics as that of BY476. Additional materials at the graduate level will be expected of students who register under this catalog. Prerequisites: graduate standing.

Components:
- Lecture

Course Equivalents:
- BY 476

Attributes:
- Offered Spring Term

Req. Designation: Technology
Advanced Cell Biology
This course will cover the same subject area and topics as that of BY 480. Additional materials at the graduate level will be expected of those who register under this catalog number.

Components: Lecture
Req. Designation: Technology
Molecular Genetics
This course will provide students with detailed information on the structure, packages, and expression of genes within the genome of both prokaryotes and eukaryotes. Topics will include chromatin packaging and structure; DNA replication mutation and repair; transcription; RNA splicing; translation; and control of gene expression. Included with each of these topics will be primary research papers, which will discussed during class. During discussions, experiments in the papers will be analyzed as to how they work (focusing on current biotechnology) and critical analysis of the conclusions. Evaluation will involve exams based on material presented during the course as well as participation in discussions and written analysis of presented research papers. This course contains advanced topics and is designed primarily for graduate or advanced undergraduate students. Graduate students will do additional course work.

Components: Lecture
Course Equivalents: BY 482
Attributes: Offered Spring Term
Req. Designation: Technology
School of Arts and Sciences - Biology - Subject: Biology

BY 586(3)
Course ID: 011811
2015-02-12
Molecular Biotechnology

Molecular biotechnology is a rapidly evolving scientific discipline impacting on many aspects of our daily life. This course will review basic concepts and methodologies in recombinant DNA technology, cover the use of molecular biotechnology for the production of useful products in areas of microbial, plant and animal biotechnology and address social and economic issues rising with the availability of these technologies. Additional materials will be expected at the graduate level.

Components:
Lecture

Attributes:
Offered Fall Term

Req. Designation:
Technology

BY 588(3)
Course ID: 011812
2015-02-12
Stem Cells and Regenerative Medicine

This course will cover biological and medical perspectives of stem cells from their fundamental basic biology and mechanisms of organ regeneration through the use of induced-pluripotent stem cells (iPSCs) for therapeutic benefit. It will deal with mammalian and human embryonic stem cells (hESCs) and focus on how iPSCs generate distinct fates during human development and how this can be used for regenerative therapy of common human diseases. Additional materials expected at the graduate level.

Components:
Lecture

Attributes:
Offered Fall Term

Req. Designation:
Technology

BY 600(1 - 4)
Course ID: 007893
2015-01-23
Instructor Consent Required

Directed Study in Bioscience

Students study advanced topics in bioscience not otherwise available in formal graduate courses. Under supervision of a faculty member, a semester-long course of study is designed based on readings from appropriate texts and primary literature.

Prerequisites: Graduate standing and consent of the instructor.

Components:
Independent Study

Attributes:
Given When Needed

Req. Designation:
Technology

BY 604(3)
Course ID: 012070
2015-03-27

Molecular Pharmacology

In this course, students will be introduced to the techniques used to study the structure and function of membrane receptor proteins, in particular those of two families that together comprise over 80% of pharmaceutical drug targets: ion channels and G protein-coupled receptors. Specifically, students will see how knowledge of a receptor’s 3-dimensional structure and signal transduction mechanism aids understanding of drug action and can assist in the design of newer, better therapeutic agents.

Components:
Lecture

Attributes:
Offered Fall Term

Req. Designation:
Technology

BY 608(2)
Course ID: 007894
2015-09-18

Teaching in Biosciences

This course is intended to improve bioscience teaching training for graduate students. Graduate students will read literature based on the current state of biology education at the university level (e.g. AAAS Vision and Change in Undergraduate Biology Education). Students will also learn how to design undergraduate bioscience teaching labs, and effectively teach the labs. Activities will include writing a course syllabus, and designing and conducting an original lab activity with resources available on the Clarkson campus. The designed lab can be at the level of a freshman lab, or an upper level biology course. Students will need to consider how the lab will be conducted, what is expected for pre-lab and post-lab assignments, and how lab students will be evaluated. Other activities will include how to write effective laboratory protocols and learning to manage a bioscience laboratory.

Components:
Lecture

Attributes:
Offered Spring Term

Req. Designation:
Technology

BY 610(3)
Course ID: 007485
2015-02-03

Ecological Statistics and Experimental Design

Ecological statistics and experimental design covers a broad and eclectic area of applied statistics used in data description, exploratory data analysis, and statistical hypothesis testing used in environmental science. This course also introduces R as a powerful application for doing experimental design and statistics.

Components:
Laboratory, Lecture

Attributes:
Offered Each Term

Req. Designation:
Technology
BY 622(1) Course ID: 007488 2020-09-16
Graduate Seminar

Weekly meetings to discuss topics of current research interest and attendance of research seminars presented in the biology department. Each candidate for the IBB M.S. or IBB Ph.D. must enroll and participate in BY622 every semester of their degree and present at least one seminar or more for each calendar year that they are in the program. Prerequisite: graduate standing.

Components: Seminar
Attributes: Offered Each Term
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Component</th>
<th>Course Equivalents</th>
<th>Attributes</th>
<th>Req. Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>007489</td>
<td>Lecture</td>
<td>BY 450, CM 460, CM 560</td>
<td>Offered Fall Term</td>
<td>Technology</td>
</tr>
<tr>
<td>007490</td>
<td>Lecture</td>
<td>CM 561</td>
<td>Offered Spring Term</td>
<td>Technology</td>
</tr>
</tbody>
</table>

BY 650(3)
Course ID: 007489
2015-02-12
Biochemistry I
(Cross-listed as CM 560) This course covers the same topics as BY 450 and includes additional material on the graduate level.

BY 651(3)
Course ID: 007490
2014-11-20
Biochemistry II
(Cross-listed with CM 561) This course will cover the same subject area and topics as that of BY 451. Additional materials at the graduate level will be expected of those who register under this catalog number. Prerequisites: graduate standing.
Critical Thinking and Research Proposal Development in Biology

This course provides a thorough coverage of the essential elements of research proposal writing, a skill that is required throughout one's scientific career but for which formal training is frequently lacking. After an introductory lecture that provides a general overview of the conceptualization and writing of a research proposal, students will be guided through a series of exercises designed to develop these critical skills. Subsequent meetings will be in the form of small tutorial groups with a faculty member leading discussion of primary literature and the outstanding questions in a particular field of research. Students will exchange their written reports with their peers to get feedback from their peers at different stages of draft preparation before submitting them to the faculty instructor for grading. Students will be encouraged to meet with their peers outside of class hours to discuss their reports/proposals. This course aims at preparing IB&B PhD students for their pre-proposal and full proposal writing, which are the written
School of Arts and Sciences - Biology - Subject: Biology

BY 900(1 - 15) Course ID: 011278 2015-02-03
Thesis, Dissertation or Special Project in Bioscience
Student performs independent research toward a masters or doctorate degree under the guidance of a faculty thesis advisor. A graduate thesis committee monitors student progress and provides guidance toward completion of the project. Work done in satisfaction of the requirements for a degree will be assigned a grade when the thesis is submitted and approved.

Prerequisites: Graduate standing.
Components: Thesis Research
Attributes: Offered Each Term
Req. Designation: Technology

BY 999(1 - 10) Course ID: 011095 2015-01-13
Special Graduate Topics
A graduate level course for which there is no comparable Clarkson course. This course may be used to satisfy course requirements for a graduate degree.

Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology
CE 1(2 - 4) Civil and Environmental Engineering Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only. (Not offered at Clarkson, for transfer credit only.)

Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

CE 2(2 - 4) Civil and Environmental Engineering Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only. This course may be used as a Professional Elective. (Not offered at Clarkson, for transfer credit only.)

Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

CE 6(2 - 4) CEE Elective
Transfer Credit Only

| Components | Lecture
| Attributes | Engineering Foundation Curriculum Course, Transfer Credit Only |

CE 212(3) Introduction to Engineering Design
This course teaches students how to solve problems through an intentional process known as engineering design. Students learn the seven steps of the iterative engineering design process: Ask, Imagine, Plan, Create, Test, Improve, and Share. Students practice the iterative engineering design process by working with multidisciplinary peer groups to solve real-world engineering problems. This course emphasizes continuous improvement and sustainability in engineering design; the broader impacts of engineering innovation on the planet and society; and professional skills like collaboration, communication, critical thinking, and engineering ethics.

Components: Laboratory, Lecture
Course Equivalents: AE 212, ME 212
Attributes: 1.5 Design Credits, One communication unit, Offered Fall Term
Requirement Group: Prerequisites: Civil & Environmental Engineering at least Sophomore standing or consent of the instructor

CE 301(3) Introduction to Geospatial Analysis and Geographic Information Systems
(Cross-listed with SC 301) An introductory course in the concepts and uses of Geographic Information Systems (GIS) including analysis of GIS-based local and global geographic datasets. Provides basic knowledge of GIS theory and applications using existing state-of-the-art GIS software and current spatial data resources. Applications include: overlay analysis, spatial data query, map generation and terrain surface analysis. Students will also learn the basics of GPS data collection, remote sensing, 3D visualization, probability, statistics, and error analysis.

Components: Laboratory, Lecture
Course Equivalents: SC 301
Attributes: Offered Each Term
Requirement Group: Prerequisite: At least Sophomore standing.
Req. Designation: Technology

CE 302(3) Surveying, Geodetic Control, and Engineering Measurements
Fundamentals of terrestrial surveying measurements include leveling, distances, and angle measurements to compute Orthometric heights relative to a vertical survey datum and 2-D Cartesian coordinates in a horizontal survey datum for engineering projects. Exposure to advanced surveying techniques including GPS, UAV, bathymetric survey, LiDAR, and use of Autodesk Civil3D will be covered.

Components: Laboratory
Attributes: Offered Fall Term
Requirement Group: Prerequisite: MA131
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>013043</td>
<td>Introduction to Scheduling and Estimating</td>
<td>2</td>
<td>An introduction to the principles and theories of estimating and scheduling a construction project. Basic and advanced estimating and scheduling techniques will be discussed for both building and heavy/civil projects. The use of computers in estimating and scheduling will be highlighted in the course. Project: the student will estimate the cost of and submit a schedule for a medium sized building project given a complete set of contract documents and other project information. (2 credits of design)</td>
</tr>
<tr>
<td>007507</td>
<td>Construction Planning and Management</td>
<td>1</td>
<td>This course will focus on project planning, design services contracts, construction contract documents, construction management, labor relations, construction bonds and insurance, construction scheduling, estimating and bidding procedures, cost control, value engineering, and construction administration. Some topics will be presented by guest lecturers. (1 credit of design)</td>
</tr>
<tr>
<td>007501</td>
<td>Geotechnical Engineering I: Soil Mechanics</td>
<td>1</td>
<td>An introduction to geotechnical engineering. Identification, classification and engineering properties of soil. Topics include stress-strain and strength relationships, consolidation, permeability and compaction of soils. Related geotechnical design problems included. Laboratory experience included. (1 credit of design)</td>
</tr>
<tr>
<td>011378</td>
<td>Biogeochemical Earth Systems Science</td>
<td>1</td>
<td>[Cross-listed with EV 313, BY 313] This course will investigate the key concepts and principles of environmental science emphasizing the earth’s biogeochemical cycles and how they have been perturbed by human activities. Quantitative analysis of air, soil and water quality on local, regional and global scales will be a significant component of the course. Emerging principles in environmental science, including sustainability, industrial ecology, risk assessment and the precautionary principle will be introduced. In addition to the quantitative aspects, the course will consider the historical, social, and political contexts in which the practice of environmental science takes place.</td>
</tr>
<tr>
<td>007510</td>
<td>Geology For Engineers</td>
<td>1</td>
<td>This course explores the fundamentals of geology with respect to civil engineering. Topics include rock and mineral types, soils, soil formation and properties, geologic structures and topography, active tectonics and earthquake hazards. In addition, the course will cover slope stability, landslides, sediments and sediment transport, groundwater, formation and use of earth materials, and alteration of rocks and minerals. Instruction is conducted through lecture and laboratory exercises.</td>
</tr>
</tbody>
</table>
CE 316(3) Earth's Dynamic Climate: Science & Impacts

The course will present the scientific background, from a geologic perspective, behind the Earth's climate system, including drivers, processes and responses. Time will be spent examining proxy records to understand how we know about climates of the past. The second part of the course will use an earth science-based approach through the use of geologic principles to examine the past, present and potential impacts on earth systems and the societies constructed in various environments with a focus on how climate variations have and may impact civil and environmental engineering projects through applications of process geomorphology.

- **Components:** Lecture
- **Attributes:** Offered Fall Term
- **Requirement Group:** Prerequisites: CM131, PH131, or consent of instructor
- **Req. Designation:** Technology

CE 320(3) Structural Analysis

Linear elastic analysis of structural systems including the computation of internal and external forces and displacements produced by the application of loads. Statically determinate and indeterminate systems are considered. Laboratory experience included. (1 credits of design)

- **Components:** Laboratory, Lecture
- **Attributes:** One Design Credit, One communication unit, Offered Fall Term
- **Requirement Group:** Prerequisites: ES222
- **Req. Designation:** Technology

CE 330(3) Water Resources Engineering I

An introduction to water resources engineering. Topics include flow in pressurized conduits, hydraulic machinery, open channel flow, design of wastewater flow systems, hydrological cycle, rainfall and runoff analysis. Laboratory experience included. (1 credit of design)

- **Components:** Laboratory, Lecture
- **Attributes:** One Design Credit, One communication unit, Offered Fall and Spring
- **Requirement Group:** Prerequisite: ES330.
- **Req. Designation:** Technology

CE 340(3) Introduction to Environmental Engineering

An introduction to the fundamentals of environmental engineering and science. Discussion of the role of engineering in current and emerging environmental issues. Topics include: materials balances, reactor flow models, and chemical fate and transport, with applications in natural and engineered environmental systems. (1 credit of design)

- **Components:** Laboratory, Lecture
- **Attributes:** One Design Credit, Offered Spring Term
- **Requirement Group:** Prerequisites: MA131 and CM104 or CM132. Corequisite: MA232.
- **Req. Designation:** Technology

CE 380(3) Fundamentals of Environmental Engineering

This course explores chemical and physical fundamentals in solving environmental engineering problems related to water quality, water and wastewater treatment, air pollution, solid and hazardous waste management, sustainability, and risk assessment. The importance of mass balances and the physical and chemical processes involved in transferring chemicals within and between air, water and soil will be studied. Laboratory experiences included. (1 credit of design).

- **Components:** Laboratory, Lecture
- **Attributes:** One communication unit, Offered Spring Term
- **Requirement Group:** Prerequisites: CH210 or consent of instructor
- **Req. Designation:** Technology

CE 404(3) Applications in Scheduling and Estimating

An application of estimating and scheduling for a construction project. Students will take part in an intensive, project-based scheduling and estimating effort leading up to and including regional level competition as part of the Associated Schools of Construction. Projects will include commercial building, heavy/civil works, pre-construction services, and design-build projects. As part of a team, participants will prepare bid or proposal documentation, develop detailed reports, and provide an oral presentation to a client panel. (This course includes 2 design credits)

- **Components:** Lecture
- **Attributes:** Two Design Credits, Offered Fall Term
- **Requirement Group:** Prerequisites: CE 304, or consent of the instructor
- **Req. Designation:** Technology
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Offered Term</th>
<th>Course Title</th>
<th>Description</th>
<th>Components</th>
<th>Attributes</th>
<th>Requirement Group</th>
<th>Req. Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 406(3)</td>
<td>007508</td>
<td>2020-08-19</td>
<td>Infrastructure Construction</td>
<td>This course develops the procedures for the design and construction for a heavy civil construction project. Estimating resources (labor, materials, and equipment selection) as well as determining the sequence and required planning for a horizontal construction effort and/or a foundation/retaining structure (including: contract documents, project reports, equipment rental rates and equipment brochures and other project information). Students will also develop a distinct project packet to execute a project of this type for presentation to the faculty, potential guests, and students. (2 credits of design)</td>
<td>Lecture</td>
<td>Two Design Credits, Offered Fall Term</td>
<td>Prerequisites: CEE junior or senior standing.</td>
<td>Technology</td>
</tr>
<tr>
<td>CE 408(3)</td>
<td>011636</td>
<td>2015-09-15</td>
<td>Building Information Modeling (BIM) and Integrated Project Delivery (IPD)</td>
<td>Course provides an introduction to the emerging field of building information modeling and integrated project management for construction projects. Course will cover basic techniques and methods to the use of current/state of the art computer aided design software including Autodesk Revit, and Autodesk Navisworks. (2 credits of design)</td>
<td>Lecture</td>
<td>Two Design Credits, Offered Each Term</td>
<td>Prerequisites: CEE Junior or Senior standing</td>
<td>Technology</td>
</tr>
<tr>
<td>CE 409(3)</td>
<td>012026</td>
<td>2015-03-09</td>
<td>Fundamentals of Building Systems</td>
<td>An examination of building life support systems and technology of interest to civil engineers in the planning, operation, and maintenance of buildings. Topics include human comfort, electrical, mechanical, water and waste, transportation, lighting, and other systems necessary for building utilization. Special cases will be examined in integrated project delivery, sustainable design practices, and energy modeling.</td>
<td>Lecture</td>
<td>Offered Spring Term</td>
<td>Prerequisites: Must have junior or senior standing.</td>
<td>Technology</td>
</tr>
<tr>
<td>CE 410(3)</td>
<td>012045</td>
<td>2018-11-13</td>
<td>Sustainable Infrastructure and Building</td>
<td>A study of the use of sustainability rating systems for infrastructure and building projects. Utilizing the USGBC LEED and the ISI Envision rating systems, this course will teach the fundamentals of sustainable building and acquaint students with the processes required to certify/verify projects to meet an independent rating standard. This course will prepare students to take the LEED GA and/or Envision ENV PV exams.</td>
<td>Lecture</td>
<td>Offered Fall Term</td>
<td>Prerequisites: Must have junior or senior standing.</td>
<td>Technology</td>
</tr>
<tr>
<td>CE 411(3)</td>
<td>007509</td>
<td>2022-06-07</td>
<td>Construction Materials Engineering</td>
<td>Proper procedures for installation of major construction materials, including soil, concrete, steel, pipe, masonry units, etc. Material production including Portland cement concrete, concrete masonry units, bituminous concrete, and structural steel. Project specifications will be reviewed governing the above material, including methods of designing, testing and inspecting construction materials and completed installations. (2 credits of design)</td>
<td>Lecture</td>
<td>Two Design Credits, Offered Fall Term</td>
<td>Prerequisites: Junior or Senior standing</td>
<td>Technology</td>
</tr>
<tr>
<td>CE 415(3)</td>
<td>007511</td>
<td>2015-02-23</td>
<td>Foundations, Stability, and Retaining Structures</td>
<td>Application of principles of soil mechanics to the design of shallow and deep foundations, retaining structures and slope stability. Interpretation of soil boring logs as related to geotechnical engineering design. (3 credits of design)</td>
<td>Lecture</td>
<td>Three Design Credits, Offered Fall Term</td>
<td>Prerequisite: CE310.</td>
<td>Technology</td>
</tr>
</tbody>
</table>
Engineering - Civil & Environmental Eng - Subject: Civil and Environmental Eng

CE 420(3) Course ID: 007512 2022-06-07
Computational Methods of Structural Analysis
The matrix stiffness method, theory and implementation in MATLAB, for the analysis of trusses, beams, frames, and grids. Discussion of thermal effects, support settlements, nonlinear effects, and other modeling considerations.
Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: CE320 with minimum grade of C or consent of the instructor.
Req. Designation: Technology

CE 430(3) Course ID: 007898 2015-02-23
Water Resources Engineering II
Hydraulic structures, design of open channels, flood routing, runoff models, design of stormwater management systems, groundwater hydrology, transport and mixing processes. (1 credit of design)
Components: Lecture
Attributes: One Design Credit, Offered Spring Term
Requirement Group: Prerequisite: CE330.
Req. Designation: Technology

CE 433(3) Course ID: 010510 2021-11-09
Human Exposure Analysis
Human exposure analysis is an emerging science concerned with how humans come into contact with chemicals in the environment via inhalation, ingestion, and dermal contact. The course focuses on scientific and engineering issues, including direct measurement and model constructs. Students gain an understanding of the complexities, uncertainties, and physical, chemical and biological issues relevant to human exposures resulting from the use and release of toxic compounds. Topics include human exposure analysis terminology, pollutant fate and transport, human activity patterns, occupational exposure, indoor air quality, dosimetry, and statistical and mechanistic tools for exposure assessment. For the final project, the students design and perform a small-scale human exposure study using monitoring instruments and/or exposure models. (2 credits of design.)
Components: Lecture
Course Equivalents: CE 533
Attributes: Two Design Credits, Offered Even Falls
Requirement Group: Prerequisites: Senior or graduate status in engineering or IH or consent of the instructor.
Req. Designation: Technology

CE 434(3) Course ID: 011708 2021-11-09
Sustainable Development Engineering
This course outlines the principles of sustainable engineering for improving sanitation and environmental health in developing communities both internationally and nationally. Topics include sustainable development and appropriate technologies for water and wastewater treatment, water storage and delivery, watershed management, solid waste management, and indoor air quality. The course highlights the importance of community participation and relationship building throughout the development and implementation of engineering projects. At least 2/3 of the course is dedicated to a team-based, sustainable development design project. (2 credits of design)
Components: Lecture
Course Equivalents: CE 534
Attributes: Two Design Credits, One communication unit, Science, Technology and Society, Offered Odd Falls
Requirement Group: Prerequisite: CE340 or consent of the instructor.
Req. Designation: Technology

CE 435(3) Course ID: 011393 2022-01-27
Groundwater Hydrology and Geochemistry
(Cross-listed with EV 435) This class provides fundamental understanding of the key physical and chemical processes impacting groundwater resources and quality. Emphasis is on groundwater geology, physical characteristics of flow, and geochemical properties of groundwater. Groundwater contamination and contaminant transport and modeling will be introduced. The course will prepare students to qualitatively and quantitatively analyze fluid and contaminant flow in varied geologic systems.
Components: Lecture
Attributes: One Design Credit, Given When Needed
Requirement Group: Prerequisites: CM132 (or CM104/106), and MA131, and (or EV/BY280)
Req. Designation: Technology
Reinforced Concrete Design

The investigation and design of reinforced structural elements such as beams, slabs, columns and footings to meet ACI 318 code requirements. (3 credits of design)

- **Components:** Lecture
- **Attributes:** Three Design Credits, Offered Spring Term
- **Requirement Group:** Prerequisite: ES 222; Corequisite: CE 320
- **Req. Designation:** Technology

Steel Design

Determination of loads for design; behavior and design of tension members, columns, beams, beam-columns, bolted connections, and welded connections; use of LRFD specifications and the Uniform Building Code. (3 credits of design)

- **Components:** Lecture
- **Attributes:** Three Design Credits, Offered Fall Term
- **Requirement Group:** Prerequisite: CE320 or consent of the instructor.
- **Req. Designation:** Technology

Introduction to Architectural Engineering

This course will examine the integration of architecture and engineering disciplines in building design and will include introduction to the architectural design process; historical development of architecture/engineering; issues of structural, electrical, HVAC, plumbing, environmental, and acoustical engineering in buildings; economic, construction, and spatial maintenance considerations; professional practice and building codes. Students will be assigned graphic, freehand drawing/sketching, calculation and written exercises as well as a final project. (2 credits of design)

- **Components:** Laboratory, Lecture
- **Attributes:** Two Design Credits, Offered Fall Term
- **Requirement Group:** Prerequisites: ES220 and CE212, or consent of instructor.
- **Req. Designation:** Technology

Advanced Strength of Materials

A study of properties of materials, general stress-strain relationships, modern strength theories, unsymmetrical bending, curved beams, beams on elastic foundations, and the equations of elasticity and plasticity (1 credit of design)

- **Components:** Lecture
- **Course Equivalents:** ME 452
- **Attributes:** Given When Needed
- **Requirement Group:** Prerequisites: ES222
- **Req. Designation:** Technology

Properties & Performance of Concrete Materials

This course explores the materials science aspects of properties and behavior of Portland Cement Concrete, including the properties of raw materials in concrete such as cement, aggregates, mineral and chemical admixtures, and fibers. Topics include: physical and chemical aspects of cement hydration and the role of binder types, the influence of type and morphology of hydrates, fresh and hardened concrete properties, introduction to fracture behavior of concrete, and concrete durability issues such as freezing and thawing, sulfate attack, and corrosion of reinforcing steel. (1 credit of design)

- **Components:** Lecture
- **Attributes:** One Design Credit, Offered Spring Term
- **Requirement Group:** Prerequisite: ES260.
- **Req. Designation:** Technology

Transportation Systems Design

Planning and design of transportation systems with emphasis on highway geometric design components, highway pavement, airport and other selected topics. (3 credits of design)

- **Components:** Lecture
- **Attributes:** Three Design Credits, Offered Fall Term
- **Requirement Group:** Prerequisites: At least junior standing.
- **Req. Designation:** Technology
**CE 463 (3)
Course ID: 012829
2018-07-13**

Railroad Engineering

[Cross Listed with CE563] This course focuses on principles of railroad transportation and covers the following topics: Railroad engineering efficiency, economics, and energy; Cost-benefit analyses of rail transportation systems; Route selection; Geometric design of railroad alignment; Train speed, power, and acceleration requirements; Railroad engineering materials characterization (rail, crosstie, ballast, sub-ballast, and subgrade); Subgrade design and construction and drainage; and High Speed Rail (HSR) design and construction.

Components: Lecture

Course Equivalents: CE 563

Attributes: Given When Needed

Req. Designation: Technology

**CE 470 (3)
Course ID: 011710
2021-01-25**

River Restoration

This course provides fundamental understanding of hydrologic, hydraulic, and geomorphic processes of river restoration systems and their ecological impacts. Topics include river hydraulics, sediment transport, fluvial geomorphology, aquatic habitats, channel design, reservoir sedimentation, dam removal/decommission, and fish passage. Emphasis will be given to fluvial geomorphology and hydraulic design of river restoration projects. Computer modeling of river hydraulics and morphodynamics with applications to river restoration design will be introduced.

Components: Lecture

Attributes: Offered Fall Term

Requirement Group: Prerequisites: CE330; or permission of the instructor.

Req. Designation: Technology

**CE 477 (3)
Course ID: 007520
2021-11-09**

Atmospheric Chemistry

(Cross-listed with CM 476) This course will cover the evolution of the atmosphere from its initial formation to its natural background condition to its current state perturbed by human activities and reviews appropriate legislation; detailed descriptions of the chemistry of the carbon, nitrogen and sulfur cycles; characterization of the atmospheric aerosol and its role in heterogeneous reaction sand materials transport; stratospheric ozone and problems with its depletion; airborne radio-activity and its role in atmospheric ion chemistry.

Components: Lecture

Course Equivalents: CE 577, CH 576, CM 476, CM 576

Attributes: Offered Odd Springs

Requirement Group: Prerequisites: CM370 or CM371 or ES340.

Req. Designation: Technology

**CE 478 (3)
Course ID: 007521
2022-02-02**

Solid Waste Management and Landfill Design

This course provides a basic understanding of the essential concepts of solid waste management to include identification, collection, transport, processing and disposal of solid wastes. Emphasis is placed upon the legal requirements and practice resulting from the Resource Conservation and Recovery Act (RCRA) and applicable state law. Solid waste issues include characterization, generation, collection, routes, recycling, landfills, and siting. The design and operation of collection routes, transfer stations, Material Recovery Facilities (MRFs), and landfills are covered. Composting and thermal processing operations are also included. (2 credits of design)

Components: Lecture

Attributes: Two Design Credits, Offered Even Falls

Requirement Group: Prerequisites: Must have junior or senior standing.

Req. Designation: Technology

**CE 479 (3)
Course ID: 007522
2022-06-07**

Water and Wastewater Treatment Design

A study of physical and chemical operations and biological processes utilized in the treatment of water and wastewater for municipalities and industry. The course emphasizes theoretical and design aspects of these processes.

Components: Lecture

Course Equivalents: CE 579

Attributes: Three Design Credits, One communication unit, Offered Fall Term

Requirement Group: Prerequisites: ES330, CE340, or consent of the instructor.

Req. Designation: Technology
Hazardous Waste Management Engineering

This course is an introduction to the emerging field of hazardous waste management. This course provides an understanding of environmental regulations, management techniques to minimize the generation and disposal of hazardous wastes, and technologies to treat wastes and remediate disposal sites.

Components: Lecture
Attributes: 2.5 Design Credits, One communication unit, Offered Even Falls
Requirement Group: Prerequisite: CE340 or Corequisite: CE340.
Req. Designation: Technology

Environmental Systems Analysis Design

This course presents the basic principles of systems analysis as applied to resource allocation and design problems commonly encountered in the field of environmental engineering. Central to the material covered is the concept of optimal problem solution and its use in choosing among alternative designs or policies. All students will complete a semester project; a greater level of quantitative analysis will be expected from students taking the course for graduate credit. (2 credits of design)

Components: Lecture
Course Equivalents: CE 582
Attributes: Two Design Credits, Offered Odd Falls
Requirement Group: Prerequisites: CE340 or CE579 or equivalent course, EC350, or consent of the instructor.
Req. Designation: Technology

Industrial Ecology

An exploration of the methods necessary for designing and implementing changes in manufacturing processes to increase sustainability. This course will identify the impacts associated with resource consumption and environmental pollution, and present the quantitative tools necessary for assessing environmental impacts and to design for sustainability. Topics include: industrial ecology, life cycle analysis and the integration of the environment into economic activities. (1 credit of design)

Components: Lecture
Attributes: One Design Credit, Offered Even Falls
Requirement Group: Prerequisites: prior college level exposure to the concepts of mass and energy conservations, one of the following: CE340, CH220, ES330, ES340, CH301, CH271 or consent of the instructor.
Req. Designation: Technology

Environmental Engineering Laboratory

This course provides students laboratory experiences and develops students' abilities to conduct environmental relevant experimentation, analyze and interpret data, and write scientific laboratory reports. The content of lectures and experiments include theory and application of environmental laboratory methods for measurement of physical, chemical, and biological characteristics in natural and engineered environmental systems within air, water, and soil media. A final project emphasizes experimental design, and requires team work and oral presentations.

Components: Lecture
Attributes: One communication unit, Offered Fall Term
Requirement Group: Requisites: CE 340, CE 380, and junior or higher standing, or instructor consent
Req. Designation: Technology

Senior Design (Structures, Transportation, Geotechnical, Construction, Architectural/Facilities)

A comprehensive design of an open ended project related to structural, foundation/geotechnical, architectural/facilities and/or transportation design as well as construction management will be developed by teams of students. The design will be based on knowledge acquired in prior courses, professional ethics and engineering economics. Written reports and oral presentations about the design will be made to the faculty, potential guests, and student peers. (3 credits of design)

Components: Lecture
Attributes: Three Design Credits, One communication unit, Offered Spring Term
Requirement Group: Prerequisites: Senior standing Corequisites: CE310, and either CE441 or CE442 (or consent of the instructor)
Req. Designation: Technology
Engineering - Civil & Environmental Eng - Subject: Civil and Environmental Eng

CE 491(3) Course ID:007527 2015-03-09

Senior Design (Water Resources, Environmental)
A comprehensive design of an open ended project related to water resource and environmental engineering design will be developed by teams of students. The design will be based on knowledge acquired in prior courses, professional ethics and engineering economics. Written reports and oral presentations about the design will be made to the faculty and student peers. (3 credits of design)

Components: Lecture
Attributes: Three Design Credits, One communication unit, Offered Spring Term
Requirement Group: Prerequisites: Senior standing and CE430, CE479, CE480, CE481, CE478 or CE586, or consent of instructor
Req. Designation: Technology

CE 495(1 - 3) Course ID:007528 2015-02-12

Special Projects in Civil and Environmental Engineering
An individual project is undertaken by the student under the guidance of a staff member. A complete report is required.
Prerequisite: consent of the department chair.

Components: Independent Study
Attributes: Offered Fall Term
Req. Designation: Technology

CE 496(1 - 3) Course ID:007529 2015-01-20

Special Projects in Civil and Environmental Engineering
An individual project is undertaken by the student under the guidance of a staff member. A complete report is required.
Prerequisite: consent of the department chair.

Components: Independent Study
Attributes: Offered Spring Term
Req. Designation: Technology

CE 499(0) Course ID:012880 2022-06-07

Fundamentals of Engineering Exam Preparation
This course provides preparation for students taking the NCEES Fundamentals of Engineering (FE) Exam. Topics covered will mirror the materials covered specific to the Civil Engineering and Environmental Engineering FE examinations. Lectures will be provided by faculty from across the department facilitated by the department office.

Components: Lecture
Attributes: Offered Fall and Spring
Req. Designation: Technology

CE 502(3) Course ID:013048 2020-08-25

Applications in Geospatial Analytics, Science, & Engineering
(Cross-listed with SC 502, EV 502) This course will use techniques in geospatial analytics, science, and engineering to address applied challenges in various contextual situations. Geotagging, network analysis, spatial visualization, geospatial data manipulation, cartographic presentations, and other similar methods will be studied and applied to real-world or research applications. Students will develop a set of tools that enable completion of projects in the major field using geospatial capabilities.
Prerequisites: Graduate standing, CE 301, or consent of the instructor

Components: Lecture
Course Equivalents: SC 502, EV 502
Attributes: Offered Spring Term
Req. Designation: Technology

CE 505(3) Course ID:013044 2020-08-25

Project Controls and Lean Methods in Construction
(Cross-listed with EM 505) This course will cover the use of construction project management controls typical in varying scales of projects. Using the Lean Construction model, the course will cover Lean as both a system and culture, while emphasizing the central place of project delivery processes. Topics in project controls will include: Goal Setting, Scheduling, Budgeting, Problem Solving, and Decision-Making.
Prerequisites: Graduate standing, CE 305, or consent of the instructor

Components: Lecture
Course Equivalents: EM 505
Attributes: Offered Spring Term
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Title</th>
<th>Run Date</th>
<th>Run Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>012138</td>
<td>Advanced Construction Engineering</td>
<td>2016-02-26</td>
<td></td>
</tr>
<tr>
<td>013046</td>
<td>Building Information Modeling for Construction Prefabrication</td>
<td>2022-06-07</td>
<td></td>
</tr>
<tr>
<td>012046</td>
<td>Sustainable Infrastructure and Building</td>
<td>2018-07-13</td>
<td></td>
</tr>
<tr>
<td>007531</td>
<td>Structural Dynamics</td>
<td>2022-01-26</td>
<td></td>
</tr>
<tr>
<td>011980</td>
<td>Elastic Waves and Non-Destructive Tests</td>
<td>2015-01-23</td>
<td></td>
</tr>
<tr>
<td>007533</td>
<td>Foundations, Stability, and Retaining Structures</td>
<td>2015-02-12</td>
<td></td>
</tr>
</tbody>
</table>

Advanced Construction Engineering: A study of emerging technologies, trend setting techniques, and new means and methods in construction engineering management. Topics include: emerging technologies which are intended to enhance the analysis, design, construction, performance, and asset management for construction engineering projects; lessons learned from construction sites covering infrastructure and building projects; construction equipment management and selection for construction applications; composite, hybrid, or new materials for construction applications; emerging trends in project delivery, project cost control, and procurement of construction services.

Building Information Modeling for Construction Prefabrication: This course goes beyond the basics of Building Information Modeling (BIM) moving models from conceptual into application, specifically in order to be able to prefabricate building elements. Students will work to create virtual elements that are then printed via 3D printer or shop prefabricated during the course. The course will cover advanced and emerging techniques and methods to the use of current/state of the art computer aided design software including Autodesk Revit.

Sustainable Infrastructure and Building: An application of the use of sustainability rating systems for infrastructure and building projects. Students will use the USGBC LEED and the ISI Envision systems to execute an analysis of a real or realistic project. Focusing on fundamentals of sustainable construction, this course will acquaint students with the processes required to certify/verify projects to meet an independent rating standard. This course will prepare students to take the LEED GA and/or Envision ENV PV exams.

Elastic Waves and Non-Destructive Tests: The course will include 3 modules: elastic waves, inversion, and applications to real-world problems. The module of elastic waves will cover stress propagation problems in elastic solids and waveguides. The module of inversion will include (i) the fundamentals on inverse theory, experimental data and signal processing, (ii) basic inversion methods (global and deterministic optimizations, simulated annealing and genetic algorithm, Gauss-Newton and gradient methods, etc.). Lastly, the module of real-world problems will consist of applications in site characterization, sinkhole detection, unknown foundation, bridge deck evaluation.

Foundations, Stability, and Retaining Structures: Application of principles of soil mechanics to the design of shallow and deep foundations, retaining structures and slope stability. Interpretation of soil boring logs as related to geotechnical engineering design. Preparation of design templates using spreadsheets. (3 credits of design)
CE 517(3) Course ID:007535 2022-06-07
Foundations and Ground Improvement
Introduction or review of soil mechanics and foundation engineering. Understanding of different ground improvement methods such as aggregate piers, vibro stone columns, dynamic compaction, wick drains, grouting, and deep soil mixing. Selection and design of ground improvement methods.
Components: Lecture
Attributes: Offered Fall When Needed
Req. Designation: Technology

CE 518(3) Course ID:013083 2022-06-07
Soil Structure Interaction
Application of soil mechanics and foundation engineering to analyze load transfer of deep foundations. Development of p-y curves of laterally loaded piles and T-z and Q-z curves for axially loaded piles. Understanding of behaviors of grouped piles subjected to lateral and vertical loads. Calculation of vertical stiffness of pile foundations and natural frequency. Long-term performance prediction.
Components: Lecture
Requirement Group: Prerequisite: CE310 or consent of the instructor
Req. Designation: Technology

CE 520(3) Course ID:007537 2022-06-07
Computational Methods of Structural Analysis
The matrix stiffness method, theory and implementation in MATLAB, for the analysis of trusses, beams, frames, and grids. Discussion of thermal effects, support settlements, nonlinear effects, and other modeling considerations.
Components: Lecture
Attributes: Offered Spring Term
Req. Designation: Technology
Advanced Fluid Mechanics
An introductory level graduate course in fluid mechanics. Spatial and material coordinates, kinematics of fluid motion, continuity and momentum equations, constitutive relations, simple solutions, potential flows, boundary layer theory, creeping flow, flow through porous media, particle motion, interfacial phenomena, turbulence.

Prerequisite: CH301 or ES330 or equivalents.

Components: Laboratory, Lecture
Course Equivalents: ME 527, ME 527
Attributes: Offered Fall Term
Requirement Group: Prerequisites: CH301 or ES330 or equivalent
Req. Designation: Technology
CE 533(3) Human Exposure Analysis

Course ID: 011815
Year: 2018-07-13

Human exposure analysis is an emerging science concerned with how humans come into contact with chemicals in the environment via inhalation, ingestion, and dermal contact. The course focuses on scientific and engineering issues, including direct measurement and model constructs. Students gain an understanding of the complexities, uncertainties, and physical, chemical and biological issues relevant to human exposures resulting from the use and release of toxic compounds. Topics include human exposure analysis terminology, pollutant fate and transport, human activity patterns, occupational exposure, indoor air quality, dosimetry, and statistical and mechanistic tools for exposure assessment. For the final project, the students design and perform a small-scale human exposure study using monitoring instruments and/or exposure models. (2 credits of design.)

Components: Lecture
Attributes: Offered Even Falls
Req. Designation: Technology

CE 534(3) Sustainable Development Engineering

Course ID: 011709
Year: 2021-11-09

Sustainable Development Engineering

This course outlines the principles of sustainable engineering for improving sanitation and environmental health in developing communities both internationally and nationally. Topics include sustainable development and appropriate technologies for water and wastewater treatment, water storage and delivery, watershed management, solid waste management, and indoor air quality. The course highlights the importance of community participation and relationship building throughout the development and implementation of engineering projects. At least 2/3 of the course is dedicated to a team-based, sustainable development design project. (2 credits of design)

Components: Lecture
Course Equivalents: CE 434
Attributes: Offered Odd Falls
Req. Designation: Technology

CE 535(3) Groundwater Hydrology and Geochemistry

Course ID: 011395
Year: 2022-02-02

Groundwater Hydrology and Geochemistry

(Cross-listed with EV 535) This class provides fundamental understanding of the key physical and chemical processes impacting groundwater resources and quality. Emphasis is on groundwater geology, physical characteristics of flow, and geochemical properties of groundwater. Groundwater contamination and contaminant transport and modeling will be introduced. The course will prepare students to qualitatively and quantitatively analyze fluid and contaminant flow in varied geologic systems.

Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology
Finite Element Methods

This course is an introduction to the finite element method, from a mathematical as well as a modeling and applications point of view. The basic theory and implementation will be discussed in the context of continuum problems in linear elasticity, potential flow and plate modeling. If time permits, additional applications such as structures, electromagnetics, fluid mechanics, ground water and geotechnics will also be discussed. Topics include: weak formulations and the principle of virtual work, discretization and interpolation-function selection, assembly and solution of the system equations, error estimates and accuracy assessment. When taught in conjunction with CE 438/ME 453 the course requires additional independent work for those registered for the graduate course.

Prerequisite: MA232, MA339, or MA330, ES222, ES330 and the ability to program. Consent of the instructor may be used to replace some prerequisites.

Course Equivalents: MA 572, ME 515

Components: Lecture

Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID:</th>
<th>Course Title</th>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>013040</td>
<td>Bridge Engineering</td>
<td>2020-04-20</td>
<td>An introduction to bridge engineering. Topics will focus on highway bridge planning, design, construction and management with emphasis on structural engineering, hydraulic engineering, geotechnical engineering and economics. Bridge projects also are influenced heavily by issues such as maintenance of traffic, environmental considerations, public input, construction methods, materials, estimating and scheduling all of which will be covered in various degrees. Components: Lecture Attributes: Offered Fall Term Requirement Group: Prerequisite: CE320 Req. Designation: Technology</td>
</tr>
<tr>
<td>012025</td>
<td>Experimental Methods in Structures</td>
<td>2015-03-05</td>
<td>This course will introduce fundamental principles, procedures, and applications of experimental methods in structures. Topics covered in this course include sensors, data acquisition, vibration measurement, signal processing, similitude law, system identification, and structural modeling. Students will learn Labview programming to design a simple experiment. If time allows, state-of-the-art experimental methods such as hybrid simulation will be presented. The course consists of lectures and hands-on laboratory sessions. Components: Lecture Attributes: Given When Needed Req. Designation: Technology</td>
</tr>
<tr>
<td>007549</td>
<td>Theory of Elasticity</td>
<td>2022-02-02</td>
<td>[Cross-listed with ME 551] A study of the mathematical theory of elasticity and its application to engineering problems; development of general stress-strain relationships, equations of equilibrium and compatibility; plane stress and plane strain; stress functions; applications to beam bending and torsion. Prerequisite: ES222, CE/ME554 or consent of the instructor. Components: Lecture Attributes: Given When Needed Req. Designation: Technology</td>
</tr>
<tr>
<td>007550</td>
<td>Advanced Strength of Materials</td>
<td>2022-06-07</td>
<td>Discussion and theory concerning properties of materials, general stress-strain relationships, modern strength theories, unsymmetrical bending, curved beams, beams on elastic foundations, the equations of elasticity and plasticity (1 credit of design) Components: Lecture Course Equivalents: ME 552 Attributes: Given When Needed Req. Designation: Technology</td>
</tr>
<tr>
<td>010520</td>
<td>Properties and Performance of Concrete Materials</td>
<td>2018-07-13</td>
<td>This course explores the materials science aspects of properties and behavior of Portland Cement Concrete, including the properties of raw materials in concrete such as cement, aggregates, mineral and chemical admixtures, and fibers. Topics include: physical and chemical aspects of cement hydration and the role of binder types, the influence of type and morphology of hydrates, fresh and hardened concrete properties, introduction to fracture behavior of concrete, and concrete durability issues such as freezing and thawing, sulfate attack, and corrosion of reinforcing steel. Prerequisite: ES260. Components: Lecture Attributes: Offered Spring Term Req. Designation: Technology</td>
</tr>
<tr>
<td>007551</td>
<td>Continuum Mechanics</td>
<td>2014-11-18</td>
<td>[Cross-listed with ME 554] The course involves the analysis of stress and deformation at a point and the derivation of the fundamental equations by applying the basic laws of conservation of mass, energy, and momentum and those of thermodynamics. Vector and cartesian tensors are reviewed. Relationships (constitutive laws) are then developed between stress, strain, and strain rate. The basic equations governing the behavior of any continuum and applications to solids and fluids are covered. Components: Lecture Course Equivalents: ME 554 Req. Designation: Technology</td>
</tr>
</tbody>
</table>
Engineering - Civil & Environmental Eng - Subject: Civil and Environmental Eng

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Run Date</th>
<th>Course Details</th>
</tr>
</thead>
</table>
| CE 555(3) | 010605 | 2019-09-17 | Structural Damage Assessment, Rehabilitation, and Repair
- An investigation of structural damage and methods applicable for assessing their capacity, durability, and future use. Additionally, evaluation and design of methods of practicable rehabilitation and/or repair of structural elements using traditional and non-traditional methods and materials. Case studies will often be used to assess structural damage. (1 credit of design)

Components:	Lecture
Attributes:	Given When Needed
Req. Designation:	Technology

| CE 563(3) | 012830 | 2018-07-13 | Railroad Engineering
- Cross Listed with CE463
- This course is designed to help students gain knowledge in following topics:
 - Railroad engineering efficiency, economics, and energy; Cost-benefit analyses of rail transportation systems;
 - Geometric design of railroad alignment; Train speed, power, and acceleration requirements; Railroad engineering materials characterization (rail, crosstie, ballast, sub-ballast, and subgrade); Subgrade design and construction and drainage; and High Speed Rail (HSR) design and construction. Graduate students are required to do an independent term project which allows them to study a particular area of railway engineering in more depth, and gives the students experience with the railroad engineering literature as well as more experience in technical communications (the term paper).

Components:	Lecture
Course Equivalents:	CE 463
Attributes:	Given When Needed
Req. Designation:	Technology

| CE 569(3) | 011979 | 2015-01-23 | Watershed Analysis
- Conceptual and quantitative analysis of watershed processes will be introduced with an emphasis on modeling surface water hydrology and water resources management. Watershed modeling concepts including analysis of time series, spatially variable data, model calibration, and uncertainty analysis will be studied and demonstrated. The course will emphasize critical analysis of current hydrologic computational methods through literature review and hands-on use of watershed models.

Prerequisites:	Hydrology/Water Resources Engineering
Components:	Lecture
Attributes:	Given When Needed
Req. Designation:	Technology

| CE 570(3) | 011711 | 2021-01-25 | River Restoration
- This course provides fundamental understanding of hydrologic, hydraulic, and geomorphic processes of river restoration systems and their ecological impacts. Topics include river hydraulics, sediment transport, fluvial geomorphology, aquatic habitats, channel design, reservoir sedimentation, dam removal/decommission, and fish passage. Emphasis will be given to fluvial geomorphology and hydraulic design of river restoration projects. Computer modeling of river hydraulics and morphodynamics with applications to river restoration design will be introduced.

Components:	Lecture
Attributes:	Offered Fall Term
Requirement Group:	Prerequisites: CE330; or permission of the instructor.
Req. Designation:	Technology

| CE 571(3) | 011981 | 2015-01-23 | Computational River Dynamics
- This course covers basic principles and numerical methods for modeling free-surface turbulent flow, sediment transport and contaminant transport. Topics include mathematical description of free-surface flow and sediment transport, fundamentals of sediment transport, advanced numerical methods, one-, two- and three-dimensional models, domain decomposition and model integration, simulation of dam-break fluvial processes, simulation of vegetation effects on flow and sediment transport, cohesive sediment transport modeling, and contaminant transport modeling.

Prerequisites:	Hydraulics, Numerical Methods, Sediment Transport
Components:	Lecture
Attributes:	Given When Needed
Req. Designation:	Technology
Advanced Open Channel Hydraulics

Course ID: CE 572(3)
Offered: 2019-04-19
Components: Lecture
Prerequisites: Undergraduate Fluid Mechanics, Water Resources Engineering I or equivalent or consent of the instructor.

Sediment Transport

Course ID: CE 573(3)
Offered: 2015-01-23
Components: Lecture
Prerequisite: CE430 or CE572 or consent of the instructor.

Ecohydraulics

Course ID: CE 574(3)
Offered: 2019-04-24
Components: Lecture
Prerequisites: Undergraduate Fluid Mechanics, Water Resources Engineering I or equivalent or consent of the instructor.

Coastal Engineering

Course ID: CE 575(3)
Offered: 2015-01-23
Components: Lecture
Prerequisite: CE572 or consent of the instructor.

Hydraulic Engineering in Cold Regions

Course ID: CE 576(3)
Offered: 2015-01-23
Components: Lecture
Prerequisite: CE430 or CE572 or consent of the instructor.

Atmospheric Chemistry

Course ID: CE 577(3)
Offered: 2021-11-09
Components: Lecture
Prerequisite: CM370 or CM371 or ES340.
CE 579(3) Water and Wastewater Treatment Design

- **Course ID:** 007559
- **Run Date:** 2022-06-07

A study of the physical, chemical and biological operations and processes utilized in the treatment of water and wastewater for both municipalities and industries. The course emphasizes both theoretical and design aspects of these processes, and includes appropriate laboratory demonstrations. Preparation of an individual design report will be required. (2 credits of design)

Prerequisites: ES330 or consent of the instructor. No credit if credit given for CE479 or similar course.

Components:
- Lecture

Course Equivalents:
- CE 479

Attributes:
- Offered Fall Term

Req. Designation: Technology

CE 580(3) Environmental Chemistry

- **Course ID:** 007560
- **Run Date:** 2015-02-12

The fundamentals of inorganic, organic, and physical chemistry with particular emphasis on those topics having application to environmental engineering practice. Chemical equilibria among gaseous, aqueous and solid phases are stressed with a strong mathematical approach. This course provides a basis for the understanding of chemical phenomena in aquatic environments.

Prerequisite: consent of the instructor.

Components:
- Lecture

Attributes:
- Offered Fall Term

Req. Designation: Technology

CE 581(3) Hazardous Waste Management Engineering

- **Course ID:** 007561
- **Run Date:** 2022-02-02

This course is an introduction to the emerging field of hazardous waste management. This course provides an understanding of environmental regulations, management, techniques to minimize the generation and disposal of hazardous wastes, and technologies to treat wastes and remediate disposal site. (1.5 credits of design)

Prerequisites: CE340 or CE579 or equivalent course, or consent of instructor.

Components:
- Lecture

Attributes:
- Offered Even Falls

Req. Designation: Technology

CE 582(3) Environmental Systems Analysis and Design

- **Course ID:** 007562
- **Run Date:** 2018-07-13

This course presents the basic principles of systems analysis as applied to resource allocation and design problems commonly encountered in the field of environmental engineering. Central to the material covered is the concept of optimal problem solution and its use in choosing among alternative designs or policies. All students will complete a semester project; a greater level of quantitative analysis will be expected from students taking the course for graduate credit. (2 credits of design)

Prerequisites: CE340 or CE579 or equivalent course, EC350, or consent of instructor.

Components:
- Lecture

Course Equivalents:
- CE 482

Attributes:
- Offered Odd Falls

Req. Designation: Technology

CE 584(3) Chemodynamics

- **Course ID:** 007564
- **Run Date:** 2015-02-12

This course investigates what happens to a chemical when it is introduced into the environment and the factors that determine and influence its distribution. The dynamics of pollutant transfer in the environment, the relationship between their physical-chemical properties and transport, their persistence in the biosphere and their partitioning in biota are studied. Quantitative models of pollutant transfer between air-water, air-soil and water-sediment are developed. (1 credit of design)

Prerequisite: consent of the instructor.

Components:
- Lecture

Attributes:
- Offered Fall Term

Req. Designation: Technology
CE 586(3) Course ID: 007566 2018-07-13

Industrial Ecology
An exploration of the methods necessary for designing and implementing changes in manufacturing processes to increase sustainability. This course will identify the impacts associated with resource consumption and environmental pollution, and present the quantitative tools necessary for assessing environmental impacts and to design for sustainability. Topics include: industrial ecology, life cycle analysis and the integration of the environment into economic activities. (1 credit of design)
Prerequisites: prior college level exposure to the concepts of mass and energy conservations, one of the following: CE340, CH250, ES330, ES340, CH301, CH271 or consent of the instructor.
Components: Lecture
Attributes: Offered Even Falls
Req. Designation: Technology

CE 587(3) Course ID: 007567 2022-06-07

Environmental Engineering Laboratory
This course provides students laboratory experiences and develops students' abilities to conduct environmental relevant experimentation, analyze and interpret data, and write scientific laboratory reports. The content of lectures and experiments include theory and application of environmental laboratory methods for measurement of physical, chemical, and biological characteristics in natural and engineered environmental systems within air, water, and soil media. A final project emphasizes experimental design, and requires team work and oral presentations.
Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology

CE 590(1 - 6) Course ID: 012889 2021-01-26

Graduate Degree Completion Project
A project in civil and environmental engineering under the direction of a faculty advisor or program director. Credit for this work is given when the requirements for the degree are completed including the presentation of a project as appropriate to the degree program.
Components: Lecture
Attributes: Offered Each Term
Req. Designation: Technology

CE 591(3) Course ID: 012139 2016-07-01

Special Topics in Construction Engineering Management
This course includes lectures and seminars covering emerging topics in civil and environmental engineering. Topics will include, but are not limited to: emerging technologies, including both software and hardware systems, which are intended to enhance the analysis, design construction, performance, and asset management for civil and environmental engineering projects; lessons learned from construction, civil, and environmental engineering equipment management and selection for site applications. Presentations are given by subject area experts with complement lectures by the instructor. Case studies will be reviewed and researched for further development and discussion within the course.
Components: Lecture
Attributes: Given When Needed
Requirement Group: Restriction: Graduate standing required.
Req. Designation: Technology

CE 595(1 - 3) Course ID: 011433 2015-01-23

Special Topics in Civil and Environmental Engineering
Advanced study of selected topics in the area of civil and environmental engineering.
Components: Independent Study
Attributes: Given When Needed
Req. Designation: Technology

CE 610(1 - 2) Course ID: 010161 2022-06-07

Civil and Environmental Engineering Seminar
Students, staff and visiting lecturers present research results and topics of current interest.
Components: Seminar
Attributes: Offered Each Term
Req. Designation: Technology
Engineering - Civil & Environmental Eng - Subject: Civil and Environmental Eng

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 612(1 - 15)</td>
<td>Thesis, Dissertation Credits</td>
<td>2015-02-03</td>
<td>Analytical or experimental studies in civil and environmental engineering under the direction of a faculty adviser. Credit for this work is given when the requirements for the degree are completed including the presentation of a thesis or dissertation as appropriate to the degree program.</td>
</tr>
<tr>
<td>CE 621(3)</td>
<td>Advanced Structural Dynamics</td>
<td>2016-09-16</td>
<td>This course provides fundamental and advanced theories of structural dynamics and their applications to natural hazards engineering. Topics covered in the course include numerical integration methods for dynamic analysis; nonlinear hysteresis models; nonlinear time history analysis; soil-foundation-structure/fluid-structure interactions; state-of-the-art simulation methods for civil infrastructure systems.</td>
</tr>
<tr>
<td>CE 622(3)</td>
<td>Uncertainty Quantification and Optimization in Computational Mechanics</td>
<td>2022-02-02</td>
<td>Uncertainty Quantification plays an essential role in the validation of the predictive content of computational engineering and science models. Uncertainty in the simulation-based paradigm is typically manifested either in the form of variability of model parameters or in the stochastic external effects to which this system is subjected. In this course, students will be introduced to the mathematical foundations, numerical algorithms, and computational tools necessary for: (1) the propagation of parametric uncertainty in computational mechanics simulations; (2) the analysis of the response of simulation based models to random inputs; and (3) the rational treatment of uncertainty in design optimization problems. The course will involve a term project.</td>
</tr>
<tr>
<td>CE 631(3)</td>
<td>Cement Chemistry</td>
<td>2015-03-05</td>
<td>This is an advanced graduate level course. It covers materials science aspects of conventional and modified portland cement concrete including (i) dry and wet cement chemistry (ii) hydration mechanisms, and microstructure modification (iii) techniques to characterize cementitious systems (SEM, TEM, MIP, NMR, BET, Pore Solution Analysis etc.) and (iv) materials science based discussions on mechanical and durability performance of concrete.</td>
</tr>
<tr>
<td>CE 632(3)</td>
<td>Elastic and Inelastic Stress Analysis</td>
<td>2021-10-11</td>
<td>Presents certain key aspects of inelastic solid mechanics centered around viscoelasticity, creep, viscoplasticity, and plasticity. It is divided into three parts consisting of the fundamentals of elasticity, useful constitutive laws, and applications to simple structural members, providing extended treatment of basic problems in static structural mechanics, including elastic and inelastic effects.</td>
</tr>
</tbody>
</table>
CE 633 (3)
Course ID: 007576
2022-06-07

Plasticity
This course provides an introduction to the subject of plasticity. The physical background of inelastic deformation in metals and geological materials is discussed. Continuum constitutive theory is presented including yield criteria, flow rules, and plastic hardening. Extension to the rate-dependent (viscoplastic) material is discussed. Uniqueness and extremum theorems are derived and discussed and field equations for general, two-dimensional and axisymmetric problems are presented. Selected problems from metal and soil/rock plasticity are presented and solved using various techniques, including slip-line theory, limit analysis and 'exact' methods. Other topics such as localization and diffuse instability in plastic deformation and application of FEM in plasticity are presented as time allows.

Prerequisite: CE554 or ME554; recommended CE551 or ME551.

Components: Lecture

Attributes: Given When Needed

Req. Designation: Technology

CE 681 (3)
Course ID: 007581
2015-01-20

Environmental Physico-Chemical Processes
This class provides fundamental understanding of the chemical and physical processes that govern the migration and fate of pollutants in environmental systems. Emphasis will be placed on the application of these concepts to water treatment processes. Topics include: mass transfer and kinetics, coagulation, precipitation, adsorption, ion exchange, chemical oxidation, sedimentation, filtration and related processes.

Prerequisites: CE340 or CE579 or equivalent course, CE580, or consent of the instructor.

Components: Lecture

Attributes: Offered Spring Term

Req. Designation: Technology

CE 682 (3)
Course ID: 007582
2015-01-20

Environmental Biological Processes
Principles and applications of biological phenomena and processes in relation to environmental engineering practice. Emphasis is given to biokinetic analysis and design of biological treatment processes applicable to the treatment of water, municipal and industrial wastewater and hazardous wastes. Topics include: microbial growth kinetics and bioenergetics; aerobic, anaerobic fixed-film, nitrification, denitrification and phosphorus removal biological processes; sludge treatment and disposal; advanced wastewater treatment processes.

Prerequisites: CE340 or CE579 or equivalent course, CE580, CE584, and BY323, or consent of instructor.

Components: Lecture

Attributes: Offered Spring Term

Req. Designation: Technology

CE 684 (1-3)
Course ID: 007583
2015-01-23

Special Topics in Environmental Engineering
Advanced topics in specialized aspects of environmental engineering.

Components: Independent Study

Attributes: Given When Needed

Req. Designation: Technology

CE 686 (3)
Course ID: 007584
2015-01-23

Environmental Engineering Design
Emphasis will be on water and wastewater treatment plant design, hazardous waste site remediation, groundwater remediation and solid waste disposal.

Prerequisites: CE681 and CE682 or consent of the instructor.

Components: Lecture

Attributes: Given When Needed

Req. Designation: Technology

CE 999 (1-10)
Course ID: 011075
2015-01-13

Civil and Environmental Engineering Elective
A graduate level course for which there is no comparable Clarkson course. Used for transfer credit only. (Not offered at Clarkson, for transfer credit only.)

Components: Independent Study

Attributes: Transfer Credit Only

Req. Designation: Technology
Chemical Engineering

1(2 - 4) Chemical Engineering Elective

Course ID: 008058
2015-01-13

A college level course for which there is no comparable Clarkson course. Used for transfer credit only.

Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

2(2 - 4) Chemical Engineering Elective

Course ID: 008059
2015-01-13

A college level course for which there is no comparable Clarkson course. Used for transfer credit only.

This course may be used as a Professional Elective.

Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

210(3)

Course ID: 011418
2020-10-15

Molecular Properties

An introduction to key chemical engineering concepts that include properties of gases, laws of thermodynamics, transport of gases and liquids, and chemical kinetics.

Components: Laboratory, Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: CM132 (or CM104), MA132 and PH131
Req. Designation: Technology

220(3)

Course ID: 011419
2019-07-18

Material Balances

Students will learn how to set up flow sheets for chemical processes with multiple units and perform material balances accounting for chemical reactions, phase equilibria, multistage separations, and recycle. While emphasis will be on steady state operations, unsteady processes will also be considered. A case study will be performed in teams.

Components: Discussion, Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: CM 132 (or CM 104), MA 132, and PH 131 Corequisite: CH 210 or CM 371
Req. Designation: Technology

260(3)

Course ID: 011434
2016-09-16

Thermodynamics & Energy Balances

The fundamentals of thermodynamics, including real fluids, thermodynamic properties of gases. Application of conservation of energy principles in chemical engineering.

Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: CH210
Req. Designation: Technology

320(3)

Course ID: 007587
2019-07-18

Phase Equilibria

Thermodynamics of pure components and solutions. Fugacities, activities, and equilibrium, calculations.

Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: CH 260 or ES340
Req. Designation: Technology

330(3)

Course ID: 011579
2011-01-25

Transfer Process Fundamentals

Fundamentals of fluid mechanics, heat and mass transfer relevant to transfer processes: Newtonian and non-Newtonian flow behavior, hydrostatics, macroscopic and microscopic balances, flow measurement, dimensional analysis, laminar and turbulent flow in ducts and over immersed bodies, Fourier's law, steady and unsteady conduction in rectangular, cylindrical, and spherical geometries, fins, convective heat transfer in flow through ducts and over immersed objects, natural convection, Fick's law, diffusion in binary and multicomponent systems, correlations for heat and mass transfer.

Components: Lecture
Requirement Group: Prerequisites: MA232; Corequisites: CH210 and CH220
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Year-Start</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 350(1)</td>
<td>007590</td>
<td>2015-01-20</td>
<td>Chemical Engineering Laboratory</td>
<td>A series of experiments in fluid mechanics, heat transfer, complementing the junior ChE courses, are performed. Laboratory safety, data analysis, and communications skills stressed. Does not meet each week; schedule will be posted. Components: Laboratory Attributes: One communication unit, Offered Spring Term Requirement Group: Prerequisites: CH330 Req. Designation: Technology</td>
</tr>
<tr>
<td>CH 360(3)</td>
<td>007591</td>
<td>2021-12-28</td>
<td>Chemical Reactor Analysis I</td>
<td>The principles of chemical reactor design for homogeneous and heterogeneous reactions. Analysis of the chemical reactor from a kinetic and thermodynamic point of view, including design methods for flow and non-flow reactors and experimental methods. Components: Lecture Attributes: Offered Spring Term Requirement Group: Prerequisites: CH210, CH220, CH260, MA232, and Junior or Senior standing (or permission of the instructor) Req. Designation: Technology</td>
</tr>
<tr>
<td>CH 370(3)</td>
<td>011610</td>
<td>2021-01-12</td>
<td>Transfer Process Design</td>
<td>Fundamentals of transfer process design, design of pipes, flow meters, pump calculation, heat transfer equipment design, correlations for various heat transfer coefficients, pressure drop in heat transfer equipment, pumping requirements for heat transfer equipment, mass transfer equipment, tray, rotating, pulsed, packed column design, efficiency concept, transfer unit concept, membrane separations, chromatographic separation methods. Components: Lecture Attributes: Two communication units, Offered Spring Term Requirement Group: Prerequisites: CH330 Req. Designation: Technology</td>
</tr>
<tr>
<td>CH 390(1 - 4)</td>
<td>007593</td>
<td>2017-01-13</td>
<td>Undergraduate Research Project</td>
<td>A theoretical or experimental investigation of an original problem under the supervision of a faculty member. Student should select topic from list in ChE office and discuss with indicated faculty member. Components: Research Attributes: Offered Each Term Req. Designation: Technology</td>
</tr>
<tr>
<td>CH 391(1 - 4)</td>
<td>007594</td>
<td>2017-01-13</td>
<td>Undergraduate Research Project</td>
<td>A theoretical or experimental investigation of an original problem under the supervision of a faculty member. Student should select topic from list in ChE office and discuss with indicated faculty member. Components: Research Attributes: Offered Each Term Req. Designation: Technology</td>
</tr>
<tr>
<td>CH 392(1 - 4)</td>
<td>007595</td>
<td>2017-01-13</td>
<td>Undergraduate Research Project</td>
<td>A theoretical or experimental investigation of an original problem under the supervision of a faculty member. Student should select topic from list in ChE office and discuss with indicated faculty member. Components: Research Attributes: Offered Each Term Req. Designation: Technology</td>
</tr>
<tr>
<td>CH 410(2)</td>
<td>007599</td>
<td>2019-07-19</td>
<td>Chemical Engineering Laboratory</td>
<td>A series of experiments complementing the ChE senior courses are conducted. The student will gain familiarity with the equipment, practices, tools, and scope of Chemical Engineering. Extensive report writing. Laboratory safety and applied statistics and data analysis stressed. Does not meet each week; schedule will be posted. Components: Laboratory Attributes: Two communication units, Offered Fall Term Requirement Group: Prerequisites: CH330 Req. Designation: Technology</td>
</tr>
</tbody>
</table>
CH 420(3) Course ID: 011704 2019-07-19
Process Economics & Conceptual Design
Engineering economics, conceptual design principles, equipment costing, safety considerations.
Components: Laboratory, Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: CH330 Corequisites: EC350, or the combination of EC150 and EC200, or the combination EC151 and EC200.
Req. Designation: Technology

CH 430(3) Course ID: 012865 2022-06-21
Chemical Process Safety
Applications of chemical process principles to process safety and hazards analysis, mitigation and prevention, with emphasis on the chemical process industries.
Components: Lecture
Course Equivalents: CH 530
Attributes: Offered Spring Term
Req. Designation: Technology

CH 440(3) Course ID: 007920 2021-02-19
Plasma Engineering
[Cross Listed with CH540] This course will focus on the fundamentals of plasma science and engineering with particular emphasis on non-equilibrium plasmas and plasma in water environments. Focus areas addressed include material processing, chemical synthesis and conversion, environmental remediation, disinfection and biomedical applications.
Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: CH330 and CH360
Req. Designation: Technology

CH 441(3) Course ID: 007921 2018-03-19
Introduction to Nanophotonics
This course introduces the principles of nanophotonics—an emerging frontier at the nexus of nanotechnology and photonics. Nanophotonics deals with light-matter interactions on the nanometer length scale, and provides enormous opportunities for fundamental research and new applications. The course will cover the theoretical foundations of nanoscale optical interactions, growth and characterization of optical nanomaterials, nanolithography, plasmonics, metamaterials, manipulation and integration of nanostructured architectures, nanoscale optical microscopy, nanophotonic devices and systems, as well as a review of applications of nanophotonics, especially in biotechnology and nanomedicine. The students will be exposed to various new concepts, properties and phenomena in a bright nanoworld.
Components: Lecture
Course Equivalents: CH 541
Attributes: Offered Fall Term
Requirement Group: Prerequisites: PH132 and MA232
Req. Designation: Technology

CH 456(1 - 3) Course ID: 007603 2015-02-03
Experimental Projects
One or more project experiments related to various chemical processes are conducted. Selection of experiments is based on the student's needs and interests, and may involve existing experiments or the development of new ones.
Components: Lecture
Attributes: Offered Each Term
Req. Designation: Technology

CH 460(3) Course ID: 007604 2019-07-19
Process Dynamics and Control
Process systems analysis and control. Methods for the analysis of systems and the use of these methods in the design of control systems.
Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: CH220, CH330, and MA231.
Req. Designation: Technology
Biochemical Engineering
Use of microorganisms and enzymes to carry out industrial scale production of useful products. Enzyme and cell growth kinetics, reactor types, design principles and operating processes (agitation, aeration, sterilization, separations), and examples of some typical industrial processes.

Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisite: CH330
Req. Designation: Technology

Design Project
A comprehensive design is performed independently. When possible, the work will be done in a team.

Components: Lecture
Attributes: Given When Needed
Requirement Group: Prerequisite: CH420
Req. Designation: Technology

Industrial Chemistry
[Cross-Listed with CH586/CM486/586] This course will benefit junior and senior undergrads plus grads in chemistry and chemical engineering, and allow them to learn of real ways such talents are used in the professional world. It will involve different industrial chemists and chemical engineers to come to Clarkson University for each of 12 of the 14 weeks of a semester and give two lectures of about 1 hour 15 min each - one on an afternoon and the other following morning. The first lecture will relate the areas of chemistry their company was known for; the second lecture an in-depth discussion on how one project was carried out at the bench and the pitfalls that had to be resolved along the way to achieve success. The intent is to select lecturers from Clarkson Chemistry and Chemical Engineering major alumni at various lengths of time they have been professionals.

Components: Lecture
Course Equivalents: CH 586, CM 486, CM 586
Attributes: Offered Spring Term
Requirement Group: Prerequisites: Junior or Senior Standing
Req. Designation: Technology

Elementary Transport Phenomena
Principles of transport of momentum, energy, and mass will be covered from a fundamental perspective, pointing out analogies where appropriate. Topics include the Navier-Stokes and continuity equations, analysis of one dimensional flows, boundary layer theory, the energy and species conservation equations, energy transport by conduction and convection, steady two-dimensional problems, and unsteady one-dimensional problems. Enrollment is restricted to seniors who will graduate in the calendar year in which the course is offered.

Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: CH330 and 3.5 GPA or consent of the instructor.
Req. Designation: Technology

Directed Study in Chemical Engineering Principles I
For graduate students with a baccalaureate degree in a field other than chemical engineering.

Components: Independent Study
Attributes: Offered Fall Term
Req. Designation: Technology

Directed Study in Chemical Engineering Principles II
For graduate students with a baccalaureate degree in a field other than chemical engineering.

Components: Independent Study
Attributes: Offered Spring Term
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>012783</td>
<td>Directed Study in Chemical Engineering III</td>
<td>For graduate students with a baccalaureate degree in a field other than chemical engineering.</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course ID</td>
<td>Start Date</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>CH 551(3)</td>
<td>007617</td>
<td>2015-01-23</td>
</tr>
<tr>
<td>Multicomponent Mass Transfer</td>
<td>Principles of mass transfer in multicomponent mixtures. Models of multicomponent diffusion, interaction effects, and applications to processes such as distillation and condensation.</td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Given When Needed</td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
</tr>
</tbody>
</table>

CH 560(3)	007926	2015-02-12
Transport Phenomena	A study of fluid mechanics, heat, and mass transport, identifying analogies where appropriate, with emphasis on physical understanding. Topics include conservation equations and constitutive relations, boundary conditions, solutions in simple situations, boundary layers, forced and natural convection, phase change phenomena, multicomponent mass transport, film and penetration models, mass transport with chemical reaction, simultaneous heat and mass transport, and experimental techniques.	
Components:	Lecture	
Attributes:	Offered Fall Term	
Requirement Group:	Prerequisite: CH330 and CH370 or equivalent Co-requisite: CH561	
Req. Designation:	Technology	

CH 561(3)	007619	2015-02-12
Chemical Engineering Analysis	Analysis of chemical engineering problems in transport phenomena, reactor engineering and engineering thermodynamics.	
Prerequisites: MA331 or equivalent.	Corequisites: CH330 or ES330.	
Components:	Lecture	
Attributes:	Offered Fall Term	
Req. Designation:	Technology	

CH 571(3)	007621	2016-09-13
Advanced Chemical Engineering Thermodynamics	Laws, principles and concepts of classical thermodynamics, including the properties of pure fluids and of solutions, the thermodynamics of flow processes, chemical reaction equilibria, etc.	
Components:	Lecture	
Attributes:	Offered Spring Term	
Req. Designation:	Technology	

CH 576(3)	007622	2021-11-09	
Atmospheric Chemistry	[Cross-listed with CE 577, CM 576] The course will cover the evolution of the atmosphere from its initial formation to its natural background condition to its current state perturbed by human activities; detailed descriptions of the chemistry of the carbon, nitrogen and sulfur cycles; characterization of the atmospheric aerosol and its role in heterogeneous reactions and materials transport; stratospheric ozone and problems with its depletion; airborne radioactivity and its role in atmospheric ion chemistry. This course covers the same topics as CE 477 and includes additional material on the graduate level.		
Prerequisite: CM370 or CM371 or ES340.	Components:	Lecture	
Course Equivalents:	CE 477, CE 577, CM 476, CM 576		
Attributes:	Offered Odd Springs		
Req. Designation:	Technology		

<p>| CH 582(3) | 007623 | 2017-11-08 |
| Design Project | A comprehensive design is performed independently. When possible, the work will be done in a team. | |
| Components: | Lecture | |
| Attributes: | Offered Spring Term | |
| Req. Designation: | Technology | |</p>
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 586(1)</td>
<td>007625</td>
<td>Industrial Chemistry (Cross-Listed with CH486/CM486/586) This course will benefit junior and senior undergrads plus grad students in chemistry and chemical engineering, and allow them to learn of real ways such talents are used in the professional world. It will involve different industrial chemists and chemical engineers to come to Clarkson University for each of 12 of the 14 weeks of a semester and give two lectures of about 1 hour 15 min each – one on an afternoon and the other following morning. The first lecture will relate the areas of chemistry their company was known for; the second lecture an in-depth discussion on how one project was carried out at the bench and the pitfalls that had to be resolved along the way to achieve success. The intent is to select lecturers from Clarkson Chemistry and Chemical Engineering major alumni at various lengths of time they have been professionals.</td>
</tr>
<tr>
<td>CH 590(3)</td>
<td>007626</td>
<td>Elementary Transport Phenomena (Cannot be taken by MS or PhD students in Chemical Engineering). Principles of transport of momentum, energy, and mass will be covered from a fundamental perspective, pointing out analogies where appropriate. Topics include the Navier-Stokes and continuity equations, analysis of one dimensional flows, boundary layer theory, the energy and species conservation equations, energy transport by conduction and convection, steady two-dimensional problems, and unsteady one-dimensional problems. Prerequisites: CH 330 and a 3.5 GPA, or instructor consent</td>
</tr>
<tr>
<td>CH 610(1 - 2)</td>
<td>007627</td>
<td>Chemical Engineering Seminar Students, staff and visiting lecturers present research results and topics of current interest. Attendance is required.</td>
</tr>
<tr>
<td>CH 611(1 - 15)</td>
<td>007628</td>
<td>Thesis, Dissertation Credits Analytical or experimental studies in chemical engineering under the direction of a faculty adviser. Credit for this work is given when the requirements for the degree are completed including the presentation of a thesis or dissertation as appropriate to the degree program.</td>
</tr>
<tr>
<td>CH 612(1 - 4)</td>
<td>007629</td>
<td>Directed Study Special reading or laboratory study of a specific problem under the direction of a member of the faculty.</td>
</tr>
<tr>
<td>CH 665(3)</td>
<td>007633</td>
<td>Selected Topics in Polymers and Soft Materials An advanced graduate course in science and engineering of polymers and soft materials. Topics of special interest will be selected to conform to the mutual interests and needs of students and faculty.</td>
</tr>
<tr>
<td>CH 999(1 - 4)</td>
<td>011126</td>
<td>Special Topics in Chemical Engineering Used for awarding transfer credits for graduate courses completed elsewhere for which no equivalent Clarkson university graduate course can be identified.</td>
</tr>
</tbody>
</table>
The MAT Project is a one-term research project whose purpose is to allow students time and supervision to develop breadth and/or depth of knowledge to become a better teacher in their certification field. What the project will entail varies greatly from student to student. The course is intended to be custom-tailored to meet the specific needs of an individual intern. MAT projects are well-grounded in research and theory, but also include a strong and extensive applied aspect, directly addressing the question: What would this look like in the classroom?

Components: Seminar

Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program.

Req. Designation: Technology
Chinese Language and Linguistics I
Formerly CHN 517A This course is designed to strengthen students' understanding of second language acquisition theory and teaching strategies. Its primary focus is on Chinese as a second language at the K-12 level. The course assumes that students in the course are already teaching in a Chinese language program with some or minimal CFL training. The course emphasizes instructional strategies, planning, and assessment common to most methods courses. In addition, this course introduces students to program development and assessment since most K-12 programs require their Chinese teachers to build out the language program over a series of several years. The course will address students’ real time issues and concerns in the classroom as well as learn to see the 'bigger picture’ of the CFL program and curriculum.

Components: Seminar
Attributes: Offered Fall Term
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program (or by instructor consent)
Req. Designation: Technology

Chinese Language and Linguistics II
This 3-credit course is designed for students who contemplate a career teaching Chinese at the secondary or college level. The purpose of the class is to provide students with a general overview of the basic issues in Chinese linguistics from phonetics, morphology to syntax. Teaching strategies related to these issues will also be briefly discussed.

Components: Seminar
Attributes: Offered Spring Term
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program (or by instructor consent)
Req. Designation: Technology

MAT Project in Chinese (Content Area)
The MAT Project is a one-term research project whose purpose is to allow students time and supervision to develop breadth and/or depth of knowledge to become a better teacher in their certification field. The project will entail varies greatly from student to student. The course is intended to be custom-tailored to meet the specific needs of an individual intern. MAT projects are well-grounded in research and theory, but also include a strong and extensive applied aspect, directly addressing the question: What would this look like in the classroom?

Components: Seminar
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program (or by instructor consent)
Req. Designation: Technology
School of Arts and Sciences - Chemistry & Biomolecular Sci - Subject: Chemistry

<table>
<thead>
<tr>
<th>Course ID:</th>
<th>Course ID:</th>
<th>Year:</th>
<th>Title:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>008060</td>
<td>008061</td>
<td>2015-01-13</td>
<td>Chemistry Elective</td>
<td>A college level course for which there is no comparable Clarkson course. Used for transfer credit only. Components: Independent Study Attributes: Transfer Credit Only Req. Designation: Technology</td>
</tr>
<tr>
<td>012145</td>
<td>007639</td>
<td>2016-03-21</td>
<td>HEOP Introduction to General Chemistry I</td>
<td>Introduction to the foundations of major theories of chemistry and their practical applications. Topics include: foundation of measurement, chemical calculations and dimensional analysis, the concept of the mole, reaction stoichiometry, basic thermo-chemical principles, and the structure and organization of the periodic table. Components: Lecture Attributes: Offered Summer Term Req. Designation: Technology</td>
</tr>
<tr>
<td>007640</td>
<td>007641</td>
<td>2015-02-20</td>
<td>Structure and Bonding</td>
<td>An introduction to the electronic and geometric structures of representative inorganic and organic molecules, to the relations between structure and chemical and physical properties, and to the principles of chemical bonding. This course is designed for students majoring in chemistry. Components: Discussion, Lecture Attributes: Offered Fall Term Req. Designation: Technology</td>
</tr>
<tr>
<td>007642</td>
<td>007643</td>
<td>2015-01-20</td>
<td>Chemical Equilibrium and Dynamics</td>
<td>This course is an introduction to chemical equilibrium and kinetics. It includes some basic thermodynamics and the evaluation and use of equilibrium constants, and also the measurement and mechanistic interpretation of the rates of chemical reactions. Examples are selected to cover a wide spectrum of chemical problems and to stress experimental techniques as well as theory. Components: Discussion, Lecture Attributes: Offered Spring Term Requirement Group: Prerequisites: CM103 or CM131 Req. Designation: Technology</td>
</tr>
<tr>
<td>007644</td>
<td>007645</td>
<td>2015-02-12</td>
<td>Chemistry Laboratory I</td>
<td>Some fundamental principles underlying the experimental study of chemical phenomena. Some typical reactions of inorganic and organic compounds will be studied. This course will include introductions to various fields of chemical experimentation. Components: Laboratory Attributes: Offered Fall Term Requirement Group: Corequisites: CM103 Req. Designation: Technology</td>
</tr>
<tr>
<td>007646</td>
<td>007647</td>
<td>2016-03-21</td>
<td>Chemistry Laboratory II</td>
<td>Experimental studies of the equilibria and rates of some chemical reactions, employing some volumetric and gravimetric analysis and including introductions to spectrophotometric and potentiometric measurements and to the use of computers in chemical experimentation. Components: Laboratory Attributes: Offered Spring Term Requirement Group: Prerequisites: CM103 or, with consent of the instructor, CM131. Corequisite: CM104 Req. Designation: Technology</td>
</tr>
</tbody>
</table>
School of Arts and Sciences - Chemistry & Biomolecular Sci - Subject: Chemistry

CM 121(1)
Course ID: 007643
2015-01-20
Freshmen Seminar
A course to acquaint incoming freshmen with activities and facilities in the Chemistry Department, provide a forum for discussion of curriculum choices and career options in chemistry.
Components: Seminar
Attributes: Offered Spring Term
Req. Designation: Technology

CM 131(4)
Course ID: 007644
2016-09-14
General Chemistry I
A general overview of chemistry, including principles and theories as well as descriptive chemistry of important elements and compounds. Laboratory experiments augment lecture topics to provide a small group hands-on learning experience.
Components: Discussion, Laboratory, Lecture
Attributes: Offered Fall and Spring
Req. Designation: Technology

CM 132(4)
Course ID: 007645
2015-01-20
General Chemistry II
A continuation of CM 131. Chemical principles, theories, and descriptive chemistry with laboratory experiments to provide additional exposure to lecture topics in a small group environment.
Components: Discussion, Laboratory, Lecture
Attributes: Offered Spring Term
Req. Designation: Technology

CM 221(3)
Course ID: 007647
2015-02-12
Spectroscopy
A study of spectroscopic techniques, including both their analytical applications and the use of molecular spectroscopy in the identification and characterization of chemical compounds. The techniques discussed include atomic emission and absorption, fluorescence, visible-ultraviolet, infrared and mass spectroscopy and nuclear magnetic resonance spectroscopy.
Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: CM104 or CM132
Req. Designation: Technology

CM 223(3)
Course ID: 007648
2015-02-12
Spectroscopy Laboratory
This laboratory course accompanies CM 221.
Components: Laboratory
Attributes: Two communication units, Offered Fall Term
Requirement Group: Prerequisites: CM106 or CM132 Corequisites: CM221
Req. Designation: Technology

CM 241(3)
Course ID: 007649
2015-02-12
Organic Chemistry I
An introductory course in organic chemistry dealing with the structures, names, chemical and physical properties, preparations, spectroscopy and reaction mechanisms of organic compounds.
Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: CM104 or CM132
Req. Designation: Technology

CM 242(3)
Course ID: 007650
2015-01-20
Organic Chemistry II
A continuation of CM 241.
Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisite: CM241
Req. Designation: Technology
School of Arts and Sciences - Chemistry & Biomolecular Sci - Subject: Chemistry

CM 244(3) Course ID:007651 2020-01-15
Organic Chemistry Laboratory I
In this laboratory course, procedures for the synthesis of typical organic compounds are combined with spectroscopic and other physical and chemical techniques to illustrate the study of functional-group chemistry and the characterization and identification of organic compounds.
Components: Laboratory
Attributes: Two communication units, Offered Fall and Spring
Requirement Group: Prerequisite: CM 241, Organic Chemistry I Corequisite: CM 242, Organic Chemistry II
Req. Designation: Technology

CM 300(3) Course ID:007652 2015-01-20
Instrumental Laboratory
Laboratory work designed to illustrate principles discussed in CM 320, CM 371 and CM 372.
Components: Laboratory
Attributes: Two communication units, Offered Spring Term
Requirement Group: Prerequisite: CM371 Corequisite: CM320
Req. Designation: Technology

CM 302(3) Course ID:013092 2021-02-26
Forensic Chemistry
This course introduces the principles, methods and instrumentation of chemistry behind the work of crime investigation and will be illustrated with case studies. It will explain how to obtain analytical results through sample preparation, instrumental analysis and data interpretation. It covers topics commonly applicable to the everyday functions of a crime laboratory including forensic analysis of drugs, explosives and inks, DNA profiling, blood analysis etc. The laboratory section will provide an opportunity for students to practice forensic chemistry techniques. This course is open to students with minimal study in chemistry but who are interested in forensic chemistry as well as those with a substantive background in chemistry.
Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisite CM223 Spectroscopy Laboratory or approval by Instructor
Req. Designation: Technology

CM 305(3) Course ID:013136 2022-02-09
Biochemistry for Health Sciences
This course provides the fundamental knowledge that is essential to the study of biochemistry at advanced levels. This course integrates biochemistry with physiology and cell biology and is aimed specifically at introductory health science students. It provides a general introduction to the biochemical basis of various cellular functions and their relevance to disease. Topics covered include structure, function and chemistry of biomolecules, energy metabolism, molecular genetics, the biochemistry of cancer, and recent biotechnology. The course is intended for health science students who have no previous background in sciences. It assumes no prior knowledge and covers some chemistry and molecular biology basics.
Components: Lecture
Course Equivalents: BY 305
Attributes: Offered Spring Term
Req. Designation: Technology

CM 312(3) Course ID:007655 2015-01-20
Survey of Inorganic Chemistry
A review of fundamental chemical principles and a study of the qualitative description of binding in inorganic molecules and of the properties, structures and reactions of elements and their compounds.
Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: CM371 or equivalent
Req. Designation: Technology

CM 320(3) Course ID:007657 2022-04-12
Separations and Electrochemistry
This course deals with techniques of separation and electrochemical techniques used in research and analysis. It includes single- and multistage techniques of separation, with emphasis on chromatographic methods; and the principles and applications of potentionmetric, polarographic, voltammetric and some other electroanalytical techniques.
Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology
CM 342(2) Food Chemistry

Course ID: 012112
Offered Term: 2018-02-26
Course Description: Food chemistry is a one-semester course that will teach about basic structural principles of food essentials and their chemistry. The course will teach specifically:
(i) Molecular basis for the sensation of flavor;
(ii) Structure and properties of edible polysaccharides, proteins, and fats;
(iii) Chemical and physical changes that these molecules undergo under different food-related treatments (e.g. heating, cooling, mechanical processing);
(iv) Brief chemistry of digestion (enzymatic and microbial).
Components: Lecture
Attributes: Offered Fall Term
Prerequisites: CM241 with a grade of B or higher
Corequisites: CM242
Requirement Group: No requirement

CM 345(4) Advanced Laboratory

Course ID: 007659
Offered Term: 2015-02-12
Course Description: Advanced techniques in manipulation of chemical compounds and their isolation and characterization are studied. Examples are low temperature and inert atmosphere reaction conditions, synthesis of both inorganic and organic compounds in the form of fine particles, use of thermal analysis, electron microscopy and X-ray diffraction to determine product shapes and composition, and spectroscopic evaluation of metallo-organic complexes having industrial relevance. Course involves extensive use of library facilities to identify background materials as well as details for techniques employed. Course also includes a final presentation based on laboratory and literature findings.
Components: Laboratory
Attributes: Two communication units, Offered Fall Term
Prerequisites: CM242 and CM244
Corequisites: CM242 and CM244
Requirement Group: No requirement

CM 371(3) Physical Chemistry I

Course ID: 007661
Offered Term: 2014-11-20
Course Description: [Cross-listed with PH 371] This course covers the gaseous state, kinetic theory and chemical thermodynamics, with applications to chemical and phase equilibria. The emphasis is on mathematics and problem solving.
Components: Lecture
Course Equivalents: PH 371
Prerequisites: CM104 or CM132, MA132, PH131
Corequisites: PH132
Requirement Group: No requirement

CM 372(3) Physical Chemistry II

Course ID: 007662
Offered Term: 2014-11-20
Course Description: [Cross-listed with PH 372] A continuation of CM 371. Topics may include quantum mechanics, atomic structure, chemical bonds, intermolecular forces, spectroscopy, molecular symmetry, optical activity, photochemistry and photobiology.
Components: Lecture
Course Equivalents: PH 372
Attributes: Offered Spring Term
Prerequisites: CM371 or equivalent
Requirement Group: No requirement

CM 391(3) Independent Study

Course ID: 007665
Offered Term: 2015-02-03
Course Description: An opportunity for junior chemistry majors to undertake research under a faculty member's direction. The research work to be arranged with the faculty member who assists in the choice of a problem and in the planning and execution of the work. A written report must be submitted at the end of each semester summarizing the work and results to date.
Prerequisites: consent of the instructor.
Components: Independent Study
Attributes: Offered Each Term
Requirement Group: No requirement
Requirement Designation: Technology
CM 406(3) Course ID:007669 2020-08-25

Biomedical Analysis and Instrumentation

[Biomedical Analysis and Instrumentation is a lecture course designed to provide advanced undergraduates and graduate students in basic sciences, biosciences and bioengineering disciplines with scientific and engineering aspects of instrumentation, sample analysis, measuring and processing signals from living organisms. Functioning and calibration of biomedical transducers and devices actually used in clinical practice for analyzing clinical biomarkers for disease diagnostics will be reviewed. Emerging research in bioinstrumentation, biomedical technologies, stand alone and wearable sensing devices, analytical method development and validation will be also be covered. Special emphasis will be placed on measurement principles of medical instrumentation used in health technologies ranging from laboratory scale to next generation wearables. Training in professional ethics, grant writing, patenting, innovation, entrepreneurial activities and FDA regulation for new device development, laboratory management, as well as communication.

Components: Lecture
Course Equivalents: BY 406, CM 506, BY 506
Attributes: Offered Even Springs
Requirement Group: Prerequisites: CM221
Req. Designation: Technology

CM 409(1 - 2) Course ID:010675 2015-02-03 Instructor Consent Required

Ugrd Teaching Assist in Chem

Assisting a faculty member in a chemistry course as an undergraduate teaching assistant. Students should check with their major department to determine whether these credits can be used to meet their degree requirements.

Components: Lecture
Attributes: Offered Each Term
Req. Designation: Technology

CM 413(3) Course ID:007671 2017-09-12

Carbon Capture and Sequestration

[Carbon Capture and Sequestration employed on a global scale can sustain the world’s energy use and help mitigate alarmingly high carbon dioxide levels in the atmosphere. The goal of this course is to provide students with a modern view of current and emerging research in CCS. Topics will include our current understanding of carbon dioxide in and around the planet, the geological storage of carbon dioxide, and the science and technology of capturing carbon dioxide with focus on material chemistry aspects. Development of analytical methods and characterization tools for assessing CCS properties and materials will also be discussed. Through this series.

Components: Lecture
Attributes: Offered Spring Term
Req. Designation: Technology

CM 417(1 - 3) Course ID:007672 2017-01-13

Directed Research in Inorganic Chemistry

Students will carry out research in inorganic chemistry under the supervision of a faculty member. Topics will be determined by faculty research programs. A formal report is required at the conclusion of this course.

Components: Research
Attributes: Offered Each Term
Req. Designation: Technology

CM 418(1 - 3) Course ID:007673 2022-05-02

Directed Study in Inorganic Chemistry

The study of a subject not otherwise available in inorganic chemistry courses may be undertaken under the supervision of a faculty member.

Components: Independent Study
Attributes: Offered Each Term
Req. Designation: Technology
School of Arts and Sciences - Chemistry & Biomolecular Sci - Subject: Chemistry

CM 422(3)
Course ID: 012913
Start Date: 2018-11-02

Course Title: Advanced Mass Spectrometry: Practical Applications
Overview: Practical Applications will introduce the students to mass spectrometry and its applications within different fields, including pharmaceutical and biotech industry, academia, government, forensics, etc. Various types of instruments will be discussed, as well as their applications within different fields. The course will then focus on different types of well-known "omics", such as proteomics, metabolomics, glycomics, or lipidomics, but also on specialized types of "omics" such as peptidomics, post-translational modification-omics (PTM-omics), interactomics, foodomics, microbiomics, venomics, DNA-RNA-Protein-adductomics, genomics, proteogenomics or transcriptomics. Particular applications of all these kinds of "omics" in biotechnology & pharmaceutical industry, healthcare, biowarfare and forensics will also be discussed.

Components: Lecture
Course Equivalents: CM 522, BY 427, BY 527
Attributes: Offered Spring Term
Requirement Group: Prerequisites: CM/BY460/560, or consent of the instructor
Req. Designation: Technology

CM 427(1 - 3)
Course ID: 007677
Start Date: 2017-01-13

Course Title: Directed Research in Analytical Chemistry
Overview: Students will carry out research in analytical chemistry under the supervision of a faculty member. Topics will be determined by faculty research programs. A formal report is required at the conclusion of the course.

Components: Research
Attributes: Offered Each Term
Req. Designation: Technology

CM 428(1 - 3)
Course ID: 007678
Start Date: 2015-02-03

Course Title: Directed Study in Analytical Chemistry
Overview: The study of a subject not otherwise available in analytical chemistry courses may be undertaken under the supervision of a faculty member.

Components: Independent Study
Attributes: Offered Each Term
Req. Designation: Technology

CM 430(3)
Course ID: 007680
Start Date: 2019-09-03

Course Title: Colloids and Interfaces
Overview: Physico-chemical principles and experimental techniques related to the characterization and investigation of colloidal systems and interfaces are covered on an introductory level. From the many areas of application, the emphasis will be on those situations that are encountered in everyday life such as environmental problems (aerosols, water treatment), biological aspects (transport and absorption of fat, biological membranes), foods and cosmetics (emulsions), detergency and various technological processes.

Components: Lecture
Course Equivalents: CM 530
Attributes: Offered Fall Term
Req. Designation: Technology

CM 432(3)
Course ID: 007950
Start Date: 2019-01-01

Course Title: Fine Particle Characterization
Overview: This course is intended to familiarize the students with the analytic techniques routinely used to characterize the size, size distribution, shape, composition, structure, and surface properties (composition, charge, topography) of individual particles as well as the properties of dispersion particles. In conjunction with the latter, the course will discuss many concepts covered by colloids and surface science courses.

Components: Lecture
Course Equivalents: CM 532
Attributes: Given When Needed
Req. Designation: Technology

CM 437(1 - 3)
Course ID: 007683
Start Date: 2017-01-13

Course Title: Directed Research in Colloid Chemistry
Overview: Students will carry out research in colloid chemistry under the supervision of a faculty member. Topics will be determined by faculty research programs. A formal report is required at the conclusion of the course.

Components: Research
Attributes: Offered Each Term
Req. Designation: Technology
Advanced Organic Chemistry

The course will cover essential topics of organic chemistry including dynamic stereochemistry, conformational analysis, photochemistry, pericyclic reactions, and chemistry of free radicals.

Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

Medicinal Chemistry

Various classes of medicinal agents will be discussed in relation to the diseases that they are used to treat. The history and development of these drugs will be covered as well as attempts to correlate chemical structure with biological activity.

Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

Modern Spectroscopic Methods in Organic Chemistry

This course deals largely with the applications of spectroscopic techniques to the identification of organic compounds. Heavy emphasis will be given to nuclear magnetic resonance techniques for protons, carbon and other nuclei. Practical and theoretical aspects of FT NMR will be emphasized.

Components: Lecture
Attributes: Given When Needed
Req. Designation: Prerequisite: CM242.
Req. Designation: Technology

Directed Research in Organic Chemistry

Students will carry out research in organic chemistry under the supervision of a faculty member. Topics will be determined by faculty research programs. A formal report is required at the conclusion of the course.

Components: Research
Attributes: Given When Needed
Req. Designation: Technology

Directed Study in Organic Chemistry

The study of a subject not otherwise available in organic chemistry courses may be undertaken under the supervision of a faculty member.

Components: Independent Study
Attributes: Offered Each Term
Req. Designation: Technology

Manufacturing Implications of Advanced Materials Processing

The processing of materials into manufactured goods requires an understanding of the chemical composition of the starting substrates, the nature of intermediates, and the properties of final products. This course focuses on the preparation, modification, characterization, and the applications of fine, ultra-fine, and nanosize metallic particles. The objectives are to: a) provide an overview of the relevant theoretical and practical aspects related to the preparation, characterization, and modification of fine particles in general and metallic particles in particular, b) familiarize students with the industrial approaches for developing and manufacturing fine particles on large scale, and c) teach students how the properties of the resulting particles/colloids can be tailored in order to ensure optimal performance in specific applications. During the semester the students will also participate in several practical sessions in which metal colloids will be prepared and characterized.

Components: Lecture
Course Equivalents: CM 551
Req. Designation: Technology
School of Arts and Sciences - Chemistry & Biomolecular Sci - Subject: Chemistry

CM 457 (1 - 3) Course ID: 007699 2017-01-13
Directed Research in Polymer Chemistry
Students will carry out research in polymer chemistry under the supervision of a faculty member. Topics will be determined by faculty research programs. A formal report is required at the conclusion of the course.
Components: Research
Attributes: Given When Needed
Req. Designation: Technology

CM 458 (1 - 3) Course ID: 007700 2015-01-23
Directed Study in Polymer Chemistry
The study of a subject not otherwise available in organic chemistry courses may be undertaken under the supervision of a faculty member.
Components: Independent Study
Attributes: Given When Needed
Req. Designation: Technology

CM 460 (3) Course ID: 007702 2014-11-18
Biochemistry I
(Cross-listed with BY 450) This course is an introduction to the molecular basis of biological processes. The first part of the course will cover the structure and function of the four major classes of biomolecules – proteins, carbohydrates, lipids and nucleic acids. The second part covers the organization and regulation of the major energy generating and biosynthetic pathways.
Components: Lecture
Course Equivalents: BY 450, BY 650, CM 560
Requirement Group: Prerequisites: CM241 or consent of the instructor.
Req. Designation: Technology

CM 461 (3) Course ID: 007703 2022-02-02
Biochemistry II
(Cross-listed with BY 451) A continuation of Biochemistry I dealing mainly with metabolic pathways, intermediary metabolism, protein synthesis, membrane transport, DNA replication and RNA transcription.
Components: Lecture
Course Equivalents: BY 451
Attributes: Offered Spring Term
Requirement Group: Prerequisite: CM460 or equivalent.
Req. Designation: Technology

CM 466 (3) Course ID: 010918 2015-01-23
Bioelectronics & Bionanotechnology
This course covers novel areas in science and technology that have high importance for fundamental science and practical applications. Bioelectronics is a scientific and technological area that includes electronic coupling of biomaterials (enzymes, DNA, recognition proteins, biological cells) with electronic devices. The bioelectronic systems can be used to develop sensing devices (enzyme-based biosensors, DNA sensors, immunosensors, etc.) and to develop biofuel cells (implantable biofuel cells for biomedical applications, self-powered biosensors, autonomously operated devices). New methods and new materials (functionalized nanoparticles, quantum dots, carbon nanotubes, etc.) developed due to the tremendous recent success in nanotechnology pave the way for the novel possibilities to couple biomaterials and electronic transducers, thus resulting in the new technological field named Bionanotechnology. The students will be introduced into the most important areas of Bioelectronics and Bionanotechnology.
Components: Lecture
Attributes: Given When Needed
Requirement Group: Prerequisites: CM372, CM460.
Req. Designation: Technology

CM 467 (1 - 3) Course ID: 007706 2017-01-13
Directed Research in Biochemistry
Students will carry out research in biochemistry under the supervision of a faculty member. Topics will be determined by faculty research programs. A formal report is required at the conclusion of the course.
Components: Research
Attributes: Offered Each Term
Req. Designation: Technology
CM 468 (1 - 3)
Course ID: 007707
2015-02-03

Directed Study in Biochemistry
The study of a subject not otherwise available in biochemistry courses may be undertaken under the supervision of a faculty member.

Components: Independent Study
Attributes: Offered Each Term
Req. Designation: Technology

CM 469 (3)
Course ID: 007708
2021-09-08

Implantable and Wearable Bioelectronics
Chemistry CM469/569 is a lecture course designed to provide graduate students and advanced undergraduates with a working knowledge in the multidisciplinary research area of bioelectronics, giving particular information about implantable and wearable bioelectronics. The course will concentrate on concepts, experimental realizations and practical applications. This course covers novel areas in science and technology that have high importance for fundamental science and practical applications. Major science areas covered by the course will be in chemistry, particularly biochemistry and electrochemistry. Minor sub-areas studied in the course will be related to biomedical applications and electrical/electronic engineering. All studies in the course will not require any background knowledge except general chemistry and basics of biochemistry. The major topics covered by the class will be related, but not limited, to biosensors, biofuel cells, bioelectronic devices concentrating on the concepts rather than technical details. The course work for

Components: Lecture
Course Equivalents: CM 569
Attributes: Offered Spring Term
Req. Designation: Technology

CM 470 (3)
Course ID: 007709
2019-04-19

Biochemistry & Biotechnology Laboratory
(Cross-listed with BY 470) This course is a one semester course in the fundamental laboratory approaches for biochemistry and biotechnology. While largely a hands-on course, laboratory experiments will be supplemented with lectures that integrate the theoretical and practical principals covered in the exercises. Topics include protein purification, characterization and analysis, enzyme kinetics and molecular modeling.

Components: Laboratory
Course Equivalents: BY 470
Attributes: Two communication units, Offered Spring Term
Requirement Group: Prerequisites: CM221 and CM223 or BY450/CM460 or consent of the instructor.
Req. Designation: Technology

CM 472 (3)
Course ID: 007710
2018-10-10

Chemistry at Surfaces: Structure and Catalysis
This senior undergraduate and graduate course will survey the field of surface chemistry, with specific attention dedicated to the structure of solid surfaces and chemical processes at solid interfaces. This course will cover the basics of the structure of periodic solids, relate that understanding to solid interfaces, and finally address how surface structure and reduced dimensionality impact chemical reactions (i.e. heterogeneous catalysis). Analytical techniques common to this discipline will also be discussed. Graduate students will be assessed differently than undergraduates in this course. Graduate students will have the additional responsibility of delivering a presentation discussing one of several primary research articles germane to the field that were selected by the instructor, while undergraduate students will submit a paper describing one of these articles in detail.

Components: Lecture
Course Equivalents: CM 572
Attributes: Offered Odd Springs
Requirement Group: Prerequisites: CM371 and CM372, or consent of the instructor.
Req. Designation: Technology
The goal of this course is to provide graduate students and advanced undergraduates with a modern view of current and emerging research in nanotechnology. Topics will include: fundamental nanoscale properties and applications, green manufacturing and assembly in functional devices, interaction of nanomaterials with biological systems, the physical and chemical phenomena at nano-bio interfaces, fate, transport and transformation of engineered nanomaterials, environmental and health impact, nanometrology, nanotoxicology and hazard identification of nano-based products. Development of analytical methods and characterization tools for assessing nanoscale properties and materials will also be discussed. Students will be exposed to interdisciplinary topics and an integrated training bridging material and environmental sciences with biology and analytical chemistry. Students will be able to demonstrate a basic awareness of risks and benefits of emerging technologies and evaluate overall environmental and societal impact.

Course Equivalents: CM 575, MSE 575, ES 575
Attributes: Offered Spring Term
Req. Designation: Technology
Atmospheric Chemistry

(Cross-listed with CE 477) The course will cover the evolution of the atmosphere from its initial formation to its natural background condition to its current state perturbed by human activities; detailed descriptions of the chemistry of the carbon, nitrogen and sulfur cycles; characterization of the atmospheric aerosol and its role in heterogeneous reactions and materials transport; stratospheric ozone and problems with its depletion; airborne radioactivity and its role in atmospheric ion chemistry.

Components:
- Lecture

Course Equivalents:
- CE 477, CE 577, CH 576, CM 576

Attributes:
- Offered Odd Springs

Requirement Group:
- Prerequisites: CM370 or CM371 or ES340.

Req. Designation:
- Technology
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Offered Date</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM 477(1 - 3)</td>
<td>007715</td>
<td>2017-01-13</td>
<td>Directed Research in Physical Chemistry</td>
</tr>
<tr>
<td>CM 478(1 - 3)</td>
<td>007716</td>
<td>2020-04-03</td>
<td>Directed Study in Physical Chemistry</td>
</tr>
<tr>
<td>CM 481(3)</td>
<td>013037</td>
<td>2020-04-03</td>
<td>Computational Chemistry</td>
</tr>
<tr>
<td>CM 482(3)</td>
<td>012951</td>
<td>2019-09-05</td>
<td>Information Processing by Chemistry</td>
</tr>
<tr>
<td>CM 483(3)</td>
<td>010314</td>
<td>2022-02-02</td>
<td>Introduction to Polymer Science</td>
</tr>
</tbody>
</table>

CM 477(1 - 3) - Directed Research in Physical Chemistry
Students will carry out research in physical chemistry under the supervision of a faculty member. Topics will be determined by faculty research programs. A formal report is required at the conclusion of the course.

CM 478(1 - 3) - Directed Study in Physical Chemistry
The study of a subject not otherwise available in physical chemistry courses may be undertaken under the supervision of a faculty member.

CM 481(3) - Computational Chemistry

CM 482(3) - Information Processing by Chemistry
The course is composed of lectures and student presentations on signal-switchable chemical and electrochemical systems. These systems perform Boolean logic operations, memory function and control of bioelectronic devices, e.g., biofuel cells. Students will gain knowledge on chemical/biochemical systems of various complexity logically processing different input signals. Preparation of sensing switchable interfaces will be explained. Finally, bioelectronic systems processing information and operating as signal-switchable devices will be discussed.

CM 483(3) - Introduction to Polymer Science
This course is about fundamental aspects of polymer science. It introduces the world of chain molecules from synthesis and properties to applications. Basic knowledge from polymer chemistry and physics are combined in the one course in a form appropriate for undergraduates and graduates in chemistry, physics and engineering to develop the understanding of polymeric behavior in synthetic materials and natures.
CM 485(3) Nanostructured Materials

Course ID: 007718
2022-02-02

Course Description: Nanostructured Materials

This course reviews the methods to make nanoscale building blocks and approaches to arrange the building blocks into functional architectures for advanced materials. The list of topics includes: chemical patterning and lithography, layer-by-layer self assembly, synthesis and self assembly of nanoparticles, nanotubes and nanowires, properties of nanoclusters and self assembled structures (photonic crystals, plasmonic effects, quantum dots, porous materials, biomimetics).

Components: Lecture

Course Equivalents: CM 585

Attributes: Given When Needed

Requirement Group: Prerequisites: Senior Standing or consent of the instructor.

Req. Designation: Technology

CM 486(1) Industrial Chemistry

Course ID: 012837
2022-02-02

Course Description: Industrial Chemistry

This course will benefit junior and senior undergrads plus grad students in chemistry and chemical engineering, and allow them to learn of real ways such talents are used in the professional world. It will involve different industrial chemists and chemical engineers to come to Clarkson University for each of 12 of the 14 weeks of a semester and give two lectures of about 1 hour 15 min each - one on an afternoon and the other following morning. The first lecture will relate the areas of chemistry their company was known for; the second lecture an in-depth discussion on how one project was carried out at the bench and the pitfalls that had to be resolved along the way to achieve success. The intent is to select lecturers from Clarkson Chemistry and Chemical Engineering major alumni at various lengths of time they have been professionals.

Components: Lecture

Course Equivalents: CM 486, CH 586, CM 586

Attributes: Given When Needed

Requirement Group: Prerequisites: Junior or Senior Standing

Req. Designation: Technology

CM 487(3) Applications of Synchrotron and Electron Based Techniques

Course ID: 012908
2022-02-02

Course Description: Applications of Synchrotron and Electron Based Techniques

The purpose of the course is to familiarize all students with the x-ray and electron based experimental techniques available at Brookhaven National Lab and other similar facilities. Students will be cognizant of the applications of these cutting edge facilities, and well positioned to use them in their own research. This course is suitable for graduate students, postdocs, and advanced undergrads in physical sciences and engineering, as well as students in biological, environmental, and chemical sciences who may have the interest to learn more about the techniques they may use for their research.

Components: Lecture

Course Equivalents: PH 587, CM 587, PH 487, MSE 587, ES 587

Attributes: Given When Needed

Requirement Group: Prerequisites: PH132 or consent of the instructor; ES260 and/or PH231 are recommended prerequisites

Req. Designation: Technology

CM 491(6) Undergraduate Thesis

Course ID: 007719
2017-01-13

Course Description: Undergraduate Thesis

Research work to be arranged with the consent of a staff member who assists the student in the choice of a problem and in the planning and execution of work on it. For senior chemistry majors. Prerequisite: consent of a department faculty member.

Components: Research

Attributes: Offered Fall Term

Req. Designation: Technology

CM 492(6) Undergraduate Thesis

Course ID: 007720
2017-01-13

Course Description: Undergraduate Thesis

A continuation of CM 491. A written thesis is required at the end of the course. Prerequisite: consent of a department faculty member.

Components: Research

Attributes: Two communication units, Offered Spring Term

Req. Designation: Technology
School of Arts and Sciences - Chemistry & Biomolecular Sci - Subject: Chemistry

CM 495 (1)
Course ID: CM 495(1)
Course ID: 011318
2014-01-01

Internship/Co-op in Chemistry & Biomolecular Science

Students will gain practical work experience in chemistry or biomolecular science under direction and supervision of professionals outside their department. Students must submit a formal report describing work performed as well as the Internship/Co-op learning opportunities. Report approval is required for the award of credit. Feedback will be provided by their Internship/Co-op field supervisor. This course will be graded on a pass/no-credit basis.

Components: Independent Study
Req. Designation: Technology

CM 497 (1 - 3)
Course ID: CM 497(1 - 3)
Course ID: 007721
2015-02-03

Directed Study

The study of a subject not otherwise available in formal courses may be undertaken under the supervision of a faculty member.

Components: Independent Study
Attributes: Offered Each Term
Req. Designation: Technology

CM 499 (1 - 3)
Course ID: CM 499(1 - 3)
Course ID: 007723
2015-02-03

Directed Study

The study of a subject not otherwise available in formal courses may be undertaken under the supervision of a faculty member.

Components: Independent Study
Attributes: Offered Each Term
Req. Designation: Technology

CM 506 (3)
Course ID: CM 506(3)
Course ID: 007725
2022-02-02

Biomedical Analysis and Instrumentation

[Cross-listed with BY 506] Biomedical Analysis and Instrumentation is a lecture course designed to provide advanced undergraduates and graduate students in basic sciences, biosciences and bioengineering disciplines with scientific and engineering aspects of instrumentation, sample analysis, measuring and processing signals from living organisms. Functioning and calibration of biomedical transducers and devices actually used in clinical practice for analyzing clinical biomarkers for disease diagnostics will be reviewed. Emerging research in bioinstrumentation, biomedical technologies, stand alone and wearable sensing devices, analytical method development and validation will also be covered. Special emphasis will be placed on measurement principles of medical instrumentation used in health technologies ranging from laboratory scale to next generation wearables. Training in professional ethics, grant writing, patenting, innovation, entrepreneurial activities and FDA regulation for new device development, laboratory management, as well as communication and business skills will be provided.

Components: Lecture
Course Equivalents: BY 406, CM 406, BY 506
Attributes: Given When Needed
Req. Designation: Technology

CM 513 (3)
Course ID: CM 513(3)
Course ID: 007728
2017-09-12

Carbon Capture and Sequestration

[Cross-listed with CH 513] Carbon Capture and Sequestration (CCS) refers to technologies employed in industry that remove and store carbon dioxide (CO2) from the atmosphere. The goal of this course is to provide students with a modern view of current and emerging research in CCS. Topics will include our current understanding of carbon dioxide in and around the planet, the geological storage of carbon dioxide, and the science and technology of capturing carbon dioxide with focus on material chemistry aspects. Development of analytical methods and characterization tools for assessing CCS properties and materials will also be discussed. Through this series of lectures, the students will gain an understanding of the science and technology of carbon capture and storage.

Components: Lecture
Attributes: Offered Spring Term
Req. Designation: Technology

CM 520 (3)
Course ID: CM 520(3)
Course ID: 007729
2022-04-12

Separations and Electrochemistry

This course covers the same topics as CM 320 and includes additional material on the graduate level.

Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology
Advanced Mass Spectrometry: Practical Applications

Practical Applications will introduce the students to mass spectrometry and its applications within different fields, including pharmaceutical and biotech industry, academia, government, forensics, etc. Various types of instruments will be discussed, as well as their application within different fields. The course will then focus on different types of well-known "omics", such as proteomics, metabolomics, glycomics, or lipidomics, but also on specialized types of "omics" such as peptidomics, post-translational modification-omics (PTM-omics), interactomics, foodomics, microbiomics, venomics, DNA- RNA- & Protein-adductomics, genomics, proteogenomics or transcriptomics. Particular applications of all these kinds of "omics" in biotechnology & pharmaceutical industry, healthcare, biowarfare and forensics will also be discussed.

Components: Lecture
Course Equivalents: CM 422, BY 427, BY 527
Attributes: Given When Needed
Requirement Group: Prerequisites: CM/BY460/560, or consent of the instructor

CM 530(3)
Colloid and Interfaces

Physico-chemical principles and experimental techniques related to the characterization and investigation of colloidal systems and interfaces are covered on an introductory level. From the many areas of application, the emphasis will be on those situations that are encountered in everyday life such as environmental problems (aerosols, water treatment), biological aspects (transport and absorption of fat, biological membranes), foods and cosmetics (emulsions), detergency and various technological processes. This course covers the same topics as CM 430 and includes additional material on the graduate level.

Components: Lecture
Course Equivalents: CM 430
Attributes: Offered Fall Term
Req. Designation: Technology

CM 532(3)
Fine Particle Characterization

This course is intended to familiarize the students with the analytic techniques routinely used to characterize the size, size distribution, shape, composition, structure, and surface properties (composition, charge, topography) of individual particles as well as the properties of dispersion particles. In conjunction with the latter, the course will discuss many concepts covered by colloids and surface science courses. Graduate students will do additional work.

Components: Lecture
Course Equivalents: CM 432
Req. Designation: Technology

CM 542(3)
Advanced Organic Chemistry

The course will cover essential topics of organic chemistry including dynamic stereochemistry, conformational analysis, photochemistry, pericyclic reactions, and chemistry of free radicals.

This course covers the same topics as CM 442 and includes additional material on the graduate level.

Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

CM 544(3)
Medicinal Chemistry

This course covers the same topics as CM 444 and includes additional material on the graduate level.

Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

CM 546(3)
Modern Spectroscopic Methods in Organic Chemistry

No prerequisites. This course covers the same topics as CM 446 and includes additional material on the graduate level.

Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology
School of Arts and Sciences - Chemistry & Biomolecular Sci - Subject: Chemistry

CM 551(3) Course ID: 007744 2014-11-20

Manufacturing Implications of Advanced Materials Processing

The processing of materials into manufactured goods requires an understanding of the chemical composition of the starting substrates, the nature of intermediates, and the properties of final products. This course focuses on the preparation, modification, characterization, and the applications of fine, ultra-fine, and nanosize metallic particles. The objectives are to: a) provide an overview of the relevant theoretical and practical aspects related to the preparation, characterization, and modification of fine particles in general and metallic particles in particular, b) familiarize students with the industrial approaches for developing and manufacturing fine particles on large scale, and c) teach students how the properties of the resulting particles/colloids can be tailored in order to ensure optimal performance in specific applications. During the semester the students will also participate in several practical sessions in which metal colloids will be prepared and characterized. Graduate students will do additional work, such as a term paper or review.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Equivalents:</td>
<td>CM 451</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

CM 560(3) Course ID: 007747 2014-11-20

Biochemistry I

[Cross-listed with BY 650] This course covers the same topics as CM 460 and includes additional material on the graduate level.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Equivalents:</td>
<td>BY 450, BY 650, CM 460</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

CM 561(3) Course ID: 007748 2014-11-24

Biochemistry II

[Cross-listed with BY 651] This course covers the same topics as CM 461 and includes additional material on the graduate level.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Equivalents:</td>
<td>BY 651</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

CM 566(3) Course ID: 010919 2015-01-23

Bioelectronics & Bionanotechnology

This course covers novel areas in science and technology that have high importance for fundamental science and practical applications. Bioelectronics is a scientific and technological area that includes electronic coupling of biomaterials (enzymes, DNA, recognition proteins, biological cells) with electronic devices. The bioelectronic systems can be used to develop sensing devices (enzyme-based biosensors, DNA sensors, immunosensors, etc.) and to develop biofuel cells (implantable biofuel cells for biomedical applications, self-powered biosensors, autonomously operated devices). New methods and new materials (functionalized nanoparticles, quantum dots, carbon nanotubes, etc.) developed due to the tremendous recent success in nanotechnology pave the way for the novel possibilities to couple biomaterials and electronic transducers, thus resulting in the new technological field named Bionanotechnology. The students will be introduced into the most important areas of Bioelectronics and Bionanotechnology.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Given When Needed</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>
Biofuel Cells – Design and Applications

This is a lecture course designed to provide graduate students with a working knowledge in the highly multidisciplinary research area of biofuel cells (including microbial, enzyme-based and “abiotic” biofuel cells, their construction, operation and various applications). The course will include a brief overview of microbial fuel cells. The “abiotic” biofuel cells based on the use of inorganic catalytic species (mostly catalytic nanoparticles) will be studied in connection with the general information on nanoparticles and their immobilization on electrodes. The main part of the course will be devoted to the enzyme-based biofuel cells and their biomedical applications, particularly as a potential power source for implantable biomedical devices (e.g., pacemakers). The scientific advances and technical problems will be discussed. The course is addressed to graduate students with different backgrounds, including students from chemistry and biomolecular science, biology, chemical engineering and electrical engineering. Since the attending students can have very
Implantable and Wearable Bioelectronics

Chemistry CM469/569 is a lecture course designed to provide graduate students and advanced undergraduates with a working knowledge in the multidisciplinary research area of bioelectronics, giving particular information about implantable and wearable bioelectronics. The course will concentrate on concepts, experimental realizations and practical applications. This course covers novel areas in science and technology that have high importance for fundamental science and practical applications. Major science areas covered by the course will be in chemistry, particularly biochemistry and electrochemistry. Minor sub-areas studied in the course will be related to biomedical applications and electrical/electronic engineering. All studies in the course will not require any background knowledge except general chemistry and basics of biochemistry. The major topics covered by the class will be related, but not limited, to biosensors, biofuel cells, bioelectronic devices concentrating on the concepts rather than technical details. The course work for

Components: Lecture
Course Equivalents: CM 469
Attributes: Given When Needed
Req. Designation: Technology
Biochemistry & Biotechnology Laboratory
This course is a one semester course in the fundamental laboratory approaches for biochemistry and biotechnology. While largely a hands-on course, laboratory experiments will be supplemented with lectures that integrate the theoretical and practical principles covered in the exercises. Topics include protein purification, characterization and analysis, enzyme kinetics and molecular modeling.
Prerequisites: BY312 or CY450 or CM460 or consent of the instructor.

Chemistry at Surfaces: Structure and Catalysis
This senior undergraduate and graduate course will survey the field of surface chemistry, with specific attention dedicated to the structure of solid surfaces and chemical processes at solid interfaces. This course will cover the basics of the structure of periodic solids, relate that understanding to solid interfaces, and finally address how surface structure and reduced dimensionality impact chemical reactions (i.e. heterogeneous catalysis). Analytical techniques common to this discipline will also be discussed. Graduate students will be assessed differently than undergraduates in this course. Graduate students will have the additional responsibility of delivering a presentation discussing one of several primary research articles germane to the field that were selected by the instructor, while undergraduate students will submit a paper describing one of these articles in detail.

Sustainable Nanotechnology
(Cross-listed with MSE 575, and ES 575) This course covers the same topics as CM 475 and includes additional coursework on the graduate level.
Atmospheric Chemistry

(Cross-listed with CE 577, CH 576) The course will cover the evolution of the atmosphere from its initial formation to its natural background condition to its current state perturbed by human activities; detailed descriptions of the chemistry of the carbon, nitrogen and sulfur cycles; characterization of the atmospheric aerosol and its role in heterogeneous reactions and materials transport; stratospheric ozone and problems with its depletion; airborne radioactivity and its role in atmospheric ion chemistry. This course covers the same topics as CE 477 and includes additional material on the graduate level.

Prerequisite: CM370 or CM371 or ES340.

Components: Lecture

Course Equivalents: CE 477, CE 577, CH 576, CM 476

Attributes: Offered Odd Springs

Req. Designation: Technology
Computational Chemistry

Course ID: 013038
2020-04-03

This course is the senior undergraduate and graduate course which will discuss theoretical and computational methods in chemistry and their applications. This course will include both lectures and computer lab. The lectures will introduce the fundamental theories and methods in chemistry and their applications in the cutting-edge research. The computer lab will be hands-on tutorials on calculating the structures and properties of molecules, exploring the reaction mechanisms, reactivities, and selectivities. The objectives of this course are: (1) to provide students with the basic background of computational methodologies and their applications. (2) to enhance their experiences with common computational methods by class project. (3) to encourage their creativity, critical thinking and problem-solving ability. Graduate students will have additional course work.

Components:
Lecture
Course Equivalents: CM 481
Attributes: Offered Even Falls
Req. Designation: Technology

Information Processing by Chemistry

Course ID: 012950
2019-09-05

This course is composed of lectures and student presentations on signal-switchable chemical and electrochemical systems. These systems perform Boolean logic operations, memory function and control of bioelectronic devices, e.g., biofuel cells.

Students will gain knowledge on chemical/biochemical systems of various complexity logically processing different input signals. Preparation of sensing switchable interfaces will be explained. Finally, bioelectronic systems processing information and operating as signal-switchable devices will be discussed.

Components:
Lecture
Course Equivalents: CM 482
Attributes: Given When Needed
Req. Designation: Technology

Introduction to Polymer Science

Course ID: 010315
2022-02-02

This course is about fundamental aspects of polymer science. It introduces the world of chain molecules from synthesis and properties to applications. Basic knowledge from polymer chemistry and physics are combined in the one course in a form appropriate for undergraduates and graduates in chemistry, physics and engineering to develop the understanding of polymeric behavior in synthetic materials and nature.

Components: Lecture
Course Equivalents: CM 483
Attributes: Given When Needed
Req. Designation: Technology

Nanostructured Materials

Course ID: 011127
2022-02-02

This course reviews the methods to make nanoscale building blocks and approaches to arrange the building blocks into functional architectures for advanced materials. The list of topics includes: chemical patterning and lithography, layer-by-layer self assembly, synthesis and self assembly of nanoparticles, nanotubes and nanowires, properties of nanoclusters and self assembled structures (photonic crystals, plasmonic effects, quantum dots, porous materials, biomimetics).

Components: Lecture
Course Equivalents: CM 485
Attributes: Given When Needed
Req. Designation: Technology

Industrial Chemistry

Course ID: 012838
2022-02-02

This course will benefit junior and senior undergrads plus grads in chemistry and chemical engineering, and allow them to learn of real ways such talents are used in the professional world. It will involve different industrial chemists and chemical engineers to come to Clarkson University for each of 12 of the 14 weeks of a semester and give two lectures of about 1 hour 15 min each - one on an afternoon and the other following morning. The first lecture will relate the areas of chemistry their company was known for; the second lecture an in-depth discussion on how one project was carried out at the bench and the pitfalls that had to be resolved along the way to achieve success. The intent is to select lecturers from Clarkson Chemistry and Chemical Engineering major alumni at various lengths of time they have been professionals.

Components: Lecture
Course Equivalents: CH 486, CM 586, CM 486
Attributes: Given When Needed
Req. Designation: Technology
School of Arts and Sciences - Chemistry & Biomolecular Sci - Subject: Chemistry

CM 587(3) Course ID: 012909 2022-02-02
Applications of Synchrotron and Electron Based Techniques
The purpose of the course is to familiarize all students with the x-ray and electron based experimental
techniques available at Brookhaven National Lab and other similar facilities. Students will be cognizant of
the applications of these cutting edge facilities, and well positioned to use them in their own research.
This course is suitable for graduate students, postdocs, and advanced undergrads in physical sciences and
engineering, as well as students in biological, environmental, and chemical sciences who may have the
interest to learn more about the techniques they may use for their research.
Components: Lecture
Course Equivalents: PH 587, CM 487, PH 487, MSE 587, ES 587
Attributes: Given When Needed
Req. Designation: Technology

CM 735(1 - 3) Course ID: 007769 2015-02-03
Special Topics in Colloid and Surface Chemistry
Topics in colloid and surface chemistry and related areas selected to meet the needs of the class.
Components: Independent Study
Attributes: Offered Each Term
Req. Designation: Technology

CM 755(1 - 3) Course ID: 007779 2015-02-03
Special Topics in Polymer Chemistry
Topics in polymer chemistry and related areas selected to meet the needs of the class.
Components: Independent Study
Attributes: Offered Each Term
Req. Designation: Technology

CM 765(1 - 3) Course ID: 007784 2015-02-03
Special Topics in Biochemistry
Topics in biochemistry and related areas selected to meet the needs of the class.
Components: Independent Study
Attributes: Offered Each Term
Req. Designation: Technology

CM 775(1 - 3) Course ID: 007789 2015-02-03
Special Topics in Physical Chemistry
Topics in physical chemistry and related areas selected to meet the needs of the class.
Components: Independent Study
Attributes: Offered Each Term
Req. Designation: Technology

CM 890(1 - 3) Course ID: 007800 2015-02-03
Directed Study
The study, on the graduate level, of a subject not otherwise available in formal courses may be undertaken
under the supervision of a faculty member.
Components: Independent Study
Attributes: Offered Each Term
Req. Designation: Technology

CM 900(1 - 2) Course ID: 007810 2015-02-03
Seminar
Reports are made by students on topics from the current literature, or by students, faculty members or
outside speakers on their own research.
Components: Seminar
Attributes: Offered Each Term
Req. Designation: Technology

CM 990(1 - 15) Course ID: 007811 2015-02-03
Thesis, Dissertation or Special Project
Each student does independent, original work on a project under the guidance and supervision of an
instructor. A grade on all of the credits for this work presented in satisfaction of the requirements for a
degree is given when those requirements are completed.
Components: Thesis Research
Attributes: Offered Each Term
Req. Designation: Technology
School of Arts and Sciences - Chemistry & Biomolecular Sci - Subject: Chemistry

CM 999(1 - 10)
Course ID:011096
2015-02-16

Special Graduate Topics
A graduate level course for which there is no comparable Clarkson course. This course may be used to satisfy course requirements for a graduate degree.

Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology
COMM 1(2 - 4) | Course ID: 009604 | 2015-01-13

Communication Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.

- **Components:** Lecture
- **Attributes:** Transfer Credit Only
- **Req. Designation:** Technology

COMM 2(2 - 4) | Course ID: 009605 | 2015-01-13

Communication Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.

This course may be used to satisfy a Foundation Curriculum Humanities Requirement.

- **Components:** Lecture
- **Attributes:** Transfer Credit Only
- **Req. Designation:** Technology

COMM 100(3) | Course ID: 009621 | 2021-11-03

Introduction to Digital Art: Time & Image
(Cross-listed with DA 100) [Formerly COMM 221] This introductory studio course explores many of the key principles, techniques and dialogues governing the creative potential of digital technologies within art and design. Topics of study include bitmap and vector-based digital imaging together with digital approaches to time-based media. The goal of the course is to empower students with an artistic and technological understanding of the subject, while encouraging an experimental approach to digital media.

- **Components:** Lecture
- **Course Equivalents:** DA 100
- **Attributes:** One communication unit, Imaginative Arts, Offered Each Term
- **Req. Designation:** Technology

COMM 101(3) | Course ID: 011091 | 2015-01-13

Introductory Writing
Credit for this course is awarded only on the basis of an incoming student having taken a college-level introductory writing course at another college or university. The focus of this type of course is the teaching of writing itself, and typical titles include 'Freshman Composition,' 'Composition 1,' 'Expository Writing,' 'Freshman English,' and 'Writing and Critical Thinking,' among others. The two communication points associated with COMM101 can be counted toward the Clarkson Common Experience's communication requirement.

- **Components:** Lecture
- **Attributes:** Two communication units, Transfer Credit Only
- **Req. Designation:** Technology

COMM 120(1) | Course ID: 013135 | 2021-11-13

Making and Communicating Innovation
This course will provide a high level overview of prototyping digital and physical innovations and will provide instruction on communicating innovations. Making topics covered include but are not limited to 3D modeling/printing, audio and video principles/recording/editing, basic video shooting/editing. Communication topics include but are not limited to context, audience, and purpose analysis, genres in business and technical communication, pitching, writing style, and writing and revision processes. This is a hybrid course that will include in person and virtual sessions.

- **Components:** Lecture
- **Course Equivalents:** IGN 120
- **Attributes:** Given When Needed
- **Req. Designation:** Technology

COMM 175(3) | Course ID: 013161 | 2022-03-18

Introduction to Design
This course introduces students to key design movements, practices, and innovators in fields such as graphic design, typography, and design thinking.

- **Components:** Lecture
- **Attributes:** One communication unit, Imaginative Arts
- **Req. Designation:** Technology
School of Arts and Sciences - Communication, Media & Design - Subject: Communication

COMM 190 (0)
Course ID: 011191
2015-02-26
Department Consent Required

Writing Center Tutor
Students will be introduced to Writing Center theory which includes collaborative learning, the writing process, rhetorical concepts, disciplinary genres, and interpersonal communication skills. Students will also apply these concepts by conducting writing conferences with members of the Clarkson community. In the process, students will deepen their understanding of the dynamics of interpersonal communication, develop their writing skills and their knowledge of writing in the disciplines.
Prerequisite: Admission by invitation from the Director of the Writing Center. Students may enroll in COMM 190 only twice.
Components: Independent Study
Attributes: One communication unit, Offered Each Term
Req. Designation: Technology

COMM 210 (3)
Course ID: 009609
2016-08-29

Theory of Rhetoric for Business, Science, and Engineering
[Formerly TC 210] This course introduces students to a rhetorical perspective of communication. Students will develop their abilities to: identify and analyze communication problems and issues in a given context; develop effective arguments; and communicate with others using various communication media (written, electronic, oral, visual). The course contains a substantial reading component, as well as instruction, practice, and feedback in writing and speaking.
Components: Lecture
Attributes: Two communication units, Offered Fall Term
Req. Designation: Technology

COMM 216 (3)
Course ID: 013145
2021-11-10

Intro to Sports Broadcasting
Intro to Sports Broadcasting will focus on all aspects of the industry, providing a broad understanding and appreciation of the art of sports broadcasting. Students within the course will discuss sports broadcasting history and origins and debate historical approaches. This course focuses on students' knowledge and intellectual grasp of the industry and culminates with the students beginning to develop their own on-air sports broadcasting talent.

Students will be introduced to a diverse array of techniques and philosophies for sports broadcasting from fundamentals and essentials to advanced learning methods, utilizing a hands-on approach. The course will consist of discussions, critiques, learning exercises, take home assignments and hands-on practice and participation.
Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

COMM 217 (3)
Course ID: 009611
2015-02-03

Introduction to Public Speaking
This lecture and laboratory course is designed to enhance the individual's effective public communication by giving him or her a variety of speaking roles in different situations. The objective of the course is to develop an awareness of the speaking potential of each student with emphasis on listening ability, nonverbal behavior, idea organization and effective use of language and visual aids.
Components: Lecture
Attributes: Two communication units, Offered Each Term
Req. Designation: Technology

COMM 219 (3)
Course ID: 012856
2018-01-16

Introduction to Social Media
This course is geared toward understanding and utilizing the various social media channels for personal, professional and community benefit. In this course we will: Assess a variety of social media channels, examine successful users of new media, construct/refine our social media presence, relate social media attributes to our future paths, understand the social media climate through current articles, case studies, readings, and reports, Skype with industry professionals to gain varied insight, create a social media campaign to help spread awareness on some component of Clarkson University, understand how some component of social media campaigns could impact your future aspirations.
Components: Lecture
Attributes: Two communication units, Individual and Group Behavior, Offered Fall Term
Req. Designation: Technology
Short Film Screenwriting
(Cross-listed with FILM 226) In this course, you will learn the process of writing short screenplays for narrative fiction films of any genre. Short films can be anywhere from 30 seconds to 40 minutes long, though the majority of them fall between seven and fifteen minutes. Each student will complete two short scripts and then revise one of these from the ground up. Since this is a workshop, you are expected to comment thoughtfully on your classmates' work, as they will comment thoughtfully on yours. Though there is some reading in this course, your primary concern should be writing, writing, writing!

Components: Lecture
Course Equivalents: FILM 226
Attributes: Two communication units, Imaginative Arts, Given When Needed
Req. Designation: Technology
COMM 229(3) Course ID:012826 2017-08-15
Principles of User-Experience Design
This course introduces the processes and practices of user experience design (UXD) as it applies to websites, applications, and product development, and includes grounding in theories and techniques for developing websites, user-interfaces, media artifacts, and products. Students think critically about and practice design thinking and iteration, analyze and theorize design choices, communicate ideas in multimedia, collaborate with others, perform research, hypothesize, conduct tests, and report data. By the end of the course, students will have a solid understanding of major user-experience design methodologies.
Components: Lecture
Attributes: Two communication units, Imaginative Arts, Offered Spring Term
Req. Designation: Technology

COMM 245(3) Course ID:012970 2021-03-25
Writing for Media
Writing for Media helps students learn to write for a people in diverse types of media and genres, ranging from traditional areas such as journalism through social media. Students will develop skills at analyzing communication needs in diverse contexts; writing communications that work effectively for readers, viewers, listeners, and users in those contexts. Students will also learn how to adapt their own skills to emerging media in the future.
Components: Lecture
Attributes: Imaginative Arts, Given When Needed
Req. Designation: Technology

COMM 310(3) Course ID:009612 2022-03-08
Mass Media and Society
This course consists of readings in and analysis of modern media communication and its influence. It includes the history of the media, media control, and various media effects on special audiences and on the development of other media. The course centers on an analysis of how society controls the media and how the media controls society. The course is based on discussion of opinion pieces and other readings.
Components: Lecture
Attributes: Contemporary and Global Issues, Science, Technology and Society, University Course, Offered Fall Term
Req. Designation: Technology

COMM 312(3) Course ID:011664 2015-01-23
Public Relations
This course will introduce students to the history, nature, theory and practice of public relations in the United States by examining the activities of public relations professionals and firms. Attention will be given to the communication process and how persuasion is employed to influence various publics via traditional PR strategies and approaches, as well as how emerging media are changing current practice in various fields (e.g., health care, entertainment, government, and non-profits). Frequent practical exercises, communication tasks, and activities could include developing written and/or video press releases, maintaining a blog, running a press conference, planning events for a PR campaign in coordination with a client’s goals, creating ‘press kits,’ developing strategies for building relationships with the media, developing a crisis communication plan for an organization, and associated oral presentations.
Components: Lecture
Attributes: Two communication units, Given When Needed
Req. Designation: Technology

COMM 313(3) Course ID:009615 2022-03-08
Professional Communication
[Cross-listed with EM313] This course presents students opportunities to learn how to design and present effective professional documents. The course emphasizes a rhetorical approach to analyzing the issues and details important to the communication to be produced (e.g., audience, style, format, purpose). Students will practice writing both individually and collaboratively and will be expected to present their work orally on occasion. Students will encounter topics such as, but not limited to, abstracts, email, instructions, letters, memoranda, proposals, and various types of reports. Students of any major may take this course.
Components: Lecture
Course Equivalents: EM 313
Attributes: Two communication units, Offered Each Term
Req. Designation: Technology

Report ID: SR301 Clarkson University Page No. 149 of 656
Course Catalog
Run Date: 06/27/2022 Run Time: 14:02:09
COMM 314(3) Course ID:012925 2019-02-07
Placemaking, Marketing and Promotion
This course includes a foundational understanding of the construct of Placemaking or the ways in which people in places at various geographic scopes (neighborhood, community, town, or region) explore collaboratively their needs and develop planning and entrepreneurial strategies for more livable, sustainable and productive communities. This exploration interrogates multiple disciplines and fields including physical geography, architecture, community planning, sustainability certification programs (e.g., LEED), civic engagement, entrepreneurship, regulatory frameworks, as well as current trends in the literature and practice. A focus will also be on Creative Placemaking initiatives that put artists and The Arts at the forefront of community development. The course also builds on this foundation to examine the various ways in which communities utilize Placebranding as well as Marketing and Promotional Strategies to reach their goals including tourism, residential growth and sustainable, economic development.
Components: Lecture
Attributes: One communication unit, Economics and Organizations, Imaginative Arts, University Course, Given When Needed
Req. Designation: Technology

COMM 315(3) Course ID:013059 2020-10-13
STEAM Journalism
Writing is one of the most varied fields in the modern workforce. From full-time and freelance journalists covering breaking news - to media writers and PR professionals working in-house to tell organizational stories across multi-media and even technical genres, the role of "writer" is complex and diverse. What has become more evident with advances in technology is that writers in these wide-ranging capacities, whose task is to illuminate stories about science, technology, engineering and math (STEM), have something in common: integration of the "Arts" (the addition of "A") to deepen and contextualize stories embedded in technical information and data. These approaches take the form of creative practices, elements, design principles, and standards, to foster inquiry, collaboration, and emphasis on process-based writing. This course introduces students to journalism, field and practice, and the ways in which journalism is evidenced in writing roles and functions in organizations and media production. Students will focus experientially on developing and
Components: Lecture
Req. Designation: Technology

COMM 316(3) Course ID:013095 2021-03-08
Health Communication
This course explores topics at the intersection of health communication and health promotion. We will explore research, theory, and practice across levels of communication (i.e., interpersonal, organizational, intercultural, mass) and evidence for their influence on health behaviors and outcomes. Relevant topics include health information seeking, patient-provider interactions, social support (i.e., patient-patient & patient-caregiver dyads), and communication within healthcare organizations conducted in-person or through mediated environments (e.g., telehealth, social media, virtual reality). Strong attention will be paid to the role of communication in health disparities relevant to culture, rurality, and literacy.
Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

COMM 317(3) Course ID:013150 2022-03-08
Public Discourse and Dialogue Across Difference
This course is centered in critical approaches to intersectional human differences across the spectrum of identity. The content, classroom conversations, and texts you produce will focus on issues of race, gender, class, sexuality, and ability differences across multiple discursive contexts. We will consider how we define and constitute identities (both others' and our own) and how our identity is constituted for us. We will consider the ways we write, talk, think, and feel about identity and broader social inequities -- with the intent of getting to a level of comfort where we can readily engage in meaningful conversations on these subjects both in and outside the classroom without resorting to hostility and further division.
Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Requisites: Must be Sophomore level or higher.
Req. Designation: Technology
Typography and Design
This course introduces students to typography as a design discipline. We will discuss the history and current state of typography, analyze the ways that type and design contribute to different meanings, and produce specific designs using type and other graphic elements in print and online forms.

Components: Lecture
Attributes: Two communication units, Imaginative Arts, Given When Needed
Req. Designation: Technology
Feature Film Screenwriting

Course ID: 011955
Run Date: 06/27/2022
Run Time: 14:02:09

In this course, you will learn the process of writing a feature-length screenplay. You will devise an original story idea, craft intermediate documents (i.e. logline, treatment, and beat sheet), and then write a first draft. Our goal is not to complete a polished draft (most screenplays go through at least a dozen revisions), but rather to execute a full draft in proper screenplay format that hits all the dramatic turning points, fleshes out characters and dialog, and leaves you with a document ready for substantive revision - now that you know what you're writing. Since this is a workshop, you are expected to comment thoughtfully on your classmates' work, as they will comment thoughtfully on yours. Along the way, you will read several professional scripts and complete a brief critique of each. We will also learn about the profession of screenwriting, including what to do with finished scripts, how to seek representation, and what the Writers Guild of America is. Though there is a good amount of reading in this course, your primary concern should be

Components: Lecture
Same As Offering: FILM 326
Attributes: Two communication units, Imaginative Arts, Given When Needed
Req. Designation: Technology

Digital Video Production I

Course ID: 009623
Run Date: 06/27/2022
Run Time: 14:02:09

This course presents students with a hands-on opportunity to gain knowledge and experience in digital video production. The focus of this course will be on mastering the technical fundamentals of video production: recording high quality video and audio, lighting, editing, and color grading. Students will work alone and in small teams to produce video projects throughout the semester and will have the opportunity to gain experience in the entire video production process from conceptual development through video delivery. Emphasis will be on practical exercises with material presented via lectures, discussions, and hands-on practice.

Components: Lecture
Attributes: One communication unit, Imaginative Arts, Offered Fall Term
Req. Designation: Technology

Video Production with Impact

Course ID: 013124
Run Date: 06/27/2022
Run Time: 14:02:09

Video production with impact is a hands-on video production course where students learn how to produce high quality scripted and unscripted videos for different professional and creative applications. The class will focus on the creative skills related to communicating ideas clearly and effectively through video. Students will leave the class with a demonstrated ability to write, film, and editing compelling and impactful video content. The class will teach basic technical skills, but the emphasis will be on professional communication and creative problem solving.

Components: Lecture
Attributes: Imaginative Arts, Offered Spring Term
Req. Designation: Technology

Front-End Development for the Web

Course ID: 012862
Run Date: 06/27/2022
Run Time: 14:02:09

This course focuses on the technical, rhetorical, and critical knowledge necessary to produce web and mobile applications, focusing especially on developing proficiency with the core technologies: HTML5, CSS3, and JavaScript (including frameworks, pre-processors, and script libraries). Students will invent, critique, and develop standards-compliant websites and applications, write and debug code, produce visual and informational designs, collaborate with others, and articulate principles of workflow, user-experience, and design. (COMM 229 recommended but not required.)

Components: Lecture
Attributes: One communication unit, Offered Fall Term
Req. Designation: Technology
Science Journalism

Popular media has a tremendous influence on the production and reception of modern science. News and magazine articles, television shows, and movie documentaries influence public policy on science, research funding, the general public's interest in and understanding of scientific research, and even young people's willingness to choose a career in science. Drawing on student research experience in undergraduate science, students will learn about reporting science using a range of approaches and media. The class will investigate the influence of popular accounts of science on multiple audiences including specialist and non-specialist groups. Assignments will challenge students to understand the societal implications of scientific research and to identify and address different constituent positions and interests.

Components: Lecture
Attributes: Two communication units, Science, Technology and Society, Given When Needed
Requirement Group: Prerequisites: COMM210 and six (6) hours of a science, or permission of the Comm & Media department
Req. Designation: Technology
School of Arts and Sciences - Communication, Media & Design - Subject: Communication

COMM 345(3) Course ID:009625 2022-03-08
Information Design
Information Design explores ways to structure complex data into usable information in genres including websites, computer interfaces, information visualizations, charts, interactive media, and more. Drawing on theories and practices from disciplines including communication theory, cognitive psychology, visual theory, and new media, students will learn to understand users and their contexts, select appropriate media and genres, and design effective and efficient informational texts.
Components: Lecture
Attributes: Two communication units, Imaginative Arts, Given When Needed
Req. Designation: Technology

COMM 347(3) Course ID:013062 2022-03-08
Design Thinking
In this practice-based course, students will learn how to apply Design Thinking frameworks, methods, and tools to problems within their discipline(s). They will also learn about Design Thinking's strengths and weaknesses, and how it varies across different industries and cultures.
Components: Lecture
Attributes: Two communication units, Imaginative Arts, Given When Needed
Req. Designation: Technology

COMM 360(3) Course ID:011586 2021-06-23
Sound Design
This course covers basic audio production including topics such as acoustics, microphones, speakers, amplification, effects, recording, and editing. Students will learn methods for recording, editing, and mixing music and spoken word as well as basic sound design for movies and video games. The course will include reading about concepts and practices as well as extensive hands-on work in the studio.
Components: Lecture
Attributes: Two communication units, Imaginative Arts
Req. Designation: Technology

COMM 375(3) Course ID:013032 2022-03-08
Product Design
Provides students with a framework for developing consumer products ranging from interfaces to physical products. The course covers fundamentals of product design, user needs analysis, competition assessment, ideation, critique, and virtual and physical prototyping.
Components: Lecture
Attributes: Two communication units, Imaginative Arts, Science, Technology and Society, University Course, Given When Needed
Req. Designation: Technology

COMM 391(3) Course ID:010692 2015-01-23 Instructor Consent Required
Special Topics Course
These courses reflect ongoing developments in communication practice and theory, often related to the particular faculty member's research interests.
Prerequisites: one course in communication or consent of the instructor.
Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

COMM 392(3) Course ID:010693 2018-08-23
Special Topics Course
These courses reflect ongoing developments in communication practice and theory, often related to the particular faculty member's research interests.
Prerequisites: one course in communication or consent of the instructor.
Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

COMM 393(3) Course ID:010694 2014-10-08
Special Topics Course
These courses reflect ongoing developments in communication practice and theory, often related to the particular faculty member's research interests.
Components: Lecture
Req. Designation: Technology
COMM 394(3) Course ID: 009630 2022-03-08
Special Topics
These courses reflect ongoing developments in communication practice and theory, often related to the
particular faculty member’s research interests.
Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

COMM 395(3) Course ID: 010695 2015-01-23
Special Topics
These courses reflect ongoing developments in communication practice and theory, often related to the
particular faculty member’s research interests.
Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

COMM 410(3) Course ID: 009633 2022-03-08
Theories and Philosophies of Communication
This course explores a range of approaches to understanding human communication, including work from
communication, philosophy, cognitive science, social science, and more. Through extensive reading,
discussion, and writing, students investigate how people communicate—and miscommunicate—with each other as
individuals and communities.
Components: Lecture
Attributes: One communication unit, Individual and Group Behavior, Given When Needed
Req. Designation: Technology

COMM 412(3) Course ID: 009635 2015-01-23
Organizational Communications and Public Relations Theory
This course examines the nature of the organization and the strategic communication processes that build
relationships between organizations and their publics. Through assigned readings, lectures, and class
discussion and analysis, students are exposed to communication theory and trends relevant to the workplace.
Students will examine the communicative implications of such topics as organizational structure and goals;
corporate culture; managerial schools of thought; leadership styles; superior-subordinate relationships; and
communication consulting. In addition, students will address communicative implications in a changing
economy; employee loyalty and dissent; gender and the workplace; and corporate image in crisis situations.
This course seeks to provide students with insight into the organizational context, not only to make them
more effective communicators but also to help them make informed choices in their careers.
Components: Lecture
Attributes: One communication unit, Individual and Group Behavior, Given When Needed
Req. Designation: Technology

COMM 415(3) Course ID: 013060 2020-10-13
STEAM Journalism
Writing is one of the most varied fields in the modern workforce. From full-time and freelance journalists
covering breaking news – to media writers and PR professionals working in-house to tell organizational
stories across multi-media and even technical genres, the role of “writer” is complex and diverse. What has
become more evident with advances in technology is that writers in these wide-ranging capacities, whose task
is to illuminate stories about science, technology, engineering and math (STEM), have something in common:
integration of the “Arts” (the addition of “A”) to deepen and contextualize stories embedded in technical
information and data. These approaches take the form of creative practices, elements, design principles, and
standards, to foster inquiry, collaboration, and emphasis on process-based writing. This course introduces
students to journalism, field and practice, and the ways in which journalism is evidenced in writing roles
and functions in organizations and media production. Students will focus experientially on developing and
Components: Lecture
Req. Designation: Technology

COMM 420(1 - 9) Course ID: 009639 2014-09-23
Communication: Independent Study
Designed primarily for a student who wishes to pursue special interests in communication for one or more
semesters, this series of courses allows individual students to define independent study projects.
Prerequisites: one course in communication, consent of the instructor.
Components: Independent Study
Req. Designation: Technology
School of Arts and Sciences - Communication, Media & Design - Subject: Communication

COMM 421 (1 - 9)
Course ID: 009640
Course ID: 009640
2015-03-03
Department Consent Required

Communication: Independent Study

- Designed primarily for a student who wishes to pursue special interests in communication for one or more semesters, this series of courses allows individual students to define independent study projects.

Prerequisites: one course in communication, consent of the instructor.

<table>
<thead>
<tr>
<th>Components</th>
<th>Attributes</th>
<th>Req. Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Study</td>
<td>Offered Each Term</td>
<td>Technology</td>
</tr>
</tbody>
</table>

COMM 422 (1 - 9)
Course ID: 009641
2014-09-23
Department Consent Required

Communication: Independent Study

- Designed primarily for a student who wishes to pursue special interests in communication for one or more semesters, this series of courses allows individual students to define independent study projects.

Prerequisites: one course in communication, consent of the instructor.

<table>
<thead>
<tr>
<th>Components</th>
<th>Attributes</th>
<th>Req. Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Study</td>
<td>Offered Each Term</td>
<td>Technology</td>
</tr>
</tbody>
</table>

COMM 423 (1 - 9)
Course ID: 009642
2015-02-03
Department Consent Required

Communication: Independent Study

- Designed primarily for a student who wishes to pursue special interests in communication for one or more semesters, this series of courses allows individual students to define independent study projects.

Prerequisites: one course in communication, consent of the instructor.

<table>
<thead>
<tr>
<th>Components</th>
<th>Attributes</th>
<th>Req. Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Study</td>
<td>Offered Each Term</td>
<td>Technology</td>
</tr>
</tbody>
</table>

COMM 424 (1 - 9)
Course ID: 009643
2010-06-17
Department Consent Required

Communication: Independent Study

- Designed primarily for a student who wishes to pursue special interests in communication for one or more semesters, this series of courses allows individual students to define independent study projects.

Prerequisites: one course in communication, consent of the instructor.

<table>
<thead>
<tr>
<th>Components</th>
<th>Attributes</th>
<th>Req. Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Study</td>
<td>Offered Each Term</td>
<td>Technology</td>
</tr>
</tbody>
</table>

COMM 425 (1 - 9)
Course ID: 009644
2022-03-08
Department Consent Required

Communication: Independent Study

- Designed primarily for a student who wishes to pursue special interests in communication for one or more semesters, this series of courses allows individual students to define independent study projects.

Prerequisites: one course in communication, consent of the instructor.

<table>
<thead>
<tr>
<th>Components</th>
<th>Attributes</th>
<th>Req. Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Study</td>
<td>Offered Each Term</td>
<td>Technology</td>
</tr>
</tbody>
</table>

COMM 427 (3)
Course ID: 009646
2022-03-08
Department Consent Required

Digital Video Production II

- COMM 427 builds on the concepts and skills learned by students in COMM 327 (Digital Video Production I). This is a hands-on course that will include: conceptual, aesthetic and technical production of the film-style, single-camera, 30-second spot; instructional and training program development; and live multi-camera studio production for interactive video teleconferencing and streaming media on the WWW. Although a text will be used, emphasis will be on practical exercises, with students frequently working in small teams.

<table>
<thead>
<tr>
<th>Components</th>
<th>Attributes</th>
<th>Req. Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>Two communication units, Offered Odd Springs</td>
<td>Technology</td>
</tr>
</tbody>
</table>

Requirement Group: Prerequisites: COMM327, or permission of the Comm & Media department

Req. Designation: Technology
Environmental Communication
This course focuses on the intersection of theory, environmental challenges and communication; specifically, the ways in which varied people and stakeholders identify, label, frame, shape, and convey these challenges, as well as the ways in which they make decisions and policies in the public sphere at varied scopes and levels of governance, and in the face of risk and uncertainty. Exploration includes historic and contemporary environmental movements, key leaders and figures, environmental law and seminal policy frameworks, including agencies and institutions, and the ways in which we are grappling with current challenges through communication mediums and changing media. Students will engage in critical reading, case studies, discussion, and research, as well as guest speaker presentations and field trips when possible.

Components:
- Lecture

Attributes:
- Contemporary and Global Issues
- Science, Technology and Society
- University Course
- Given When Needed

Req. Designation:
- Technology

Full-stack Development
This course focuses on systematically developing and deploying web technologies in contexts ranging from the personal to the professional. Students will develop with major back-end technologies and learn the related disciplines of server administration, content management, information architecture, and scalable application development. By the end of the course, students will be able to build and deploy applications, write and debug server-side code, design, implement, and administer content management systems, and plan and manage large-scale development projects. The primary languages students will develop facility with include PHP, SQL, Javascript, and Ruby (as well as HTML5 and CSS3).

Components:
- Lecture

Attributes:
- Offered Spring Term

Requirement Group:
- Prerequisite: COMM329

Req. Designation:
- Technology

Advanced Design Thinking
This course focuses on design frameworks, processes, and tools for invention, innovation, and change. With their emphasis on out-of-the-box thinking, creativity, and originality, these frameworks both build on and go beyond the Design Thinking methods taught in COMM347. Examples include Double Diamond Design, Frame Innovation, and Far Field Design. During the semester, you will find and solve several challenges within your chosen area(s) of interest. In keeping with a design orientation, classes will follow a studio format, where studio entails creatively making to learn in hands-on ways.

Components:
- Lecture

Attributes:
- Two communication units
- Individual and Group Behavior
- Offered Fall Term

Req. Designation:
- Technology

Portraying Innovation
This practice-based course focuses on how to effectively communicate innovation and invention across disciplines and sectors (e.g., engineering, sciences, the arts, business, creative industries, public sector). Photography, videography, narrative methods, and portrait theory will be used throughout.

Components:
- Lecture

Attributes:
- Two communication units

Req. Designation:
- Technology

Narrating Innovation
This course focuses on innovation from a design-led perspective. During the semester, you will find and solve several innovation challenges within your chosen area(s) of interest. Relative to “design” we will use a number of design lenses, ranging from easy to difficult, and from incremental to frame-changing. In keeping with a design orientation, classes will follow a studio format, where studio entails “creatively making to learn in hands-on ways.” Hands-on means that you will work on challenges using both 2D and 3D methods (e.g., modeling, prototyping, enacting). “Innovation” can be defined in many ways; here we will broadly think of it as both inventive (coming up with original, creative solutions) and potentially generative (creates some kind of good-societal, commercial, or otherwise).

Components:
- Lecture

Attributes:
- Two communication units

Req. Designation:
- Technology
Leading Innovation

Today's emphasis on 'innovation everywhere' has created a big need for people who can lead others around innovation. The questions around this are many—for example, how to lead innovation efforts within teams, R&D settings, new ventures, organizations of all kinds, and how to enact the role of Chief Innovation Officer. This course assumes that effective innovation leadership requires inspiration, creative direction and vision, finding ways to effectively communicate this, and finding ways to get others on board. With this, the course examines how to artfully create innovation vision, fashion innovation narratives and styles, communicate these through multiple means and media, and effectively design innovation systems. The course uses a studio-based, live-case format where you will take a challenge that an actual innovation leader is facing, creatively work on it using arts-based methods within a studio format, present your solutions to the relevant stakeholders, and get feedback on your ideas. We will work on innovation leadership cases from a

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Two communication units, Imaginative Arts, Individual and Group Behavior, University Course, Offered Fall Term</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

Communication Internship

These internships are designed to provide practical work experience for the communication major or concentration student. Students work with a professional on communication projects areas such as public relations, publication design, advertising, editing, or digital media design. Students can earn credit for only one course for each internship experience.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Independent Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Offered Each Term</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

Undergraduate Teaching Assistantship in Communication & Media

Students assist a faculty member in teaching a Communication & Media course. Students engage in insubstantial pedagogical work beyond mastery of the target course material. Such activities might include mentoring students in course work, leading class discussions or demonstrations, designing or assessing course modules.

Prerequisites: the student will have already taken the course in a previous semester or receive consent from the instructor.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Independent Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

Advanced Communication Internship

These internships are designed to provide practical work experience for the junior or senior communication major or concentration student. Generally, students work with a professional on communication projects in the fields such as web development, public relations, publication design, advertising, editing, or digital media design and production.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Independent Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Offered Each Term</td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisites: Junior or Senior Standing</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

Senior Project

Students will plan and complete a complex, large communication project over the course of a full semester with ongoing feedback from peers and faculty. The course culminates in an exhibition during commencement week.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Offered Each Term</td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisites: Senior Standing</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

Special Graduate Topics

A graduate level course for which there is no comparable Clarkson course. This course may be used to satisfy course requirements for a graduate degree.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Independent Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Transfer Credit Only</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course ID</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>CS 1(2 - 4)</td>
<td>008062</td>
</tr>
<tr>
<td>CS 2(2 - 4)</td>
<td>008063</td>
</tr>
<tr>
<td>CS 141(4)</td>
<td>007813</td>
</tr>
<tr>
<td>CS 142(3)</td>
<td>007814</td>
</tr>
<tr>
<td>CS 241(3)</td>
<td>007815</td>
</tr>
<tr>
<td>CS 242(3)</td>
<td>007816</td>
</tr>
</tbody>
</table>
CS 341(3) Course ID: 007818 2019-04-03
Programming Languages
This course examines the major paradigms underlying modern programming languages. The course currently focuses on object-oriented and logic programming. The rationale of the paradigms is discussed along with typical programming idioms used with them. Programming exercises are used to illustrate concepts--the course does not aim to make students proficient programmers in all the languages that will be studied.

Components:
- Lecture

Attributes:
- Offered Fall Term

Requirement Group:
- Prerequisites: CS142, EE262, or EE361

Req. Designation:
- Technology

CS 344(3) Course ID: 007819 2018-11-12
Algorithms and Data Structures
The primary goal of this course is to build on the programming skills gained in CS 141 and 142 to introduce students to more sophisticated algorithms and data structures and the notion of algorithm design. The course also introduces the basic formalism and concepts used in the analysis of algorithms. The relative efficiency of the algorithms studied is estimated by informal application of these ideas. The algorithms and data structures discussed include those for sorting and searching, pattern matching, set representation, graph problems, dynamic programming and others. Programming exercises based on 'realistic' applications help students to understand the often difficult process of reducing a real-world problem to a standard algorithmic question.

Components:
- Lecture

Attributes:
- Offered Spring Term

Requirement Group:
- Prerequisites: CS142 or EE262 or EE363, and MA132

Req. Designation:
- Technology

CS 345(3) Course ID: 007820 2019-04-03
Automata Theory and Formal Languages
(Cross-listed with MA 345) This course gives an introduction to formal languages and their relation to automata. Topics include deterministic and non-deterministic finite automata, regular expressions and languages, closure properties and decision procedures for context-free languages, recursive and recursively enumerable sets, Turing machines, and decidability. Some aspects of computational complexity may also be explored.

Components:
- Lecture

Course Equivalents:
- CS 541, MA 345

Requirement Group:
- Prerequisites: CS 142, EE262, or EE361, and MA211

Req. Designation:
- Technology

CS 350(3) Course ID: 007831 2021-10-29
Software Design and Development
Working in teams, students will learn tools and strategies for designing and implementing medium/large software projects. Suitable project ideas will be solicited from the community in order to match student teams with real users where possible. Students will learn to elicit requirements from users and to work in an effective team. Students will learn and practice techniques for software testing including black-box testing, stress testing, performance testing, code reviews, and code coverage tools. Students will produce documentation that is appropriate at various stages in the software life cycle including for example, requirements documents, project plans and user manuals. The work will include oral presentations and written reports.

Components:
- Lecture

Attributes:
- Two communication units, Offered Spring Term

Requirement Group:
- Prerequisite: CS242

Req. Designation:
- Technology

CS 407(1 - 15) Course ID: 007821 2017-01-13 Instructor Consent Required
Directed Study in Computer Science
This is a directed study course that will allow the student the opportunity to pursue special interests in Computer Science.

Components:
- Research

Attributes:
- Given When Needed

Req. Designation:
- Technology

CS 408(1 - 15) Course ID: 007822 2017-01-13 Instructor Consent Required
Directed Study in Computer Science
This is a directed study course that will allow the student the opportunity to pursue special interests in Computer Science.

Components:
- Research

Attributes:
- Given When Needed

Req. Designation:
- Technology
CS 411 (1 - 15)
Course ID: 007823
2015-08-15
Instructor Consent Required
Directed Study in Applied Computer Science
This is a directed study course that will allow the student the opportunity to pursue special interests in Applied Computer Science.
Components: Independent Study
Attributes: Given When Needed
Req. Designation: Technology

CS 412 (1 - 15)
Course ID: 007824
2020-04-10
Instructor Consent Required
Directed Study in Applied Computer Science
This is a directed study course that will allow the student the opportunity to pursue special interests in Computer Science.
Components: Research
Attributes: Given When Needed
Req. Designation: Technology

CS 442 (3)
Course ID: 007826
2019-04-24
Computational Complexity
The complexity of a computational problem is the amount of computer resources it requires. Computational complexity theory studies the complexity of computational problems as well as relationships between different types of resources. This course will cover both classical and research-related topics in computational complexity, such as: complexity measures and complexity classes for sequential machines and Boolean circuits, reductions and completeness, hierarchy theorems, relativization, circuit complexity, and proof complexity.
Components: Lecture
Course Equivalents: MA 442
Attributes: Given When Needed
Requirement Group: Prerequisites: CS345 or equivalent MA345.
Req. Designation: Technology

CS 444 (3)
Course ID: 007827
2015-08-15
Operating Systems
This course is an introduction to the concepts of operating systems, their structures and organization. Major topics include process management (asynchronous processes, interprocess communication and synchronization, multithreading, deadlock and starvation, scheduling), storage management (paging/segmentation, virtual memory, file systems), protection and security issues, and an introduction to distributed systems. To demonstrate these concepts, case studies of operating systems will be presented, and a programming project will be an integral part of the course.
Components: Laboratory, Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: CS 344; and CS241 or EE360 or EE264
Req. Designation: Technology

CS 445 (3)
Course ID: 007828
2021-11-30
Compiler Construction
A study of compiler design. Overview of the compilation process. Formal definition of syntax, lexical scanning, parsing including LL and LR grammars, run-time structures, intermediate code generation, and storage allocation. Students are expected to develop a compiler for a substantial subset of a high-level language using compiler tools such as lex and a compiler yacc.
Components: Lecture
Attributes: Given When Needed
Requirement Group: Prerequisites: CS344, CS345, CS241 and CS341
Req. Designation: Technology

CS 447 (3)
Course ID: 007829
2019-04-03
Computer Algorithms
[Cross-listed with MA 447] This course will study and contrast a variety of computational algorithms and develop tools for algorithm analysis. Methods and topics such as dynamic programming, greedy algorithms, graph algorithms, circuits, parallel algorithms, matrix and polynomial algorithms, string matching, and geometrical algorithms will be explored. The theory of NP-completeness and methods of managing NP-complete problems will also be covered.
Components: Lecture
Course Equivalents: MA 447
Requirement Group: Prerequisites: CS344 and MA211
Req. Designation: Technology
Computational Learning

[Cross-listed as MA 449] Computational learning studies algorithmic problems for inferring patterns and relations from data. This course describes the mathematical foundations of learning and explores the important connections and applications to areas such as artificial intelligence, cryptography, statistics, and bioinformatics. A list of relevant topics may include perceptron and online learning, graphical models and probabilistic inference, decision tree induction and boosting, analysis of Boolean functions, sample complexity bounds, cryptographic and complexity hardness, and reinforcement learning. Basic ideas from computer science and mathematics are employed to describe the main ideas and major developments in computational learning.

Components: Lecture
Course Equivalents: MA 449
Requirement Group: Prerequisites: CS344 and CS345, or consent of the instructor.
Req. Designation: Technology

Artificial Intelligence

This course is a comprehensive introduction to core concepts in artificial intelligence and surveys active research areas. Fundamental ideas in knowledge representation and search will be emphasized. Methods for encoding knowledge will include predicate logic, production rules, semantic networks, frames and other schemata. Data-driven and goal-driven search strategies will be covered, along with heuristic search algorithms. Additional topics will be drawn from knowledge-based systems, reasoning under uncertainty, planning, natural language understanding, neural networks and learning. Throughout the course, students will learn AI programming techniques and applications using languages such as LISP or Prolog.

Components: Lecture
Attributes: Given When Needed
Requirement Group: Prerequisites: CS344 (CS250 and CS341 recommended)
Req. Designation: Technology

Computer Graphics

[Cross-listed with EE 465] An introduction to computer graphics. Graphics hardware, algorithms for generating and displaying two and three-dimensional geometric figures, animation, interactive displays. Programming projects using OpenGL will be assigned.

Components: Lecture
Course Equivalents: EE 465
Attributes: Given When Needed
Requirement Group: Prerequisites: CS142 or EE361, and MA232 or MA239 (or MA339 as a corequisite)
Req. Designation: Technology

Computer Networks

[Cross-listed with EE 407] This course covers layered networking protocols with an emphasis on common Internet protocols such as TCP, IP, HTTP, and SMTP. It also covers local area networking, focusing on link layer standards such as the IEEE standards for Ethernet and wireless. Additional topics such as security and congestion control will also be covered. EE407 and CS455 are offered each fall as one course with multiple listings.

Components: Laboratory, Lecture
Course Equivalents: EE 407
Requirement Group: Prerequisites: One of course in computer architecture (EE264, CS241 or IT502 or equivalent). One course in computer programming (EE261, CS141 or equivalent.) Note: IT501 also satisfies the programming requirement.
Req. Designation: Technology

Cryptography

[Cross-listed with MA 456] Cryptography is the discipline which studies the making of 'secret' codes. This course will examine some of the methods of cryptography together with many surprising applications. The language of modern cryptography is primarily number theory, and various tools of number theory will be developed as needed. No background in number theory or cryptography will be necessary, but some mathematical sophistication and familiarity with proofs will be assumed. Topics will include: one-way functions, public-key cryptosystems, digital signatures, probabilistic encryption, primality testing, interactive proof systems, and methods of secret sharing.

Components: Lecture
Course Equivalents: MA 456
Attributes: Given When Needed
Requirement Group: Prerequisites: CS142, EE262, or EE361, and MA232 or MA239 (or MA339 as a corequisite)
Req. Designation: Technology
CS 457(3) Course ID:010599 2015-08-15
Computer and Network Security
[Cross-listed with EE 410] Attacks on networked computer systems are an increasingly important problem. This course covers the types of vulnerabilities that are present in modern computer systems and the types of malicious software that exploit these vulnerabilities. It also covers best practices for preventing, detecting and responding to such attacks including anti-virus software, defensive programming techniques, intrusion detection systems, honeypots and firewalls.
Prerequisites: A general course in computer networking such as CS455/555 or EE407/507. Programming experience to the level of CS142 or EE361.
Components: Lecture
Course Equivalents: CS 557, EE 410, EE 510
Req. Designation: Technology

CS 458(3) Course ID:007837 2015-08-15
Formal Methods for Program Verification
Formal methods are algorithms and techniques that actually prove that a program meets its design criteria, and are the only way to guarantee that a program works correctly. As computer software increases in size and complexity, formal methods are becoming an essential part of software engineering. This is especially true of safety critical and life critical systems, where software errors can have life threatening consequences. Until recently, formal methods have had limited application because they were difficult to use. This is changing, and they are receiving greater acceptance from software engineers in industry and government. This course introduces students to the basic concepts and methods of program verification. A variety of techniques and tools will be covered, and students will gain experience in applying the tools to actual programs. After completing the course, students will have sufficient expertise to learn new methods as they become available.
Components: Lecture
Course Equivalents: CS 558
Attributes: Offered Spring Term
Requirement Group: Prerequisites: MA211 or MA346; and CS344
Req. Designation: Technology

CS 459(3) Course ID:010238 2021-11-30
Human-Computer Interaction
This course provides an introduction to the field of human-computer interaction (HCI). This discipline focuses on the design, evaluation and implementation of interactive computing systems from a user's point of view. The course will give a broad overview of the ideas, techniques, and tools in the subject, with a systematic approach to designing visual interfaces and evaluating their effectiveness. Case studies of existing interfaces, technologies, and data display methods will be discussed and critiqued. Topics include: programming and command languages; menus and forms graphical user interfaces, computer-supported cooperatorative work, information search and visualization; input/output devices; and display design. A collaborative course project will explore issues in HCI and design.
Components: Lecture
Attributes: Given When Needed
Requirement Group: Prerequisites: CS242 or EE408
Req. Designation: Technology
Database Systems
(Cross-listed with EE 468) An introduction to database systems. The entity-relationship and relational models are presented and applied to the design of typical databases. New developments in object-oriented and multimedia databases are presented. Emphasis will be placed on database design for applications in the context of an existing database management system such as ORACLE or ACCESS.

Components: Lecture
Course Equivalents: EE 468
Attributes: Offered Spring Term
Requirement Group: Prerequisites: Programming experience in a high-level language
Req. Designation: Technology
Mixed Reality

This course provides an introduction to the mathematics and computing underlying virtual (VR) and augmented reality (AR). Students will learn stereo camera geometry for VR, recovery of 3D scene structure from images for content manipulation in AR, and capture of human interaction for virtual environments. Students will perform several short and long projects as part of the course.

Components:
- Lecture

Attributes:
- Given When Needed

Requirement Group:
- Prerequisites: CS142/EE361, and MA232/MA239 or corequisite of MA339.

Blockchain Technologies

Blockchain technologies are the underlying technological foundation of almost all digital currencies, such as Bitcoin and Ethereum. Without the need of a trusted authority or central server, Blockchain technologies can securely archive and are inherently resistant to modification of data. The course will cover the basics and advanced topics of Blockchain technologies. The basics include public key cryptography and cryptocurrency, hashing algorithms, mining process, proof of work, block structures, transactions and wallets. Advanced topics may include consensus algorithms, smart contracts, blockchain network security and applications. We will discuss the limitations of current applications and explore new systems and proposals that overcome them. The course will offer many hands-on lab components and a blockchain-based course project. Students should already have had solid programming skills, such as C, C++ or Python, to take the course.

Components:
- Lecture

Quantum Information and Computation

This course studies information and computation based on quantum mechanical laws. The first part of the course will cover the relevant background in quantum information theory. A brief discussion of several universal quantum computational models will be given. The second part will cover algorithmic techniques important for developing quantum algorithms. Topics to be covered include amplitude amplification, quantum walks, phase estimation, hidden subgroup problems, and quantum protocols. Background in physics would be helpful but is not required.

Components:
- Lecture

Deep Learning

This course will cover the principles of modern deep learning architectures from a theoretical and practical perspective. Course topics covered will include an introduction to machine learning and basic neural network architectures, and in-depth discussions on convolutional neural networks, recurrent neural networks based on units such as LSTMs and GRUs, and, if time permits, GANs. Students will be required to implement programming assignments and projects that apply deep learning architectures to solve classification and regression problems.

Components:
- Lecture

System Administration and Network Operations

This course is designed to give students the basic skills and knowledge to administer Unix/Linux machines as standalone workstations or in a network environment. For example, students will learn to install and configure the Linux operating system, create and maintain system users and groups, maintain and administer a file system, configure and maintain network services, troubleshoot system and network problems, and secure the system and network environment. Comprehensive hands-on labs throughout the course will reinforce learning and develop skills and competency.

Components:
- Lecture
School of Arts and Sciences - Computer Science - Subject: Computer Science

CS 472(3) Course ID:013009 2020-01-06
Image Understanding
This course is an introduction to image processing and computer vision algorithms. Students will learn
concepts such as image formation, how to store a digital image on a computer, how to use it in a program,
different image features and their importance in computer vision, as well as some advanced computer vision
topics such as object classification. Students will implement these concepts as part of the programming
assignments. They will also do some theoretical assignments and a project.
Components: Lecture
Course Equivalents: CS 572
Attributes: Given When Needed
Requirement Group: Prerequisites: CS142 or EE262 or EE361, and MA232 or MA239 (or MA339 as a corequisite)
Req. Designation: Technology

CS 473(3) Course ID:013057 2020-11-04
Computer Vision
[Cross-Listed CS573/EE473] This course will cover an overview of basic theoretical underpinnings and
practical applications of computer vision, with particular emphasis on geometrical techniques underlying 2D
and 3D vision. Topics covered include, but are not restricted to, estimation of image transformations, image
formation, pose estimation, camera calibration, epipolar geometry, structure-from-motion, stereo
reconstruction, filtering, interest point detection, motion estimation, image segmentation, and object
recognition.
Components: Lecture
Course Equivalents: CS 573
Attributes: Given When Needed
Requirement Group: Prerequisites: CS142 or EE262, and MA339.
Req. Designation: Technology

CS 475(3) Course ID:013066 2020-10-23
Computing, Ethics and Society
[Cross-Listed CS575] This course focuses on the increasing ubiquitous nature of computing, its impact on
society and the ethical issues related to the design, implementation and deployment of computing
technologies. We will examine case studies of the impact of computing technology on society and reflect on
issues such as privacy, equality, justice, security, accountability, transparency, safety and reliability.
Components: Lecture
Course Equivalents: CS 575
Attributes: Given When Needed
Requirement Group: Prerequisite: CS141
Req. Designation: Technology

CS 497(1 - 3) Course ID:007839 2022-05-20 Instructor Consent Required
Undergraduate Research I
Students engage in computer science research with a faculty member. The topic will be determined by student
interest and faculty research programs. This course may be repeated for credit.
Prerequisites: consent of the instructor.
Components: Research
Attributes: Given When Needed
Req. Designation: Technology

CS 498(1 - 3) Course ID:007840 2022-06-16 Instructor Consent Required
Undergraduate Research II
A continuation of CS 497.
Prerequisites: consent of the instructor.
Components: Research
Req. Designation: Technology

CS 499(0) Course ID:010168 2015-08-15
Professional Experience
This course records successful completion of an approved professional experience meeting the requirements of
the Clarkson Common Experience. Typical activities include internships and co-ops, directed research, and
suitable semester-long class projects.
Components: Independent Study
Req. Designation: Technology
School of Arts and Sciences - Computer Science - Subject: Computer Science

CS 500(3) Course ID:012269 2016-07-01
Network and Security Systems
[Formerly CSC 560] This course explores critical business challenges: how to protect an organization’s computer networks, systems, applications and information. Students learn how to design procedures, protocols, and policies that address both engineering and human issues. Engineered security is examined through the application or cryptography, digital signatures and certificates, authentication protocol, firewalls, and intrusion detection. Also considered are security issues related to people’s use of organization’s networks and systems including policies and practices for password management and protecting privacy rights. Students also study options for maintaining business continuity in the event of a disruption of business operations. Specific case studies are used to highlight the choices that must be made to balance operational efficiency of business functions with protecting the business from the onslaught of security threats. Prerequisite expertise: Networking protocols. The student should have taken a course in computer communications/networking.
Components: Lecture
Req. Designation: Technology

CS 501(3) Course ID:012270 2016-07-01
Software Quality Management
[Formerly CSC 561] This course prepares students to apply a quality mindset to both the development process and the developed software. Students learn the theory and practice of quality assurance and testing computer software. Topics of study include the use of metrics to measure quality, software quality standards as a baseline for establishing and assessing quality, the effects of the economics on product reliability, and software testing practices (including test design, coverage, and tools). Students will study specific cases that highlight practical techniques and reveal the relationship between software quality management and meeting an organization’s business objectives.
Components: Lecture
Same As Offering: CS 501
Req. Designation: Technology

CS 502(3) Course ID:012271 2016-07-01
Business Intelligence
[Formerly CSC 562] This course offers an interdisciplinary look at computing technologies in support of forming valuable business insights and making effective decisions. Students acquire knowledge of the conceptual basis for data warehousing (collection and organization of data in database management systems) and data mining (detecting of patterns in business data). Students then build the skills to extract business intelligence from collected and analyzed data and present it for use in business decision-making activities. Various practical applications are studies such as customer segmentation, Customer Relationship Management (CRM), Group Decision Support Systems (GDSS), and Executive Information Systems (EIS). Students will learn about trends in the use of business intelligence software and techniques and examine specific case studies. There will be an opportunity for students to develop their own application project. Prerequisite expertise: database management systems.
Components: Lecture
Req. Designation: Technology

CS 503(3) Course ID:012273 2016-07-01
Systems Analysis and Design Methods
[Formerly CSC 564] The application of information technology has extended to all quarters of the business world. While the nature and the scope of information systems vary widely depending on the business context, the fundamental knowledge underlying their development remains the same. This course aims to provide technology students with a solid understanding of the important methodologies and tools & techniques related to the development of information systems in a variety of contexts.
Components: Lecture
Req. Designation: Technology
CS 504(3) Enterprise Architecture 2016-07-01
[Formerly CSC 570] This course provides students with an understanding of the basic concepts and practices of Enterprise Architecture (EA). This is not a course on information systems development, web/application programming, database development, or network design. The course focuses on understanding how information technology resources can be leveraged to support an organization’s strategic goals and business requirements. Basic proficiency is developed in the understanding of several EA methodologies, number of governments and major corporations around the world, as well as the U.S. Federal Government’s approach to EA. Students learn the theory and practice of EA through a combination of lectures, student-led class instructions, analysis papers, exams, and a written project with a verbal presentation.
Components: Lecture
Req. Designation: Technology

CS 505(3) Business Data & Communications & Networking 2016-07-01
[Formerly CSC 583B] This course is designed to convey the essentials of data communication networks. It will cover concepts, technologies and architectures. There will be practical lessons built into the semester’s topics and assignments whenever possible. A single course cannot cover all possible networking topics and issues, so we will cover the major conceptual areas balanced with practical discussions and exercises. We will also discuss important network management topics such as domain management and security. Specifically, the following topics will be covered: Fundamentals of Networking Technologies, OSI Model, Physical Layer, Data Link Layer, Local Area Networks, Wireless Local Area Networks, Network/Transport Layers TCP/IP, Backbone Networks, Wide Area Networks, Application Layer, The Internet, Network Design, Network Management and Network Troubleshooting, Network Security, Voice over IP.
Components: Lecture
Req. Designation: Technology

CS 506(3) Engineering Statistics 2016-07-01
[Cross-listed with EE 602, ME 577] [Formerly CSC 572] Modern engineering practice makes extensive use of statistical methods for the efficient collection and analysis of engineering data, and to support data-based decision making. This course will introduce the statistical tools that are of greatest importance for practicing engineers. Core topics to be covered will include probability and distribution theory, the construction and interpretation of statistical intervals, statistical hypothesis testing, regression analysis and empirical modeling, statistical experimental design, and statistical quality/process control. Additional specialized topics may also be covered, depending upon the interests of the class; possible topics include system reliability analysis, measurement system analysis, process capability analysis (and “six-sigma”), accelerated life testing, and acceptance sampling.
Components: Lecture
Course Equivalents: EE 602, ME 577
Req. Designation: Technology

CS 511(3) Foundations of Computer Science 2021-11-30
This course covers a variety of topics fundamental to Computer Science. Topics will vary from year to year to accommodate the background and interests of the participants. Possible topics include: mathematical foundations, analysis of algorithms, data abstraction, elementary data structures and algorithms such as lists, stacks and sorting, advanced data structures and algorithms such as heaps, hashing, dynamic programming, and graph algorithms, object-oriented programming, and basic automata theory.
Prerequisites: programming experience.
Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

CS 541(3) Introduction to Automata Theory and Formal Languages 2015-08-15
This course covers an introduction to formal languages and their relation to automata. Topics include: regular languages, deterministic and nondeterministic finite automata, closure properties for regular sets, context free grammars, normal forms, ambiguity, pushdown automata, a treatment of closure properties and decision algorithms for context free languages. Also included are a treatment of recursive and recursively enumerable sets, Turing machines, decidability and undecidability.
Prerequisites: MA211, MA346 or equivalent.
Components: Lecture
Course Equivalents: CS 345, MA 345
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Components</th>
<th>Attributes</th>
<th>Req. Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 542(3)</td>
<td>Computational Complexity</td>
<td>The complexity of a computational problem is the amount of computer resources it requires. Computational complexity theory studies the complexity of computational problems as well as relationships between different types of resources. This course will cover both classical and research-related topics in computational complexity, such as: complexity measures and complexity classes for sequential machines and Boolean circuits, reductions and completeness, hierarchy theorems, relativization, circuit complexity, and proof complexity. Students will be expected to independently explore some of the course material. Prerequisites: CS345 or CS541, or consent of the instructor. Components: Lecture, Attributes: Given When Needed</td>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 544(3)</td>
<td>Operating Systems</td>
<td>This course is an introduction to the concepts of operating systems, their structures and organization. Major topics include process management (asynchronous processes, interprocess communication and synchronization, multithreading), storage management (paging/segmentation, virtual memory, file systems), protection and security issues, and distributed systems. To demonstrate these concepts, case studies of operating systems will be presented, and a programming project will be an integral part of the course. Prerequisites: CS344, EE264 or equivalent, or consent of the instructor. Components: Laboratory, Lecture, Attributes: Offered Spring Term</td>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 545(3)</td>
<td>Compiler Construction I</td>
<td>A graduate-level study of compiler design. Overview of the compilation process. Formal definition of syntax, lexical scanning, parsing including LL and LR grammars, run-time structures, intermediate code generation, and storage allocation. Students develop a compiler for a substantial subset of a high-level language using compiler tools such as lex and yacc. Prerequisites: CS241, CS341, or consent of the instructor. Components: Lecture, Attributes: Given When Needed</td>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 547(3)</td>
<td>Computer Algorithms</td>
<td>[Cross-listed with EE 667] This course will study and contrast a variety of computational algorithms and develop tools for algorithm analysis. Methods and topics such as dynamic programming, greedy algorithms, graph algorithms, circuits, parallel algorithms, matrix and polynomial algorithms, string matching, and geometrical algorithms will be explored. The theory of NP-completeness and methods of managing NP-complete problems will also be covered. Prerequisites: CS344, MA211 or MA346. Components: Lecture</td>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 549(3)</td>
<td>Computational Learning</td>
<td>Computational learning studies algorithmic problems for inferring patterns and relations from data. This course describes the mathematical foundations of learning and explores the important connections and applications to areas such as artificial intelligence, cryptography, statistics, and bioinformatics. A list of relevant topics may include perceptron and online learning, graphical models and probabilistic inference, decision tree induction and boosting, analysis of Boolean functions, sample complexity bounds, cryptographic and complexity hardness, and reinforcement learning. Basic ideas from computer science and mathematics are employed to describe the main ideas and major developments in computational learning. Students are expected to learn and explore recent research ideas in the area. Prerequisite: CS 345 or consent of instructor; Corequisite: CS 547 or consent of instructor Components: Lecture</td>
<td>Requirement Group: Corequisite: CS547 or consent of the instructor</td>
<td>Req. Designation: Technology</td>
<td></td>
</tr>
</tbody>
</table>
CS 550(3) Course ID:007847 2021-10-29
Software Design and Development
Working in teams, students will learn tools and strategies for designing and implementing medium/large software projects. Suitable project ideas will be solicited from the community in order to match student teams with real users where possible. Students will learn to elicit requirements from users and to work in an effective team. Students will learn and practice techniques for software testing including black-box testing, stress testing, performance testing, code reviews, and code coverage tools. Students will produce documentation that is appropriate at various stages in the software life cycle including for example, requirements documents, project plans and user manuals. The work will include oral presentations and written reports. Students enrolled in CS550 will be expected to independently explore some aspects of the course material. Students are expected to have taken introductory software development courses similar to CS141, CS142 and CS242.

Components:
- Lecture
- Same As Offering: CS 550
- Attributes: Offered Spring Term
- Req. Designation: Technology

CS 551(3) Course ID:007848 2021-11-30
Artificial Intelligence
[Cross-listed with EE 565] This course is an introduction to the computational study of intelligent systems. Topics include heuristic search, knowledge representation, automated reasoning, knowledge-based systems, reasoning under uncertainty, planning, and intelligent agents. Additional topics may be drawn from machine learning, neural networks, computer vision, and natural language understanding. AI programming techniques and methods will also be covered throughout the course.
Prerequisites: CS344 or equivalent or consent of the instructor.

Components:
- Lecture
- Course Equivalents: EE 565
- Attributes: Given When Needed
- Req. Designation: Technology

CS 552(3) Course ID:007849 2015-08-15
Computer Graphics
[Cross-listed with EE 505] An introduction to computer graphics. Graphics hardware, algorithms for generating and displaying two- and three-dimensional geometric figures, animation, interactive displays. Programming projects using OpenGL will be assigned. Students will be expected to independently explore some aspects of the course material. Prerequisites: Programming experience in C/C++ family language, basic concepts in linear algebra and matrices.

Components:
- Lecture
- Course Equivalents: EE 505
- Attributes: Offered Spring Term
- Req. Designation: Technology
School of Arts and Sciences - Computer Science - Subject: Computer Science

CS 555(3) Course ID: 007851 2016-07-21

Computer Networks

[Cross-listed with EE 507] This course covers layered protocols, network architectures, OSI, digital networks, local area networks, metropolitan networks, wide area networks, and interconnection of local area networks and non-uniform networks. Students will be expected to explore independently advanced aspects of the subject area. Prerequisites: One of course in computer architecture (EE264, CS241 or IT502 or equivalent). One course in computer programming (EE261, CS141 or equivalent). Note: IT501 also satisfies the programming requirement.

Components: Laboratory, Lecture

Course Equivalents: EE 507

Attributes: On Demand

Course Designation: Technology

CS 556(3) Course ID: 007863 2018-01-15

Cryptography

Cryptography is the discipline which studies the making of 'secret' codes. This course will examine some of the methods of cryptography together with many surprising applications. The language of modern cryptography is primarily number theory, and various tools of number theory will be developed as needed. No background in number theory or cryptography will be necessary, but some mathematical sophistication and familiarity with proofs will be assumed. Topics will include: one-way functions, public-key cryptosystems, digital signatures, probabilistic encryption, primality testing, interactive proof systems, and methods of secret sharing.

Prerequisites: MA211, MA346, or equivalent.

Components: Lecture

Attributes: Offered Spring Term

Course Designation: Technology

CS 557(3) Course ID: 010600 2015-08-15

Computer and Network Security

[Cross-listed with EE 510] Attacks on networked computer systems are an increasingly important problem. This course covers the types of vulnerabilities that are present in modern computer systems and the types of malicious software that exploit these vulnerabilities. It also covers best practices for preventing, detecting and responding to such attacks including anti-virus software, defensive programming techniques, intrusion detection systems, honeypots and firewalls.

Prerequisites: A general course in computer networking such as CS455/555 or EE407/507. Programming experience will be assumed. Students will gain practical experience in applying the tools to actual programs. After completing the course, students will have sufficient expertise to learn new methods as they become available.

Components: Laboratory, Lecture

Course Equivalents: CS 457, EE 410, EE 510

Attributes: Offered Spring Term

Course Designation: Technology

CS 558(3) Course ID: 007852 2015-08-15

Formal Methods for Program Verification

Formal methods are algorithms and techniques that actually prove that a program meets its design criteria, and are the only way to guarantee that a program works correctly. As computer software increases in size and complexity, formal methods are becoming an essential part of software engineering. This is especially true of safety critical and life critical systems, where software errors can have life threatening consequences. Until recently, formal methods have had limited application because they were difficult to use. This is changing, and they are receiving greater acceptance from software engineers in industry and government. This course introduces students to the basic concepts and methods of program verification. A variety of techniques and tools will be covered, and students will gain experience in applying the tools to actual programs. After completing the course, students will have sufficient expertise to learn new methods as they become available.

Components: Lecture

Course Equivalents: CS 458

Attributes: Offered Spring Term

Course Designation: Technology

CS 559(3) Course ID: 010239 2021-11-30

Human-Computer Interaction

This course provides an introduction to the field of human-computer interaction (HCI). This discipline focuses on the design, evaluation and implementation of interactive computing systems from a user's point of view. The course will give a broad overview of the ideas, techniques, and tools in the subject, with a systematic approach to designing visual interfaces and evaluating their effectiveness. Case studies of existing interfaces, technologies, and data display methods will be discussed and critiqued. Topics include: programming and command languages; menus and forms graphical user interfaces, computer-supported cooperative work, information search and visualization; input/output devices; and display design. A collaborative course project will explore issues in HCI and design.

Prerequisites: proficiency in C++, Java or C.

Components: Lecture

Attributes: Given When Needed

Requirement Group: Prerequisites: CS242 or EE408

Course Designation: Technology
CS 560(3) Course ID:007853 2014-11-18

Database Systems
(Cross-listed with EE 568) An introduction to database systems. The entity-relationship and relational models are presented and applied to the design of typical databases. New developments in object-oriented and multimedia databases are presented. Emphasis will be placed on database design for applications in the context of an existing database management system such as ORACLE or ACCESS. Substantial independent investigation of advanced topics will be required.

Prerequisites: programming experience in a high level language.

Components: Lecture

Course Equivalents: EE 568

Attributes: Offered Spring Term

Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
<th>Course Description</th>
<th>Components</th>
<th>Attributes:</th>
<th>Req. Designation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 561(3)</td>
<td>Mixed Reality</td>
<td>This course provides an introduction to the mathematics and computing underlying virtual (VR) and augmented reality (AR). Students will learn stereo camera geometry for VR, recovery of 3D scenes from images for content manipulation in AR, acquiring of illumination maps for photorealistic AR, and capture of human interaction for virtual environments. Students will perform several short and long projects as part of the course. Students will also analyze seminal papers in supporting fields such as graphics, vision, and computational photography.</td>
<td>Lecture</td>
<td>Given When Needed</td>
<td>Technology</td>
</tr>
<tr>
<td>CS 566(3)</td>
<td>Blockchain Technologies</td>
<td>Blockchain technologies are the underlying technological foundation of almost all digital currencies, such as Bitcoin and Ethereum. Without the need of a trusted authority or central server, Blockchain technologies can securely archive and are inherently resistant to modification of data. The course will cover the basics and advanced topics of Blockchain technologies. The basics include public key cryptography and cryptocurrency, hashing algorithms, mining process, proof of work, block structures, transactions and wallets. Advanced topics may include consensus algorithms, smart contracts, blockchain network security and applications. We will discuss the limitations of current applications and explore new systems and proposals that overcome them. The course will offer many hands-on lab components and a blockchain-based course project. Students should already have had solid programming skills, such as C, C++ or Python, to take the course. Students will be expected to independently explore some of the course material.</td>
<td>Lecture</td>
<td>Given When Needed</td>
<td>Technology</td>
</tr>
<tr>
<td>CS 569(3)</td>
<td>Quantum Information and Computation</td>
<td>This course studies information and computation based on quantum mechanical laws. The first part of the course will cover the relevant background in quantum information theory. A brief discussion of several universal quantum computational models will be given. The second part will cover algorithmic techniques important for developing quantum algorithms. Topics to be covered include amplitude amplification, quantum walks, phase estimation, hidden subgroup problems, and quantum protocols. Background in physics would be helpful but is not required. As part of a research project, students are expected to explore topics of interest from the literature. Prerequisites: CS344, and MA232 or MA339, or consent of the instructor.</td>
<td>Lecture</td>
<td>Given When Needed</td>
<td>Technology</td>
</tr>
<tr>
<td>CS 570(3)</td>
<td>Deep Learning</td>
<td>This course will cover the principles of modern deep learning architectures from a theoretical and practical perspective. Course topics covered will include an introduction to machine learning and basic neural network architectures, and in-depth discussions on convolutional neural networks, recurrent neural networks based on units such as LSTMs and GRUs, and, if time permits, GANs. Students will be required to implement programming assignments and projects that apply deep learning architectures to solve classification and regression problems. Students will read and assess papers on current evolutions to these architectures. Graduate students will do additional work. Prerequisites: CS142, EE262 or EE361, and MA339, or consent of instructor.</td>
<td>Lecture</td>
<td>Given When Needed</td>
<td>Technology</td>
</tr>
</tbody>
</table>
CS 571(3) Course ID:012897 2018-10-24
System Administration and Network Operations
This course is designed to give students the basic skills and knowledge to administer Unix/Linux machines as standalone workstations or in a network environment. For example, students will learn to install and configure the Linux operating system, create and maintain system users and groups, maintain and administer a file system, configure and maintain network services, troubleshoot system and network problems, and secure the system and network environment. Comprehensive hands-on labs throughout the course will reinforce learning and develop skills and competency. Graduate students will be expected to explore independently advanced aspects of the subject area.
Prerequisite: CS241 or equivalent
Components: Lecture
Course Equivalents: CS 471
Attributes: Given When Needed
Req. Designation: Technology

CS 572(3) Course ID:013010 2020-01-06
Image Understanding
This course is an introduction to image processing and computer vision algorithms. Students will learn concepts such as image formation, how to store a digital image on a computer, how to use it in a program, different image features and their importance in computer vision, as well as some advanced computer vision topics such as object classification. Students will implement these concepts as part of the programming assignments. They will also do some theoretical assignments and a project. Students enrolled in CS572 will study a research paper on related topics and present it to the class. Prerequisites: CS142 or EE262 or EE361, and MA232 or MA239 or MA339, or equivalent.
Components: Lecture
Course Equivalents: CS 472
Attributes: Given When Needed
Req. Designation: Technology

CS 573(3) Course ID:013058 2020-11-04
Computer Vision
[Cross-Listed CS473/EE573] This course will cover an overview of basic theoretical underpinnings and practical applications of computer vision, with particular emphasis on geometrical techniques underlying 2D and 3D vision. Topics covered include, but are not restricted to, estimation of image transformations, image formation, pose estimation, camera calibration, epipolar geometry, structure-from-motion, stereo reconstruction, filtering, interest point detection, motion estimation, image segmentation, and object recognition. Students enrolled in CS573 will be expected to read and implement research papers on seminal and modern techniques in computer vision. Prerequisites: CS142 or EE262, and MA339 (or equivalent, with consent from the instructor).
Components: Lecture
Course Equivalents: CS 473
Attributes: Given When Needed
Req. Designation: Technology

CS 575(3) Course ID:013067 2020-10-23
Computing, Ethics and Society
[Cross-Listed CS475] This course focuses on the increasing ubiquitous nature of computing, its impact on society and the ethical issues related to the design, implementation and deployment of computing technologies. We will examine case studies of the impact of computing technology on society and reflect on issues such as privacy, equality, justice, security, accountability, transparency, safety and reliability. Students enrolled in CS575 will become familiar with venues where computer science research regarding fairness, accountability, transparency and ethics is published and the types of topics and themes commonly covered in this literature today. They will gain skills in reading research literature and apply this to some pieces of recently published work. Prerequisites: CS141, or equivalent.
Components: Lecture
Course Equivalents: CS 475
Attributes: Given When Needed
Req. Designation: Technology

CS 607(1 - 15) Course ID:007854 2020-04-10 Instructor Consent Required
Topics in Computer Science
A graduate course in the field of Computer Science. Areas of coverage will be selected to conform to the mutual interests and needs of students and faculty.
Components: Independent Study
Attributes: Given When Needed
Req. Designation: Technology
CS 608 (1 - 15)
Course ID: 007855
2020-04-10
Instructor Consent Required

Topics in Computer Science
A graduate course in the field of Computer Science. Areas of coverage will be selected to conform to the mutual interests and needs of students and faculty.

Components: Independent Study
Attributes: Given When Needed
Req. Designation: Technology

CS 611 (1 - 15)
Course ID: 007856
2020-04-10
Instructor Consent Required

Topics in Applied Computer Science
A graduate course in the field of Applied Computer Science. Areas of coverage will be selected to conform to the mutual interests and needs of students and faculty.

Components: Independent Study
Attributes: Given When Needed
Req. Designation: Technology

CS 612 (1 - 15)
Course ID: 007857
2020-04-10
Instructor Consent Required

Topics in Applied Computer Science
A graduate course in the field of Applied Computer Science. Areas of coverage will be selected to conform to the mutual interests and needs of students and faculty.

Components: Independent Study
Attributes: Given When Needed
Req. Designation: Technology

CS 634 (1 - 15)
Course ID: 007859
2015-08-15

Thesis
Each student does independent, original work on a project under the guidance and supervision of an instructor. A grade on all of the credits for this work presented in satisfaction of the requirements for a degree is given when those requirements are completed.

MS in Computer Science.

Components: Thesis Research
Attributes: Given When Needed
Req. Designation: Technology

CS 647 (3)
Course ID: 011388
2015-08-15

Advanced Algorithms
This course covers advanced topics in computer algorithms. Topics covered include, but are not restricted to, linear programming and combinatorial optimization, randomized algorithms and probabilistic methods, competitive analysis and online algorithms, algorithms for algebraic and geometric problems, and space-efficient algorithms. The emphasis will be on methods and techniques instead of specific applications. As part of a research project, students are to explore specific topics of interest from the literature.

Components: Lecture
Attributes: Given When Needed
Requirement Group: Prerequisite: CS 547
Req. Designation: Technology

CS 649 (3)
Course ID: 012763
2016-10-03

Current Issues In Machine Learning
In this course, we will read current publications of machine learning research. Students will gain experience reading and critiquing research papers. Class times will be devoted to discussing the papers and possible extensions of the work. Projects may consist of a small piece of research.

Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

CS 653 (3)
Course ID: 010888
2018-01-15

Automated Reasoning
This course will cover advanced topics in Automated Reasoning research. Students will gain experience reading and discussing research papers. Students will be expected to conduct research-related work in Automated Reasoning.

Prerequisites: CS541 and CS547, or consent of the instructor.

Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Offered Date</th>
<th>Description</th>
</tr>
</thead>
</table>
| CS 654(3) | 010375 | 2018-01-15 | Current Issues in Computer Networking Research
In this course we will read both classic and current publications of networking research. Students will gain experience reading and critiquing research papers. Class times will be devoted to discussing the papers and possible extensions of the work. Projects will consist of a small piece of research.
Prerequisites: CS454/554 or consent of the instructor. |
| CS 657(3) | 010464 | 2018-01-15 | Advanced Topics in Computer Security
This course will cover advanced topics in computer security research. Students will gain experience reading and discussing research papers. Students will be expected to conduct research-related work in computer security. |
| CS 662(3) | 013105 | 2021-04-23 | Advanced Techniques in Virtual Reality and 3D User Interfaces
Topics taught will include, but are not limited to, the design of human subject studies for virtual reality (VR)/augmented reality (AR), statistical and learning-based techniques for evaluating VR/AR human subject studies, shared and multi-person VR/AR spaces, cognition in VR/AR, emotion in VR/AR, simulating physical characteristics of everyday objects in VR/AR, attention and engagement in VR/AR. In addition to material related to advanced topics, students will be engaged in understanding the evolution of modern VR through the assessment of relevant research literature, and will work on a comprehensive research project on an advanced VR topic. |
| CS 668(3) | 012792 | 2018-01-15 | Natural Language Processing
This course introduces students to the fundamental concepts and ideas in natural language processing (NLP). In this course students will learn how to create systems that are able to understand and produce language for applications ranging from plagiarism detection to information extraction to automated summarization. The course will focus on four key areas: understanding and recognizing words; syntax (i.e. structure of language); semantics (i.e. meaning of language); pragmatics/discourse (i.e. interpretation of language in context). Students will be introduced to document similarity techniques using frequency and sequence based techniques; n-gram models; parts of speech tagging; named entity recognition; word sense disambiguation; machine translation; use of deep learning in NLP. Students will work with large scale datasets spanning from open source repositories to news articles. As part of the course students will read the latest literature in NLP and provide oral and written summaries. |
| CS 670(3) | 013134 | 2021-10-12 | Advanced Topics in Deep Learning
This course is designed to provide fundamental and specialized knowledge on various deep learning topics and, in the process, prepare students for independent research on real-world problems that require machine learning solutions. The course will cover fundamental topics in learning theory such as Hoeffding's Inequality, Vapnik-Chervonenkis (VC) Dimension, and bias-variance tradeoff. The course will also cover specialized deep learning topics such as instance segmentation, image caption generation, and multi-task learning. The course assessment will include programming assignments that will require the students to implement deep learning models using a programming language such as Python and libraries such as Keras and TensorFlow. Students will also be required to study and present academic papers on related topics and complete a research project. |
Advanced Techniques in Computer Vision

Topics taught will include, but are not limited to, linear and non-linear optimization techniques in computer vision, bundle adjustment, non-rigid structure from motion, multi-view sparse and dense reconstruction, and advanced techniques in image synthesis and representation using deep generative models. In addition to material related to advanced topics, students will be engaged in understanding the evolution of modern computer vision through the assessment of relevant research papers, and will work on a comprehensive research project on an advanced computer vision topic.

Components:	Lecture
Requirement Group:	Prerequisite: CS573
Req. Designation:	Technology

Fairness, Accountability and Transparency in AI and Automated Systems

This course focuses on the important and emerging area of Fairness, Accountability and Transparency across all areas of computing with a focus on applications in Artificial Intelligence, Machine Learning and Automated Decision Making Systems. Lectures and class discussions will draw on classic and current research literature. Students are expected to complete a research project and present the results of their work.

Components:	Lecture
Requirement Group:	Prerequisite: CS575, or instructor permission
Req. Designation:	Technology

Advanced Topics in Multimodal System Design

The course will cover topics on advanced methods in multimodal systems, with a focus on understanding the techniques involved in capture, temporal synchronization, calibration, data acquisition, networking, and data analysis from dense multi-viewpoint systems consisting of multiple modalities of cameras at varying spatial and temporal resolutions. Students will review literature on approaches used to perform cross-sensor temporal registration, calibration, data acquisition, and analysis using machine learning to perform tasks such as pose detection and action recognition for a variety of applications. Students will also do a project and perform presentations on their work.

Components:	Lecture
Requirement Group:	Prerequisite: CS 550
Req. Designation:	Technology

Advanced Topics in Human-Robot Interaction

The course will cover current research in human-robot interaction (HRI), i.e., what it takes for robots to be seamlessly integrated into human environments, while being aware of human needs. The course will cover interdisciplinary work that integrates topics in robotics, artificial intelligence, computer vision, language understanding, human-computer interaction, and psychology. Through collaborative instructor and student-led discussions of HRI literature, students will receive an understanding of mathematical techniques, study design methods, and societal impact of research in HRI. To demonstrate their understanding of material and dedication toward contributing toward societally impactful HRI, students will perform an end-to-end project with research outcomes of interest to HRI.

Components:	Lecture
Requirement Group:	Prerequisites: CS 573, or CS 570, or CS 552
Req. Designation:	Technology

Seminar in Computer Science

Components:	Seminar
Requirement Group:	
Req. Designation:	Technology

Components:	Seminar
Requirement Group:	
Req. Designation:	Technology
Special Graduate Topics
A graduate level course for which there is no comparable Clarkson course. Used for transfer credit only.

Components: Lecture
Attributes: Transfer Credit Only
Req. Designation: Technology
CST 528(3)
Course ID: 013000
2022-04-08
Current Topics in Computer Science I
Students will investigate topics central to computer science for the preK-12 learner. Computer science principles will be aligned to industry standards and New York state teaching and learning standards. This course is designed for MAT, Computer Science students.
Components: Seminar
Attributes: Given When Needed
Req. Designation: Technology

CST 563(3)
Course ID: 012999
2020-01-15
Current Topics in Computer Science II
Current topics in the field of computer science will be explored with attention paid to fundamental concepts as well as future trends. This course is designed for MAT, Computer Science students.
Components: Lecture
Attributes: Given When Needed
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program or by instructor consent.
Req. Designation: Technology

CST 580(3)
Course ID: 012998
2021-10-08
MAT Project in Computer Science
The MAT Project is a one-term research project whose purpose is to allow students time and supervision to develop breadth and/or depth of knowledge to become a better teacher in their certification field. The course is intended to be custom-tailored to meet the specific needs of an individual intern. MAT projects are well-grounded in research and theory, and include a strong and extensive applied aspect, directly addressing the question: What would this look like in the classroom?
Components: Seminar
Attributes: Given When Needed
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program or by instructor consent.
Req. Designation: Technology
School of Arts and Sciences - Digital Arts & Science - Subject: Digital Arts

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Semester</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA 1 (2 – 4)</td>
<td>010697</td>
<td>2019-07-08</td>
<td>Digital Arts Elective A college level course for which there is no comparable Clarkson course. Used for transfer credit only. Components: Independent Study Req. Designation: Technology</td>
</tr>
<tr>
<td>DA 2 (2 – 4)</td>
<td>011608</td>
<td>2019-07-08</td>
<td>Digital Arts Elective A college level course for which there is no comparable Clarkson course. Used for transfer credit only. This course may be used to satisfy a Common Experience Requirement. Components: Independent Study Req. Designation: Technology</td>
</tr>
<tr>
<td>DA 100 (3)</td>
<td>010525</td>
<td>2021-03-31</td>
<td>Introduction to Digital Art: Time & Image (Cross-listed with COMM 100) This introductory studio course explores many of the key principles, techniques and dialogues governing the creative potential of digital technologies within art and design. Topics of study include bitmap and vector-based digital imaging together with digital approaches to time-based media. The goal of the course is to empower students with an artistic and technological understanding of the subject, while encouraging an experimental approach to digital media. Components: Lecture Req. Designation: Technology</td>
</tr>
<tr>
<td>DA 110 (3)</td>
<td>008565</td>
<td>2021-03-31</td>
<td>Drawing This perceptually based studio course serves as one of the foundations for the DA&S major. Students will learn the importance of line, value, perspective, and human anatomy through the use of media such as graphite, charcoal, and ink. The translation of the 3D world to the 2D world through drawing will be emphasized. Components: Lecture Attributes: One communication unit, Imaginative Arts, Offered Fall Term Req. Designation: Technology</td>
</tr>
<tr>
<td>DA 120 (3)</td>
<td>011147</td>
<td>2021-03-31</td>
<td>Elements of Design In this traditional studio art course, the foundations of visual design will be studied, particularly in the fields of color theory and two and three dimensional design. Students create projects with a strong focus on basic elements such as: line, shape, texture, value, color, composition, plane, volume, and space. Other concepts, such as form vs. function and conceptual vs. perceptual creativity will also be studied. Components: Lecture Attributes: One communication unit, Imaginative Arts, Offered Fall Term Req. Designation: Technology</td>
</tr>
<tr>
<td>DA 140 (3)</td>
<td>011884</td>
<td>2022-03-08</td>
<td>Introduction to Digital Art: Form & Code This course introduces the key principles of computer programming. Through workshops, presentations, quizzes, readings, and project-based exercises and assignments, the course embarks on an investigation into the creative possibilities of computer programming within the digital arts. The skills and concepts taught in this course set a foundation for higher level DA&S courses within e.g. game design, web programming, and computational arts. Components: Lecture Attributes: Offered Spring Term Req. Designation: Technology</td>
</tr>
<tr>
<td>DA 200 (3)</td>
<td>010526</td>
<td>2021-03-31</td>
<td>3D Digital Modeling & Imagery This studio course introduces the creation of 3D imagery through the use of the computer. Students will gain experience through the creation and rendering of polygonal models, textures, and lights. This course will demonstrate the importance this medium has in fine art, film, advertising, and video games. Recommended to take DA/COMM 100 prior to taking DA 200, but not required. Components: Lecture Attributes: Imaginative Arts, Offered Fall Term Req. Designation: Technology</td>
</tr>
</tbody>
</table>
DA 207(1)
Course ID: 011818
Run Date: 2021-03-31
Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

School of Arts and Sciences - Digital Arts & Science - Subject: Digital Arts

Media Landscapes I
Students will watch, discuss, and critique media objects such as movies and other forms of popular culture. The course focuses on historical and contemporary examples of work that offer ongoing cultural legacies and represent significant achievements within their genre.

DA 212(3)
Course ID: 011820
Run Date: 2021-03-31
Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

Art in Context
This course offers a critical exploration of the key themes, ideas, and dialogues that inform and guide contemporary art practices. Through readings, writings, and discussions, students will analyze artists and art movements through both historical and theoretical perspectives with a special emphasis on the position of new media technologies in contemporary art and culture.

DA 225(3)
Course ID: 011590
Run Date: 2022-03-08
Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

Digital Painting and Illustration
This studio course teaches painting and illustration through the use of digital tools such as the computer and pen tablet. Building on the student's previous knowledge of color theory, drawing, and design, this course will introduce a raster-based media that facilitates the digital creation of concept art, comics, paintings, and 3D textures.

DA 250(3)
Course ID: 011115
Run Date: 2021-03-31
Components: Lecture
Attributes: Imaginative Arts, Offered Fall Term
Requirement Group: Prerequisite: CS 141 or DA 140, or permission of the Comm & Media department
Req. Designation: Technology

Interactive & Algorithmic Art
In this course, students will be introduced to artistic expressions unique to digital art. They will experiment with creating forms, motions, and interactions through the design of algorithms and the manipulation of math functions. They will learn to conceive and design art works as a dynamic process and as an inseparable combination of audience participation and its visual manifestation. Through this course, students will garner an appreciation of contemporary and technological forms of artistic expression through the understanding of code-based art making. Students will also garner experience in deconstruction code-based digital art to garner a deeper appreciation of the art form. Throughout the course, students will be introduced to various examples of the application of code-based and interactive methods from artists who have a human-centered and critical approach to the role of technology in society.

DA 300(3)
Course ID: 010527
Run Date: 2019-07-08
Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: DA200 or permission of the Comm & Media department
Req. Designation: Technology

3D Imagery & Animation
An advanced studio course in which students apply their 3D modeling knowledge to camera and object animations. Students will explore advanced procedures while incorporating their experience with digital video and sound editing into each project. Projects will include both digital still imagery and 3D animation shorts.
DA 320 (3)
Course ID: 011817
2021-03-31
Moving Images: Motion Graphics & Animation
Focusing predominantly on the software applications Adobe After Effects and Flash, this course explores creative and experimental uses of time-based media as both a form of artistic expression and as a vehicle for presenting data and information. While primarily a studio course, techniques and skills will be taught within a wider critical framework that explores the historical and theoretical precedents and contexts surrounding motion graphics and time-based art practices.

Components: Lecture
Attributes: Given When Needed
Requirement Group: Prerequisites: DA100 or COMM100, or permission of the department

DA 321 (3)
Course ID: 013151
2022-03-18
Video Art
With an emphasis on creative experimentation and artistic expression, DA321 offers a hands-on exploration of video and time-based media as an artistic medium. Focusing on hands-on project development, the course combines the acquisition of technical proficiencies in experimental and interdisciplinary approaches to video, with an exploration of the historical themes and theoretical frameworks informing contemporary time-based art practices. It is recommended to take DA 320 prior to taking this course.

Components: Lecture
Attributes: Given When Needed
Requirement Group: Prerequisites: DA100 or COMM 100. DA320 Recommended

DA 340 (3)
Course ID: 012926
2019-07-08
Virtual Reality (VR) and Mixed Reality
This exploratory class will delve into the use of virtual reality devices such as the Oculus Rift and HTC Vive for interactive content creation. Students will explore a mix between real-time, 360 video, and pre-rendered methods in order to produce challenging content which will explore the potential of what can be achieved with these exciting new platforms. Emphasis will be placed on the experimental application of techniques towards innovative content.

Components: Lecture
Attributes: Imaginative Arts, Given When Needed
Requirement Group: Prerequisite: CS141 or DA100

DA 341 (3)
Course ID: 013065
2022-03-08
Animating and Visualizing Data
This studio course involves utilizing data as a means of linear and non-linear storytelling. Students will learn how to incorporate flat, time-series, and other types of data into moving images. Various methods will be introduced, but all will involve creating a data reader and the aspects of aesthetically displaying said data.

Components: Lecture
Attributes: Given When Needed
Requirement Group: Prerequisite: DA140 or CS141

DA 342 (3)
Course ID: 013099
2021-03-25
3D Character Design, Sculpting and Rigging
Students will conceptualize, design and digitally paint 2D characters and realize them as high polygon sculpted models. Methods for sculpting, baking and retopology will be covered for high-fidelity characters in preparation for rigging. Advanced rigging methods will be introduced for full character dialogue and expressive movement. Students will be required to purchase a small digital Wacom tablet to realize their designs.

Components: Lecture
Requirement Group: Prerequisite: DA200 or permission of the department if you have a basic knowledge of 3D modeling software

Req. Designation: Technology
3D Digital Character Animation
This studio course covers principles of character animation and visual storytelling in relation to topics such as character acting, lip syncing, and game character cycles. With a focus on narrative-driven animation, the course engages with storyboarding, virtual camera cinematography and staging, as well as an exploration of narrative structures in relation to time-based media. With the emphasis on character animation rather than character creation, the course relies predominantly on pre-built assets as the starting point for animations.

Components: Lecture
Attributes: Given When Needed
Requirement Group: Prerequisites: DA/COMM 100, or permission of the instructor.
Req. Designation: Technology

Components: Lecture
Req. Designation: Technology

Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

Directed & Collaborative Study
A studio course available to advanced students wishing to pursue further research in a specific area of interest. Meeting at the same time as DA300, this course provides an opportunity for collaboration & directed research in the specified area. This optional course gives the student a chance to expand their portfolio in preparation for a career in the digital arts.

Components: Independent Study
Attributes: Offered Each Term
Requirement Group: Prerequisites: A 300-level DA course, DA&S major, and permission of the Comm & Media department
Req. Designation: Technology

Components: Independent Study
Attributes: Offered Each Term
Requirement Group: Prerequisites: A 300 level DA course, DA&S majors only, and permission of the Comm & Media department
Req. Designation: Technology
Digital Arts Independent Study

DA 420 (1 - 3)
Course ID: 011324
2019-07-08
Department Consent Required

Designed primarily for a student who wishes to pursue special interests in Digital Arts for one or more semesters, this series of courses allows individual students to define independent study projects.

Components: Independent Study
Requirement Group: Prerequisites: One course in Digital Arts and permission of the Comm & Media department
Req. Designation: Technology

DA 421 (1 - 3)
Course ID: 011325
2019-07-08
Department Consent Required

Designed primarily for a student who wishes to pursue special interests in Digital Arts for one or more semesters, this series of courses allows individual students to define independent study projects.

Components: Independent Study
Requirement Group: Prerequisites: One course in Digital Arts and permission of the Comm & Media department
Req. Designation: Technology

DA 423 (1 - 3)
Course ID: 011707
2019-07-08
Department Consent Required

Designed primarily for a student who wishes to pursue special interests in Digital Arts for one or more semesters, this series of courses allows individual students to define independent study projects.

Components: Independent Study
Requirement Group: Prerequisites: One course in Digital Arts and permission of the Comm & Media department
Req. Designation: Technology

Internship in Digital Arts

DA 480 (3)
Course ID: 011125
2022-03-08
Department Consent Required

These internships are designed to provide practical work or research experience for the Digital Arts & Sciences majors. Generally, students work with a professional on projects in the field of digital arts, interactive design, advertising, and/or digital media design and production.

Components: Independent Study
Attributes: Offered Each Term
Requirement Group: Prerequisites: DA&S Majors, DA Minor, or permission of the Comm & Media department
Req. Designation: Technology

Undergraduate Teaching Assistantship in Digital Arts & Science

DA 490 (1 - 3)
Course ID: 011206
2022-03-08
Department Consent Required

Students assist a faculty member in teaching a Digital Arts & Science course. Students engage in substantial pedagogical work beyond mastery of the target course material. Such activities might include mentoring students in course work, leading class discussions or demonstrations, designing or assessing course modules. Prerequisites: the student will have already taken the course in a previous semester or receive consent from the instructor.

Components: Independent Study
Attributes: Offered Each Term
Req. Designation: Technology

Professional Practice

DA 491 (3)
Course ID: 010528
2019-07-08
Department Consent Required

This is the first semester in the advanced studio sequence in which the DA&S major applies the knowledge and skills developed in the program to design a visual portfolio under the directed study of a specific faculty member. Each student should choose the proper section which correlates with the faculty member who they wish to work with for the semester.

Components: Lecture
Attributes: Two communication units, Offered Fall Term
Requirement Group: Prerequisites: Any 300 Level DA course and open to DA&S Majors only (or by permission of the Comm & Media department)
Req. Designation: Technology

Senior Studies

DA 492 (3)
Course ID: 010529
2019-07-08
Department Consent Required

The capstone of the advanced studio sequence in which DA&S seniors integrate the knowledge and skills developed in the program to complete their portfolios by working independently on a large-scale project. Each student should choose the proper section which correlates with the faculty member who they wish to work with for the semester.

Components: Lecture
Attributes: One communication unit, Offered Spring Term
Requirement Group: Prerequisites: DA491 and Senior standing in DA&S
Req. Designation: Technology
School of Arts and Sciences - Digital Arts & Science - Subject: Digital Arts

DA 499(0)
Course ID: 013042
2020-06-01
Digital Art Minor Portfolio
Under the guidance of Digital Arts faculty advisers from within the Department of Communication, Media & Design, students will compile a portfolio that functions as a way of showcasing and reflecting upon their achievements within the minor. The portfolio will be completed within this course. Students must receive a P (pass) in the minor portfolio in order to complete the requirements for the minor.
Components: Independent Study
Attributes: Offered Each Term
Req. Designation: Technology

DA 500(3)
Course ID: 012785
2019-07-08
Directed Study & Collaborative Projects
DA500 will involve the creation of advanced projects under the guidance of the instructor. Topics may include but are not limited to: data visualization, scientific visualization, UI/UX interface design & app development, outreach projects structured around STEM Education, and STEM based virtual reality experiences.
Components: Independent Study
Attributes: Offered Fall and Spring
Req. Designation: Technology
School of Arts and Sciences - Mathematics - Subject: Data Science

DS 241(3)
Course ID: 012919
2021-05-14

Introduction to Data Science
(Cross listed as MA 241) This course introduces the basics of data manipulation and pre-processing to analyze data for statistical decision-making, building the skills required to organize, visualize, and communicate using data. The course seeks to help students address this question: given data from the world of science, engineering, medicine, etc., collected from multitude of sensors and sources, how do you begin to make sense of that data - and how do you use it? The primary tool for coding will be R/RStudio, but supporting Python syntax and libraries may also be introduced. The course emphasizes not only the low-level coding skills, but also the higher-level critical and quantitative reasoning skills required to analyze real-world datasets. Topics introduce key concepts such as descriptive statistics and sampling distribution (as a means to view large and very large data sets) and the basic analysis tools of Linear Regression and Data Mining. Additional topics may include social network data, unstructured data, and natural language text processing.

Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Corequisite: STAT282, or STAT383, or STAT318, or STAT389
Req. Designation: Technology

DS 392(3)
Course ID: 012892
2018-10-08

Ethics in Data Science and Applied Mathematics
This course will consider real situations in which computational or data science delivers capabilities that may conflict with societal values. Students will analyze frameworks for promoting ethical decision making, such as audits, codes of conducts, and legal regulations. They will discuss how data-driven decision making can be aligned with societal values. (Discussion topics may include things like data stewardship, secondary-effect analysis, political and legal roles of mathematical professionals, and representative workforce.) Guest speakers from both physical and social sciences will introduce relevant, real-world examples, with a portion of course time dedicated to discussion of daily news items that relate to the topics of this course.

Components: Lecture
Attributes: One communication unit, Offered Spring Term
Requirement Group: DS392 Restrictions: Any STAT or DS Course
Req. Designation: Technology
EAP 250(3)
Course ID: 011340 **2015-02-19**
Academic Writing for Undergraduates I
(Formerly ESL250) This course, designed for non-native speakers of English at a low-advanced level of proficiency in written English, focuses on reading and writing for the academic context. Students read material from a variety of fields and develop their writing skills in definition, description, comparison and contrast, and analysis. The course also includes vocabulary-building techniques and a review of grammatical structures needed for effective writing.
Prerequisite: placement test.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Offered Fall Term</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

EAP 255(3)
Course ID: 011627 **2014-11-20**
Academic Spoken Communication Skills for TAs and other International Undergraduate Students
The course focuses on development of effective communication skills (including appropriate grammar and vocabulary) for various academic purposes (e.g., making presentations on a variety of academic themes, answering audience questions). As a group and individually, students also work on pronunciation, intonation patterns, and other features of fluent American English.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Equivalents:</td>
<td>EAP 555</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

EAP 350(3)
Course ID: 011341 **2015-01-23**
Academic Writing for Undergraduates II
(Formerly ESL350) This course integrates academic reading, writing, and critical thinking for non-native speakers of English who are at an advanced level of proficiency in written English. Students read short academic articles on various topics by a variety of authors, discuss and evaluate ideas, and write a number of analytical and argumentative papers, including a documented paper based on outside sources. Attention is given to key academic writing skills, e.g., summary, paraphrase, use of citations, and effective support of ideas.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Given When Needed</td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisites: Placement test or grade of C or better in EAP250.</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

EAP 354(2)
Course ID: 011336 **2015-02-03**
Advanced Academic Writing for Undergraduates
(Formerly ESL354) This writing seminar will provide high advanced non-native speakers of English with tools and teacher feedback to shape their writing skills for university level writing requirements. This seminar will focus primarily on the American cultural expectations/conventional structures for successful academic writing courses; students will enhance their tone, form, and structure of texts.
Prerequisites: Placement exam or completion of EAP250 with a grade of C or better.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>One communication unit, Offered Each Term</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

EAP 380(1 - 3)
Course ID: 013133 **2021-10-12** **Instructor Consent Required**
Independent Study in EAP
ESL for undergraduates whose needs don't fit into a conventional course.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Independent Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Given When Needed</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

EAP 550(3)
Course ID: 011343 **2015-02-19**
Academic Writing for Graduates I
(Formerly ESL550) This course, designed for non-native speakers of English at a low-advanced level of proficiency in written English, focuses on reading and writing for the academic context. Students read material from a variety of fields and develop their writing skills in definition, description, comparison and contrast, and analysis. The course also includes vocabulary-building techniques and a review of grammatical structures needed for effective writing.
Prerequisite: placement test.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Offered Fall Term</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course ID:</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
</tr>
</tbody>
</table>
| EAP 552(3) | 011344 | 2015-01-20 | | **Academic Writing for Graduates II**
For [Formerly ESL552] This course integrates academic reading, writing, and critical thinking for non-native speakers of English who are at an advanced level of proficiency in written English. Students read short academic articles on various topics by a variety of authors, discuss and evaluate ideas, and write a number of analytical and argumentative papers, including a documented paper based on outside sources. Attention is given to key academic writing skills, e.g., summary, paraphrase, use of citations, and effective support of ideas. |
| | | | | **Components:** Lecture
Attributes: Offered Spring Term
Req. Designation: Technology |
| EAP 554(2) | 011345 | 2015-01-20 | Instructor Consent Required | **Academic Writing Seminar for Graduates II**
For [Formerly ESL554] This writing seminar will provide high advanced non-native speakers of English with tools and teacher feedback to shape their writing skills for university level writing requirements. This seminar will focus primarily on the American cultural expectations/conventional structures for successful academic writing courses; students will enhance their tone, form, and structure of texts.
Prerequisites: Placement test or permission of the instructor
Components: Lecture
Attributes: Offered Spring Term
Req. Designation: Technology |
| EAP 555(3) | 011342 | 2014-11-20 | | **Academic Spoken Communication Skills for TAs and other International Graduate Students**
For [Formerly ESL555] This course is intended for international TAs and other international graduate students who need to improve their spoken English skills in order to interact effectively with students and faculty. The course focuses on development of effective communication skills (including appropriate grammar and vocabulary) for various academic purposes (e.g., leading discussions, making presentations, answering questions). As a group and individually, students also work on pronunciation, intonation patterns, and other features of fluent American English.
Components: Lecture
Course Equivalents: EAP 255
Req. Designation: Technology |
| EAP 580(1 - 3) | 012954 | 2019-09-02 | Instructor Consent Required | **Independent Study in EAP**
For EAP interest or need. Consent of Instructor required.
Components: Independent Study
Attributes: Given When Needed
Req. Designation: Technology |
Business - School of Business - Subject: Economics

EC 1(2 - 4) Course ID:008068 2015-06-30
Economics Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

EC 2(2 - 4) Course ID:008069 2015-06-30
Economics Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

EC 150(3) Course ID:008070 2015-06-30
Principles of Microeconomics
(May be used with EC 151 to satisfy a CUSB M.B.A. or M.S. foundation requirement.) An introduction to microeconomics covering the role of the price system in and public policies toward the allocation of resources and the distribution of income. Included are the basic concepts of industry, supply and demand, technological change, private and social costs, market structures, analysis of firm behavior, household behavior and the gains from international trade. Students will be expected to use personal computers.
Components: Lecture
Attributes: Economics and Organizations, Offered Fall and Summer
Requirement Group: Restriction: Not open to Chemical, Civil, or Environmental Engineering majors. Students may not be granted credit for EC150 as well as EC350
Req. Designation: Technology

EC 151(3) Course ID:008071 2015-06-30
Principles of Macroeconomics
(May be used with EC 150 to satisfy a CUSB (Clarkson School of Business) M.B.A. or M.S. foundation requirement.) An introduction to macroeconomics including the analysis of national income determination, monetary and fiscal policy, aggregate economic growth and international economics. Price stability, balance of international payments and economic growth and development will also be examined. Students will be expected to use personal computers and prerequisite software.
Components: Lecture
Attributes: Economics and Organizations, Offered Spring and Summer
Requirement Group: Restriction: Not open to Chemical, Civil, or Environmental Engineering majors. Students may not be granted credit for EC151 as well as EC350
Req. Designation: Technology

EC 200(1) Course ID:011236 2022-02-10
Engineering Economics
A course to supplement EC150 for those students who are required to complete EC350 or its equivalent. The course will cover the topic of engineering economic analysis and provides preparation for the Fundamentals of Engineering Exam and the Professional Engineering Exam. Requisite: The course will only be offered to those students who have completed EC150.
Components: Lecture
Attributes: Offered Each Term
Requirement Group: Prerequisite: EC150 or EC151
Req. Designation: Technology

EC 311(3) Course ID:008073 2015-06-30
Introduction to Econometrics
Introduction to econometric techniques and statistical procedures required in analysis of economic problems. The course focuses on problems in estimation and inference of linear regression models. Topics include estimation and hypothesis testing using simple and multiple linear regression models under classical assumptions, binary variables, estimation and inference when the classical assumptions are violated, and basic time series analysis. This course requires the use of computers.
Components: Lecture
Attributes: Offered Each Term
Requirement Group: Prerequisites: MA181 or equivalent and STAT282 or equivalent.
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course ID</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC 313(3)</td>
<td>Mathematical Economics</td>
<td>012872</td>
<td>2018-12-11</td>
</tr>
<tr>
<td></td>
<td>This course aims to have students be able to understand and apply mathematical concepts in the context of a wide range of fields in economics, including microeconomics, macroeconomics, finance, economics of risk and uncertainty, economic development, international trade, environmental economics, and industrial organization. The course will build upon basic economic theory and mathematical concepts to focus on topics such as: comparative statics, financial mathematics, unconstrained and constrained optimization, dynamic optimization, and applications in contexts of uncertainty and strategic behavior.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Components: Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attributes: Two communication units, Offered Fall Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Requirement Group: Prerequisites: EC150, EC151, MA131, and MA132</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC 350(3)</td>
<td>Economic Principles and Engineering Economics</td>
<td>008074</td>
<td>2015-06-30</td>
</tr>
<tr>
<td></td>
<td>An introduction to microeconomic concepts in a market type economy. Some of the issues covered are the role of supply, demand, market price determination, consumer behavior, production theory and cost, and market structure. An introduction to macroeconomic concepts including the analysis of national income determination, monetary and fiscal policy, aggregate economic growth, international economics and inflation. This course also includes a segment on engineering economic analysis. Engineering students should take this course rather than EC150 and EC151 because it provides preparation for the Professional Engineering exam.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Components: Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attributes: Economics and Organizations, Offered Each Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Requirement Group: Prerequisite: Sophomore Standing, and Engineering or Engineering and Management majors only. Students cannot enroll if they have credit for EC 150 or EC 151</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC 357(3)</td>
<td>Intermediate Microeconomics</td>
<td>008077</td>
<td>2018-01-29</td>
</tr>
<tr>
<td></td>
<td>The study of how producers and consumers, acting through the market, determine the prices and outputs of goods and the allocation and income of productive resources. Empirical materials are used, and emphasis is placed on the uses and limitations of economic reasoning.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Components: Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attributes: Given When Needed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Requirement Group: Prerequisites: EC/EM150 or EC350.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC 358(3)</td>
<td>Intermediate Macroeconomics</td>
<td>008078</td>
<td>2018-03-26</td>
</tr>
<tr>
<td></td>
<td>Macroeconomics is the study of the economy as a whole and is concerned with some of the most important questions in economics such as: Why is there unemployment? What are the sources of rapid inflation? What causes recessions? Why are some nations rich while others are poor? Why do some economies grow faster than others do? Can policymakers “fine-tune” the economy? This course analyzes the economy in a “general equilibrium” framework, where the performance of the economy in terms of output, employment and unemployment, inflation and international capital flows is determined by the simultaneous interaction of the goods, labor, money, and international markets. The course will highlight the critical difference between the economy in the short and long run, the important role that expectations about the future play in macroeconomic analysis, and the role, limits, and transmission mechanisms of fiscal and monetary policy in efforts at economic stabilization.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Components: Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attributes: Offered Spring Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Requirement Group: Prerequisites: EC150, EC151, and EC313</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC 360(3)</td>
<td>Environmental Economics</td>
<td>008079</td>
<td>2016-09-23</td>
</tr>
<tr>
<td></td>
<td>[Cross-listed with EV 360] Economic analysis of problems caused by the impact of economic activities of society on the environment, and of the public and private policies that could be used for environmental improvement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Components: Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attributes: Economics and Organizations, Individual and Group Behavior, University Course, Offered Spring Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Requirement Group: Prerequisites: EC/EM150 or EC350.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course ID</td>
<td>Catalog Year</td>
<td>Title</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>---------------</td>
<td>-------</td>
</tr>
<tr>
<td>EC 367(3)</td>
<td>008082</td>
<td>2017-11-07</td>
<td>International Economics</td>
</tr>
<tr>
<td>EC 370(3)</td>
<td>010978</td>
<td>2015-07-08</td>
<td>Economics of Innovation</td>
</tr>
<tr>
<td>EC 384(3)</td>
<td>008085</td>
<td>2017-04-05</td>
<td>Game Theory and Economic Strategy</td>
</tr>
<tr>
<td>EC 451(3)</td>
<td>010979</td>
<td>2022-02-10</td>
<td>Industrial & Supply Chain Economics</td>
</tr>
<tr>
<td>EC 468(3)</td>
<td>010387</td>
<td>2022-02-10</td>
<td>Financial Markets and Institutions</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course ID</td>
<td>Semester</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| EC 475(3) | 011764 | 2022-02-10| Personnel Economics
This course makes use of economic theory and empirical evidence concerning personnel issues and the way incentives are structured within an organization. Topics include issues such as hiring standards, learning of worker productivity, compensation mechanisms, labor turnover, layoffs and buyouts, and various other personnel issues. | Lecture
Attributes: Offered Odd Springs
Requirement Group: Prerequisite: EC150.
Req. Designation: Technology |
| EC 487(1 - 3) | 008090 | 2017-01-12 | Special Projects in Economics
An investigation of a problem or in-depth topic undertaken by the student under the guidance of a faculty member.
Prerequisites: permission of the instructor | Research
Attributes: Given When Needed
Req. Designation: Technology |
| EC 604(2) | 008091 | 2015-08-06| Applied Economics (MBA Module)
(Cross-listed with EC 605) A graduate course in applied economics. An investigation of economic concepts and models likely to be useful for managers involved in financial, economic and strategic decision-making at various levels. Quantitative techniques and selected econometric procedures are emphasized. This course is designed for MBA students and meets five hours per week for five weeks. | Lecture
Course Equivalents: EC 605, EC 605
Requirement Group: Restriction: Admission to the MBA program required
Req. Designation: Technology |
| EC 605(3) | 008092 | 2017-11-13| Managerial Economics
(Cross-listed with EC 604) This is an advanced and applied course in managerial economics, with introductory material in microeconomic principles. The course starts with selected principles topics such as demand and supply analysis, market equilibrium, household behavior, production and costs, and firm behavior. We then move on to more sophisticated theories of consumption and production such as demand elasticity measures, profit maximization and sensitivity analysis, price discrimination, demand estimation, theories of risk and uncertainty, market structures, and game theory. Students participate in economics games and experiments throughout the course, and examples drawn from the business and financial worlds are used to illustrate the key concepts. | Lecture
Same As Offering: EC 605
Course Equivalents: EC 604
Req. Designation: Technology |
Managerial Economics

(Cross-listed with EC 604) This is an advanced and applied course in managerial economics, with introductory material in microeconomic principles. The course starts with selected principles topics such as demand and supply analysis, market equilibrium, household behavior, production and costs, and firm behavior. We then move on to more sophisticated theories of consumption and production such as demand elasticity measures, profit maximization and sensitivity analysis, price discrimination, demand estimation, theories of risk and uncertainty, market structures, and game theory. Students participate in economics games and experiments throughout the course, and examples drawn from the business and financial worlds are used to illustrate the key concepts.

Components: Lecture

Same As Offering: EC 605

Course Equivalents: EC 604

Req. Designation: Technology
Course: Econometrics

This course is an introductory-level graduate econometrics course, focusing mainly on time-series and panel data techniques. It is entry-level in the sense that students are not presumed to have any prior acquaintance with econometrics, although they should have sufficient statistical and computing background and coursework in calculus including some optimization. Students also need to be somewhat familiar with some statistical software such as R or SAS or Python. The course attempts to serve two types of audiences. For those who wish to pursue applied data analysis in the real world, it presents a wide array of problem instances and tools appropriate for those instances. The course also serves as a stepping stone for those interested in knowing the field more intimately, introducing them to a fair amount of theory and a selection of classic and contemporary econometrics papers.

Components: Lecture
Attributes: Offered Spring Term
Req. Designation: Technology
EC 652(3) Course ID:012007 2018-11-08

Industrial Organization in the Supply Chain

(Cross-listed with EC 651) This is an industrial organization course that focuses on the strategic interactions within the supply chain under various market conditions. Models of industry structures are explored along with the discussion of business clusters and networks. Starting with a review of basic microeconomics principles: other topics include horizontal and vertical integration, outsourcing, contract negotiations and incentives, logistics issues, capacity constraints, pricing strategies and network issues all from the perspective of the supply chain. Students apply the models covered in class through several case studies to evolve in the art of strategic thinking.

Components: Lecture
Req. Designation: Technology
Business - School of Business - Subject: Economics

EC 660(3)
Course ID: 008095
2015-06-30
Environmental Economics

This course considers environmental problems from an economic perspective. Topics include the theoretical foundations of environmental economics, measuring the costs and benefits of environmental policies, environmental policy issues, and special topics including risk and uncertainty in environmental regulation, sustainable development, and issues in natural resource damage assessment.

Prerequisites: EC150 or EC350 or EC151 or equivalent.

Components:
Lecture

Req. Designation: Technology

EC 687(1 - 6)
Course ID: 008100
2015-06-30
Instructor Consent Required
Special Projects in Economics

An investigation of a problem undertaken by the student which is acceptable to and under the guidance of the faculty member and chairperson. The course provides an opportunity for the student to investigate and analyze a problem area of economics in depth on an independent study basis.

Prerequisites: permission of the Department of Economics Chair, and the faculty member involved.

Components:
Independent Study

Req. Designation: Technology
Field Experience
(Minimum of 20 hours) Candidates are observers in a variety of education and education-related settings. Apart from community and after-school programs, there must also be a range of school and classroom experiences (e.g., urban, suburban, rural; high-and low-performing schools)—all taking place at the secondary level—so that candidates have a broad experience and learn as much as possible about secondary learners and secondary education philosophy.

Components: Field Studies
Attributes: Offered Fall and Spring
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Term</th>
<th>Instructor Consent Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED 440(1)</td>
<td>012996</td>
<td>2019-11-20</td>
<td>Required</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Seminar in Cultural Competency and Teaching in the STEM Classroom

This seminar focuses on how culture, gender, race, and class impact the nature of STEM Education in secondary schools. Content will include a mix of reading, invited speakers, and panel discussions chosen to introduce participants to teaching and learning issues of diversity, poverty, and social justice. Students will provide written responses each week and submit a self-assessment on their own cultural sensitivity and sense of educational equity and describe how it evolved over the semester in terms of being influenced and informed by the course content. Requires permission of instructor or department.

Components: Seminar

Attributes: Offered Spring Term

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Term</th>
<th>Instructor Consent Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED 501(1)</td>
<td>012289</td>
<td>2018-01-03</td>
<td>Required</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Teaching Practicum

Formerly EDS 500F] MAT interns must complete 75 hours total (12 full school days) of observation and/or teaching either before the residency or at the beginning of the residency. 30 hours of the practicum should be completed with the mentor and with other department members assigned by the mentor and/or supervisor. The Practicum must include at least 15 hours in each of the following settings: students with disabilities, low socio-economic, and English as a New Language (ENL). Half of the total Practicum must be in grades 7-9, and the other half in grades 10-12. Residency supervisors must meet with the intern and mentor during the first week of school to review the Practicum requirements for the individual intern. The supervisor will help facilitate each intern’s Practicum in collaboration with the mentor and intern and arrange observations in other schools, if needed. During the Practicum, the intern will understand the differences in adolescents’ learning challenges, cognitive abilities, emotional and physical needs (CAEP InTASC 1.1); interpret students’

Components: Practicum

Attributes: Offered Fall Term

Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program

Req. Designation: Technology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Term</th>
<th>Instructor Consent Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED 502(0)</td>
<td>012290</td>
<td>2020-05-13</td>
<td>Required</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NYS Requirements

[Formerly EDS 500G] This course provides the NYS requirements for teacher certification. This course covers the prevention and intervention of school violence, child abuse identification and reporting, prevention of child abduction, drug, alcohol and tobacco abuse prevention and dignity for all students.

Components: Lecture

Attributes: Offered Fall Term

Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program

Req. Designation: Technology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Term</th>
<th>Instructor Consent Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED 503(1)</td>
<td>012813</td>
<td>2022-04-08</td>
<td>Required</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Professionalism in Teaching I

Coursework in diversity and inclusion, career preparation, New York State Certification Exam preparation, and residency seminar.

Components: Seminar

Attributes: Given When Needed

Req. Designation: Technology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Term</th>
<th>Instructor Consent Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED 504(1)</td>
<td>012947</td>
<td>2021-10-08</td>
<td>Required</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Professionalism in Teaching II

Coursework in diversity and inclusion, career preparation, New York State Certification Exam preparation, and residency seminar. This is a continuation of ED 503 Professionalism in Teaching I.

Components: Seminar

Attributes: Given When Needed

Req. Designation: Technology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Term</th>
<th>Instructor Consent Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED 511(3)</td>
<td>012291</td>
<td>2017-07-13</td>
<td>Required</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Curriculum and Methods of Teaching English

[Formerly EDS 511] Curricular Planning and Instruction for the Teaching of English at the secondary level includes an analysis of secondary language arts curricula including New York State Frameworks for language arts, the Common Core State Standards, instructional techniques and strategies, designing and locating instructional materials, planning, implementing, and evaluating lessons and units.

Components: Lecture

Attributes: Offered Summer Term

Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program

Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Title</th>
<th>Type</th>
<th>Attributes</th>
<th>Requirement Group</th>
<th>Restriction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED 512(3)</td>
<td>Curriculum and Methods of Teaching Mathematics</td>
<td>Lecture</td>
<td>Offered Summer Term</td>
<td></td>
<td>This course is open only to students matriculated in the Master of Arts in Teaching program</td>
</tr>
<tr>
<td>ED 513(3)</td>
<td>Curriculum and Methods of Teaching Languages</td>
<td>Lecture</td>
<td>Offered Summer Term</td>
<td></td>
<td>This course is open only to students matriculated in the Master of Arts in Teaching program</td>
</tr>
<tr>
<td>ED 514(3)</td>
<td>Curriculum and Methods of Teaching Sciences</td>
<td>Laboratory, Lecture</td>
<td>Offered Summer Term</td>
<td></td>
<td>This course is open only to students matriculated in the Master of Arts in Teaching program</td>
</tr>
<tr>
<td>ED 515(3)</td>
<td>Curriculum and Methods of Teaching Social Studies</td>
<td>Lecture</td>
<td>Offered Summer Term</td>
<td></td>
<td>This course is open only to students matriculated in the Master of Arts in Teaching program</td>
</tr>
<tr>
<td>ED 516(3)</td>
<td>Curriculum and Methods of Teaching Technology</td>
<td>Lecture</td>
<td>Offered Summer Term</td>
<td></td>
<td>This course is open only to students matriculated in the Master of Arts in Teaching program</td>
</tr>
</tbody>
</table>
Institute for STEM Education - CRC Education Program - Subject: Education

ED 517(3)
Course ID: 012927
2019-02-11
Curriculum and Methods of Teaching Business and Marketing

The primary objective of this class is to prepare you to teach business and marketing subjects at the 7th - 12th grade levels. This field includes, but is not limited to, accounting, marketing, finance, information systems, data analysis, and keyboarding. The class emphasizes methodology, curriculum planning, unit and lesson planning, and classroom management. It is assumed that students will be able to apply business and marketing subject matter knowledge to their new learning in the field of pedagogy.

Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

ED 518(3)
Course ID: 013013
2020-01-15
Curriculum and Methods of Teaching Computer Science

Designed for those with a computer science background, this course will help prepare computer science educators to promote students' learning by the use of multiple instructional models. The course builds teacher skills in lesson planning, content organization, and hard and software evaluation and use. New York State Standards for technology and evolving approaches to integration of technology in the teaching/learning process will also be explored.

Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

ED 526(3)
Course ID: 013111
2022-04-08
Teaching in American Schools

Students will become familiar with American public secondary education through reading, discussion, writing, and on-site school observation. A strong emphasis will be on professional writing, reading, and professional communication skills as required by American teachers. Students will be prepared professionally and culturally to enter the public school classroom.

Components: Seminar
Attributes: Given When Needed
Req. Designation: Technology

ED 540(3)
Course ID: 012301
2017-07-13
Psychology of Teaching

[Formerly EDS 540] The Psychology of Teaching is a foundational introduction to teaching: audience, planning, instruction, basic concepts, standards, classroom management, assessment, motivation, discipline, and ethical and professional considerations. Theories of learning and memory applied to instruction; models and research on teaching in secondary schools. Includes thematic analysis of relevant teaching topics such as special needs, differentiated instruction, human development, and foundations of education.

In Psychology of Teaching Microteaching Laboratory graduate students prepare and present several lessons using a variety of instructional models. Models include anticipatory sets, discussion concepts, skills and inquiry with attention paid to themes such as special needs, differentiated instruction, literacy, second language, learners and service learning. Lessons are digitally recorded and critiqued by peer-coaches and

Components: Laboratory, Lecture
Attributes: Offered Summer Term
Requirement Group:
Req. Designation: Technology

ED 541(3)
Course ID: 012303
2017-07-13
Essential Reading Literacy

[Formerly EDS 541] Essential Reading Literacy focuses on a teacher-centered exposure to the basic concepts, skills, and contexts for teaching reading in secondary classrooms. Teachers of the 21st century face many challenges, including the large spectrum of reading abilities in their classrooms. Graduate students will be exposed to the concept of adolescent literacy and basic principles of teaching it, including reading habits, skills, extensive knowledge of the reading process, and the development of a repertoire of strategies and skills to help influence and improve the teaching of reading in all classrooms across all disciplines.

Components: Lecture
Attributes: Offered Summer Term
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Offer Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED 542(3)</td>
<td>013128</td>
<td>2021-09-28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAT Preservice Seminar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This course is designed for students who have completed ED 540/41 and are preparing to enter fall teaching residencies in a subsequent school year. In this course, students will gain an understanding of standards-based instruction and best practices in the classroom. Topics including backward design, learning objectives, assessment and differentiation will be reviewed in the framework of modern pedagogical theory. Students will design and peer-review lesson plans for upcoming teaching lab enactments, as well as debrief and revise plans for future instruction. Students will be introduced to academic writing styles employed in reflective journaling and EdTPA writing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Components: Lecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Req. Designation: Technology</td>
</tr>
<tr>
<td>ED 544(3)</td>
<td>012304</td>
<td>2022-04-08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Literacy for the Content Classroom</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Formerly EDS 544] This course familiarizes MAT students with the necessity for and techniques of increasing student literacy (skills, attitudes, and dispositions) in each content area. Participants read background information, explore their own literacy skills, and practice applying reading and writing activities in lesson plans. Students will recognize the importance of literacy in all content areas; expand their definitions of literacy, exploring the skills and dispositions which make it possible for students to read and write for meaning for a wide variety of academic and personal purposes; explore and develop their own skills as proficient readers and writers in general and in their chosen content areas; become aware of issues of literacy through readings and discussions; become aware of how the kinds of writing assigned to students shape their thinking; develop, analyze, and integrate literacy skills in classroom lessons; integrate writing into classroom lessons in a variety of ways to stimulate and shape thinking; address NYS standards and CCSS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Components: Seminar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attributes: Offered Fall Term</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Req. Designation: Technology</td>
</tr>
<tr>
<td>ED 550(3)</td>
<td>012305</td>
<td>2021-11-17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Effective Teaching for All Learners</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Formerly EDS 550A] Effective Teaching for All Learners at the secondary level will explore teaching and assessment for the full range of students a teacher encounters: at-risk students, special needs populations, English as a new language learners, struggling readers, disaffected learners, etc. The resources and strategies available to assist classroom teachers will be discussed and implemented. Graduate students will learn how to evaluate the effectiveness of their teaching as it relates to all their students' progress. In order to gain this understanding, graduate students will evaluate various learning assessments through the lens of different student populations, and design and evaluate a range of assessments. Awareness, empathy, and empowerment are the goals for both teachers and their students.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Components: Seminar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attributes: Offered Fall Term</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Req. Designation: Technology</td>
</tr>
<tr>
<td>ED 551(4)</td>
<td>012309</td>
<td>2022-04-08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Teaching Residency I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Formerly EDS 551] The 4-credit internship begins after the Intern completes the New York State required Field Experience or Practicum. The Intern will have been observing and co-teaching with his/her Mentor since the beginning of the school year to fulfill part of the requirements of the Practicum. Once the requirements of the Practicum are completed, the Intern is expected to gradually assume responsibility for two of the mentor's classes, at first co-teaching with the Mentor, but independently by mid-November if prepared to do so. A full-year intern is in school for a minimum of half of the school day.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Components: Field Studies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attributes: Offered Each Term</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Req. Designation: Technology</td>
</tr>
</tbody>
</table>
Institute for STEM Education - CRC Education Program - Subject: Education

ED 552(4)
Course ID: 012310
2021-10-08
Teaching Residency II
[Formerly EDS 552] The 4-credit internship begins after the Intern completes the New York State required Field Experience or Practicum. The Intern will have been observing and co-teaching with his/her Mentor since the beginning of the school year to fulfill part of the requirements of the Practicum. Once the requirements of the Practicum are completed, the Intern is expected to gradually assume responsibility for two of the mentor’s classes, at first co-teaching with the Mentor, but independently by mid-November if prepared to do so. A full-year intern is in school for a minimum of half of the school day.
Components: Field Studies
Attributes: Offered Spring Term
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program.
Req. Designation: Technology

ED 553(4)
Course ID: 013118
2021-08-06
Teaching Residency III
This 4-credit residency is intended for an MAT student seeking additional certification. The Resident will be observing and co-teaching with their Mentor for half of a school year to fulfill the requirements of the Residency. The Resident is expected to gradually assume responsibility for two of the Mentor's classes, and will be evaluated using the residency pre-service assessment (RPA).
Components: Field Studies
Attributes: Given When Needed
Req. Designation: Technology

ED 560(3)
Course ID: 012307
2021-10-08
The Modern Teacher
[Formerly EDS 550C] This course is designed to acquaint students with current school reform issues while exposing students to the large number of digital resources, websites, strategies, software and hardware that will help them in their classroom today. Students will be able to:
- Analyze and evaluate the school reform movement from a historical perspective.
- Communicate more productively with students, parents and colleagues and streamline their digital workflow.
- Differentiate instruction within their class using digital means and modern pedagogy.
- Work cooperatively to teach their classmates about school reform and technology.
- Design a school reform proposal using digital means.
Components: Seminar
Attributes: Offered Spring Term
Req. Designation: Technology

ED 570(3)
Course ID: 012313
2017-07-13
Middle School Students, Structures and Standards
[Formerly EDS 570] This course is designed to prepare students for the teaching of grades 5 and 6. It is designed to offer students a chance to explore topics and methodology that are most appropriate for the teaching of students at the middle adolescence level. It is a course based on the theoretical and practical aspects of the teaching experience and on helping develop students into what we need today: competent, energetic and dedicated teachers at the middle level. This is a professional course which demands professional responsibility, a regular commitment, initiative and attentiveness. It is not in any way an exploratory course but one in which a commitment to teaching is assumed. This course and ED 571 qualify students with a grade 7-12 teaching certificate to be also certified to teach grades 5 and 6 in New York State.
Prerequisites: Adolescent 7 – 12 Teacher Certification in a content area.
Components: Lecture
Attributes: Offered Summer Term
Req. Designation: Technology
Institute for STEM Education - CRC Education Program - Subject: Education

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Title Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED 571(3)</td>
<td>Middle Adolescence Literacy</td>
</tr>
<tr>
<td>Course ID: 012314</td>
<td>2017-07-13</td>
</tr>
<tr>
<td>Formerly EDS 571</td>
<td>This course is designed to prepare you to teach and develop literacy skills across the curriculum in grades 5 and 6. Completion of this course and ED 570 will qualify you with a grade 7-12 teaching certificate for additional certification in your content area in grades 5-6 in New York state. This course is based on both theoretical and practical aspects of the teaching experience. Students will review research, policy briefs and position statements on developing reading, writings, listening, speaking, viewing, and thinking as it applies to the middle adolescent level. The overall goals of this course will require you to connect, collaborate, and create to expand your concept of literacy; to understand the elements of effective literacy instructions in your content area for grades 5 and 6; and to acknowledge your role as a "reading teacher" no matter what your content area specialty is.</td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
</tr>
<tr>
<td>Attributes:</td>
<td>Offered Summer Term</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

ED 572(3)	Teaching Foreign Language to Elementary School Children
Course ID: 012797	2017-07-01
	This course aims to prepare participating teachers for elementary school foreign language classrooms in light of the ACTFL National Foreign Language Standards. Through discussion, practice and the development of thematic units, participants will become familiar with the process of curriculum development and lesson planning, and will develop strategies for instruction and assessment. Participants will also gain understanding of the working environment and classroom culture of the elementary school setting and build up skills for effective teaching. Multiple modes of learning, methods, instructional strategies, language and literacy development, and resources for teaching foreign languages to elementary school children will be covered. Emphasis is on the development of literacy and communicative skills. Participants will build knowledge and understanding of this grade range through the viewing and analysis of classroom video.
Components:	Lecture
Attributes:	Offered Summer Term
Req. Designation:	Technology

ED 573(3)	Virtual Learning in the P-12 Classroom
Course ID: 013036	2020-04-01
	In this online class, educators will learn how to shift course interaction and materials from the classroom to an online setting. We will explore elements that create quality online instruction including personalization, communication options and processes, student interactions, and a variety of learning experiences. The course will empower educators to build opportunities for their students to actively interact with each other, with their teacher(s), and with the content of the course.
Components:	Lecture
Attributes:	Given When Needed
Req. Designation:	Technology

| **ED 580(3)** | Action Research Project |
| **Course ID:** 012715 | 2021-07-28 |
| The MAT Action Research Project is a one-term research project whose purpose is to allow students time and supervision to develop breadth and/or depth of knowledge to become a better teacher in their certification field. What the project will entail varies greatly from student to student. The course is intended to be custom-tailored to meet the specific needs of an individual intern. MAT projects are well-grounded in research and theory, but also include a strong and extensive applied aspect, directly addressing the question: What would this look like in the classroom? |
Components:	Independent Study
Attributes:	Given When Needed
Req. Designation:	Technology

| **ED 590(1)** | Inquiry Research and Methods |
| **Course ID:** 012853 | 2017-11-15 |
| Students will engage in inquiry through the investigation of documents and research-based methodologies. Focus will be placed on practical applications of materials in the full-year residency. |
Reflective Teaching Practices
Reflective Teaching Practices is designed to teach participants how to become reflective practitioners of their own teaching. Participants will be immersed in an exercise in evaluating their own professional practice with the goal of improving student learning. This will be accomplished by creating a supportive learning environment with teacher colleagues who wish to accomplish the same goal. Participants will critically discuss their teaching practice, and critique each other’s practice through the use of videotapes. Participants will demonstrate an embodiment of the National Board for Professional Teaching Standards through the work they bring to the seminar and the manner in which they critique their own and other participants’ work.

Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

School Law
This course is designed to teach the basic tenets of education law – state and federal. Constitutional principles will be explored and debated. The Socratic Method will engage students, creating a learning community in each class. Given the seminar nature of the class, it is expected the professor will explain a concept and engage students in-depth discussions every day. Real life experiences will bring the law to a practical, manageable level. This culture will allow students to challenge presumptions, question reasoning and debate ideas to grasp longstanding and newly formed legal concepts. Students will hone critical thinking and writing skills completing the course equipped to analyze problems and synthesize solutions in practical ways, with the law as their guide.

Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

Research in Curriculum & Instruction
This course is an introductory course on research methods, designed to prepare students for graduate level research. The course examines the full scope of the research process from the literature review, to research questions, and writing a research proposal. Different data collection methods will be discussed including qualitative, quantitative, mixed-method, meta-analysis, ethnography, case study, survey, interview and focus group, and document analysis. The course culminates with presentations by students which demonstrate an understanding of the research proposal process.

Components: Seminar
Attributes: Given When Needed
Req. Designation: Technology

Master's Thesis I
Candidates will work toward completing a master’s thesis in the Spring semester, individually with guidance from a thesis advisor. The thesis will include an Introduction (Chapter I) and Literature Review (Chapter II). This course will provide guidance to complete a systematic exploration. Candidates will produce Chapters I and II by developing a research question, investigating current research, developing an informed hypothesis in response to their question, and reviewing and synthesizing related research. Candidates will begin to draft their Methodology or Application Plan (Chapter III) by creating a plan to test their hypothesis or engage in further inquiry into their topic.

Components: Thesis Research
Attributes: Given When Needed
Req. Designation: Technology

Master's Thesis II
In this course and its predecessor, ED 650, candidates will work toward completing a master's thesis. Work will be completed individually with guidance from a thesis advisor. Candidates will continue work begun in ED 650 by creating the final chapters of their thesis and presenting their completed work to their advisors/thesis committee. Coursework will focus on creating a Methodology or Methods of Inquiry (Chapter III), Results (Chapter IV), Discussion and Conclusion (Chapter V) and preparing a presentation of the Master’s thesis.

Components: Thesis Research
Attributes: Given When Needed
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED 988(2)</td>
<td>013120</td>
<td>2022-01-03</td>
</tr>
<tr>
<td>Independent Study in Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A graduate level course for which there is no comparable Clarkson course. This course may be used to satisfy course requirements for a graduate degree.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Independent Study</td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Given When Needed</td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED 989(2)</td>
<td>013121</td>
<td>2022-03-18</td>
</tr>
<tr>
<td>Independent Study in Education II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A graduate level course for which there is no comparable Clarkson course. This course may be used to satisfy course requirements for a graduate degree.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Independent Study</td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Given When Needed</td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
</tr>
</tbody>
</table>
EE 1(2 - 4)
Course ID: 008103
2015-01-13
Electrical and Computer Engineering Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
Components: Lecture
Attributes: Transfer Credit Only
Req. Designation: Technology

EE 2(2 - 4)
Course ID: 009665
2016-07-01
Electrical and Computer Engineering Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
Components: Lecture
Attributes: Transfer Credit Only
Req. Designation: Technology

EE 211(3)
Course ID: 008104
2020-06-01
ECE Laboratory I
An introductory course that presents the fundamentals of electrical instrumentation while developing laboratory skills. Experiments explore basic electrical properties of analog and digital circuits. The development of sound techniques for circuit construction and troubleshooting are emphasized, as is the role of the computer in a laboratory environment. Use of CAD/CAE tools such as Pspice and LabView is integrated into the course. Lab safety and the documentation and reporting of laboratory results are covered.
Components: Laboratory, Lecture
Attributes: One communication unit, Offered Spring Term
Requirement Group: Corequisite: EE221. Prerequisites: ES250 and EE264.
Req. Designation: Technology

EE 221(3)
Course ID: 008105
2019-11-19
Linear Circuits
Steady state response of linear circuits to both sinusoidal and periodic inputs. AC steady-state power.
Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: ES250.
Req. Designation: Technology

EE 260(3)
Course ID: 008108
2020-09-03
Embedded Systems
An introductory course covering the fundamentals of microcontroller hardware and software. Topics include microcontroller systems, input/output (I/O) standards and data communication protocols, interfacing with memory systems and sensors, data collection, display, and control of peripheral modules and actuators. The microcontroller will be programmed in the C programming language. Interfacing assembly language to high level language code will be treated as well. A comprehensive term project will allow student teams to apply the theoretical concepts for solving a practical problem using a microcontroller and peripheral devices.
Components: Laboratory, Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: CS141
Req. Designation: Technology

EE 261(3)
Course ID: 008109
2014-11-19
Introduction to Programming and Software Design
A first course in programming and software design. Assumes no prior programming experience. The focus is upon the design of well-structured programs using problems selected from engineering applications. Topics include: fundamentals of software engineering design; elements of modern C-family programming language (such as Java, C, or C++); object oriented programming; the specification, design and implementation of numerical algorithms.
Components: Laboratory, Lecture
Course Equivalents: CS 141
Attributes: Offered Fall Term
Req. Designation: Technology
Engineering - Electrical & Computer Eng - Subject: Electrical & Computer Eng

EE 262(3) Course ID:008110 2018-01-29
Intro to Object-Oriented Programming and Software Design
A thorough introduction to Object Oriented Programming, including classes, inheritance and subtyping, overloading, and overriding. Dynamic memory management. Debugging. Introduction to Testing Driven Development. Introduction to fundamental data structures.
Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisite: CS141
Req. Designation: Technology

EE 264(3) Course ID:008111 2019-11-19
Introduction to Digital Design
An introductory course covering the fundamentals of computer system hardware. Topics include data representation using number systems and codes, Boolean algebra and logic, digital logic devices, combinational and sequential circuits, arithmetic logic units and simple processor organization including registers, memory, addressing and processing of machine instructions.
Components: Lecture
Attributes: One communication unit, Offered Fall Term
Req. Designation: Technology

EE 291(1 - 3) Course ID:008112 2015-02-03
Special Project in Electrical and Computer Engineering
Students are involved, individually or working in groups on a special project under the direction of a faculty member. Topics are ordinarily suggested by the faculty member. These projects are limited in scope, ordinarily not requiring a degree of expertise beyond the sophomore year. Not to be used as a professional elective in the Electrical Engineering program or in the Computer Engineering program.
Prerequisites: consent of the department chair.
Components: Independent Study
Attributes: Offered Each Term
Req. Designation: Technology

EE 301(2 - 4) Course ID:008113 2015-08-18
ECE Area Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only. This course may be used to satisfy an Area Elective.
Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

EE 311(3) Course ID:008114 2015-02-19
Electrical Engineering Laboratory II
This laboratory course provides students with a series of experiments based on material in required sophomore and junior level courses. The experiments are designed to emphasize model identification, validation, and use. The course includes one or more design projects which include team oriented design, development, testing, and documentation components.
Components: Laboratory, Lecture
Attributes: One communication unit, Offered Fall Term
Req. Designation: Technology

EE 316(3) Course ID:008115 2019-11-20
Computer Engineering Junior Laboratory
A design laboratory in computer engineering emphasizing the fundamentals of designing and testing computer system components. Sub-system level digital circuits are designed, constructed, and tested using standard small- and medium-scale integrated circuits and programmable logic devices. Software components which interface with hardware and operating systems are also designed, written and tested. All design projects employ a team based approach.
Components: Laboratory, Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisite: EE365. Corequisite: EE211.
Req. Designation: Technology
EE 321(3) Systems and Signal Processing

Components: Lecture
Attributes: One communication unit, Offered Fall Term
Req. Designation: Technology

EE 324(3) Dynamical Systems
[Dual-listed with AE/ME 324] Dynamic systems classification, mathematical modeling of mechanical, electrical and mixed dynamic systems, state space representation, equilibrium points and linearization, solution of linear input/output and state equations, Laplace transforms, transfer functions and block diagrams, first and second order systems, stability, frequency response and simulation techniques.

Components: Lecture
Course Equivalents: AE/ME 324
Attributes: Offered Fall and Spring
Requirement Group: Prerequisite: MA232.
Req. Designation: Technology

EE 331(3) Energy Conversion

Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisite: ES250.
Req. Designation: Technology

EE 333(3) Power System Engineering

Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisite: EE221.
Req. Designation: Technology

EE 341(3) Microelectronics
Theory of semiconductor materials, p-n junctions, bipolar and field effect transistors. Analysis of device characteristics, device modeling and equivalent-circuits. PSpice simulation of electronic circuits. Applications including study of biasing, low frequency amplifiers, switching circuits and digital logic operations.

Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisite: ES250.
Req. Designation: Technology

EE 360(3) Microprocessors
An introductory course covering the fundamentals of microcomputer hardware and software. Topics include microprocessor system hardware, assembly language programming, input/output devices and bus discipline. Memory systems, serial interfacing, and interfacing assembly language to high level language code will be treated as well.

Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisite: EE264.
Req. Designation: Technology
Fundamentals of Software Engineering
This is a foundation course in the design of computer software. It covers fundamental techniques and methodologies for software design and implementation. Topics include the software engineering life cycle, object-oriented design, data and procedural abstraction, recursion, iteration, file I/O, and elementary data structures.
Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisite: EE262 Introduction to Object Oriented Programming and Software Design
Req. Designation: Technology

Software Components and Generic Programming
This course is concerned with software design principles that foster creation of reusable software components. Topics include abstract data types, behavioral inheritance and subtyping, generics, interface design, dependency injection, and analysis of algorithmic behavior. Students will gain experience with software development best practices including design of test scenarios, unit testing, code reviews, refactoring and version control in the context of a modern integrated development environment.
Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: EE262 Introduction to Object Oriented Programming & Software Design
Req. Designation: Technology

Advanced Digital Circuit Design
An advanced course in digital circuit design. This course begins with an overview of electrical characteristics of logic gates, various standards for I/O buses and communication interfaces. Topics include hierarchical and modular design of digital logic circuits, simulation and synthesis of digital systems on programmable logic devices using computer-aided design software, and debug and verification of design using embedded and standalone logic analyzers.
Components: Lecture
Attributes: One communication unit, Offered Fall Term
Requirement Group: Prerequisites: EE264 or equivalent.
Req. Designation: Technology

Software Engineering
Study of the principles and practices of software engineering. Topics include software quality concepts, process models, software requirements analysis, design methodologies, software testing, and software maintenance. Hands-on experience building a software system using the waterfall life cycle model and CASE tools. Students working in teams develop all life cycle deliverables: requirements document, specification and design documents, system codes, and user manuals.
Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: CS344 or EE363 and CS242 or EE408.
Req. Designation: Technology

Electromagnetic Fields and Waves
Components: Lecture
Requirement Group: Prerequisites: MA231 and PH132.
Req. Designation: Technology

Biomedical Engineering Fundamentals
Cross-listed with BR 400, BY 440, ES 402) This interdisciplinary course will introduce students to basic principles of biomedical rehabilitation engineering. The course will present principles of disability and the diverse roles of engineering in medicine and rehabilitation. Students will use engineering methods to study anatomical and physiological systems including applications in rehabilitation engineering, bioinstrumentation, biosignal and image processing, biomechanics, and biomaterials.
Components: Lecture
Requirement Group: Prerequisites: MA131/132, PH131/132, junior or senior standing.
Req. Designation: Technology
Digital Signal Processing

- **Components:** Lecture
- **Attributes:** Offered Fall Term
- **Requirement Group:** Prerequisites: EE321.
- **Req. Designation:** Technology

Machine Learning on Biomedical Signals

(Crosslisted with EE502) Machine learning methods and their application to the analysis and processing of biomedical signals. Topics include a review of ECG, EMG, EEG, and other biomedical signals. Acquisition of biomedical signals and filtering, spectral analysis, characteristic feature extraction and selection, and dimensionality reduction. In addition, basic classification methods such as LDA, Decision tree, Naïve Bayes, KNN and Support Vector Machines will be studied. Basic regression analysis on biomedical signals for the prediction task will be covered. (Odd Fall)

- **Components:** Lecture
- **Attributes:** Offered Odd Falls
- **Requirement Group:** Prerequisites: MA132, and BR400 or equivalent or instructor approval
- **Req. Designation:** Technology
Computer Networks

This course covers layered networking protocols with an emphasis on common Internet protocols such as TCP, IP, HTTP, and SMTP. It also covers local area networking, focusing on link layer standards such as the IEEE standards for Ethernet and wireless. Additional topics such as security and congestion control will also be covered. EE407 and CS455 are offered each fall as one course with multiple listings.

Components: Laboratory, Lecture
Course Equivalents: CS 455
Requirement Group: Prerequisites: One of course in computer architecture (EE264, CS241 or IT502 or equivalent). One course in computer programming (EE261, CS141 or equivalent.) Note: IT501 also satisfies the programming requirement.

Req. Designation: Technology
Software Design For Visual Environments
This course is an introduction to object-oriented, event-driven windowing environments. The primary focus will be on interface design and development, with an emphasis placed on the event-driven paradigm. Topics will include a thorough investigation of the underlying windowing framework selected, an examination of static and dynamic control objects used for system input and output, virtual functions, multithread programming, code synchronization and locking, and resource sharing. Several programming projects will be assigned throughout the semester.

Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisite: EE262.
Req. Designation: Technology
Computer and Network Security

[Cross-listed with CS 457] Attacks on networked computer systems are an increasingly important problem. This course covers the types of vulnerabilities that are present in modern computer systems and the types of malicious software that exploit these vulnerabilities. It also covers best practices for preventing, detecting and responding to such attacks including anti-virus software, defensive programming techniques, intrusion detection systems, honeypots and firewalls.

Prerequisites: A general course in computer networking such as CS455/555 or EE407/507. Programming experience to the level of CS142 or EE361.

Components:
- Lecture

Course Equivalents: CS 457, CS 557, EE 510

Req. Designation: Technology
EE 412(3)
Course ID: 008138
2015-02-03
Senior Design
A series of one or more design projects. Projects typically involve planning, analysis, preliminary design, simulation, construction, testing and evaluation, documentation, class demonstrations and oral presentations. The thrust of this course is to provide the student with an opportunity to develop a complete solution to one or more design problems and to develop broad engineering skills, including communication skills.

Components: Laboratory, Lecture
Attributes: One communication unit, Offered Each Term
Requirement Group: Prerequisite: EE311.
Req. Designation: Technology

EE 416(3)
Course ID: 008139
2020-04-20
Computer Engineering Senior Laboratory
In conjunction with EE464, students develop specifications for design, build, test, debug and document a complete digital system based on an embedded microcomputer and supporting integrated circuits.

Components: Laboratory, Lecture
Attributes: One communication unit, Offered Fall Term
Requirement Group: Prerequisite: EE316 and EE260 Corequisite: EE464
Req. Designation: Technology

EE 418(3)
Course ID: 008140
2015-02-19
Software Engineering Senior Design
Working in a team environment, students will design and develop a complex software system. Using sound software engineering techniques, the students will take a conceptual idea for a software system and turn it into a well-engineered product.

Components: Lecture
Attributes: Two communication units, Offered Fall Term
Requirement Group: Prerequisites: EE368 and EE462. Corequisite: EE408.
Req. Designation: Technology

EE 422(3)
Course ID: 012876
2018-04-11
Signal Processing and Applications
This project-driven course involves qualitative and quantitative descriptions of DSP algorithms, software and applications. The class covers applications in engineering, computing, music, and the arts, with MATLAB, Java and mobile simulations.

Components: Lecture
Course Equivalents: ES 522, ES 422
Attributes: Offered Even Falls
Requirement Group: Prerequisites: MA132 or equivalent, or instructor approval.
Req. Designation: Technology

EE 423(3)
Course ID: 012121
2015-10-08
Introduction to Biometrics
Biometrics is the automated recognition of an individual based on their physiological or behavioral characteristics. This course is an introduction of fingerprint, face, voice, and iris recognition, as well as related aspects of system design, security, privacy, performance evaluation, and novel biometric modalities.

Components: Discussion, Lecture
Course Equivalents: EE 523
Attributes: Offered Spring Term
Req. Designation: Technology

EE 430(3)
Course ID: 008141
2014-12-05
High-Voltage Techniques and Measurements

Components: Lecture
Req. Designation: Technology

EE 431(3)
Course ID: 008142
2015-02-19
Power Transmission and Distribution
Unbalanced fault current calculation, current and voltage transformer characteristics. Distribution system protection, transmission line protection. Generator, bus and transformer protection. Power system controls. Transient stability.

Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisite: EE331
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Title</th>
<th>Components</th>
<th>Attributes</th>
<th>Requirement Group</th>
<th>Req. Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>010410</td>
<td>Alternate Energy Systems</td>
<td>Lecture</td>
<td>One Design Credit, Offered Even Springs</td>
<td>Prerequisite: ES250 or permission of the instructor.</td>
<td>Technology</td>
</tr>
<tr>
<td>008147</td>
<td>Dielectrics</td>
<td>Lecture</td>
<td>Offered Odd Falls</td>
<td></td>
<td>Technology</td>
</tr>
<tr>
<td>008148</td>
<td>Electronic Devices</td>
<td>Lecture</td>
<td></td>
<td>Corequisites: ES241 or EE341 or equivalent.</td>
<td>Technology</td>
</tr>
<tr>
<td>011145</td>
<td>CMOS IC Design</td>
<td>Given When Needed</td>
<td></td>
<td>Prerequisite: EE264. Corequisite: EE341.</td>
<td>Technology</td>
</tr>
<tr>
<td>012754</td>
<td>Semiconductor Material and Devices for Engineers</td>
<td>Lecture</td>
<td>Offered Spring Term</td>
<td></td>
<td>Technology</td>
</tr>
<tr>
<td>008152</td>
<td>Control Systems</td>
<td>Lecture</td>
<td></td>
<td>Corequisite: EE321.</td>
<td>Technology</td>
</tr>
</tbody>
</table>
Engineering - Electrical & Computer Eng - Subject: Electrical & Computer Eng

EE 451(3)
Course ID: 008153
2015-01-20

Digital Control
Introduction to the analysis and design of discrete-time feedback control systems. Topics include: mathematical representation of physical systems with linear difference equations, z-transforms, transfer functions, sampling, A/D and D/A converters, sampled-data systems, discrete equivalent systems, transient specifications, steady-state tracking errors, stability, controller design, quantization effects.

Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: EE321.
Req. Designation: Technology

EE 452(3)
Course ID: 011741
2015-02-19

Optimization Techniques in Engineering
Introduction to optimization techniques in engineering. Topics include: engineering applications of optimization, types of optimization problems, linear programming and the simplex method, one-dimensional optimization, unconstrained nonlinear programming, nonlinear programming with equality and inequality constraints, advanced optimization techniques, practical aspects of optimization.

Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: MA339 or equivalent or consent of instructor.
Req. Designation: Technology

EE 455(3)
Course ID: 012847
2018-01-01

Robotics I
[Cross-Listed EE555] The course presents an introduction to the fundamentals of mobile robotic systems including common mechanical configurations with sensors and actuators, as well as the typical sensory, perceptual, and cognitive layers that comprise the field of study. Topics explored will include: Mobile Robot Locomotion (e.g., Legged, Wheeled, and Aerial), Mobile Robot Kinematics (e.g., Models and Constraints, Maneuverability, Workspace Analysis, and Motion Control), Mobile Robot Perception (e.g., Exploration of Sensors, Fundamentals of Computer Vision, Fundamentals of Image Processing, Feature Extraction, and Place Recognition), Mobile Robot Localization (e.g., Noise and Aliasing, Localization-Based Navigation, Map Representations, Probabilistic Map-Based Localization and Autonomous Map Building), and Planning and Navigation (Path Planning, Obstacle Avoidance, and Navigation Architectures). Throughout the course, students will work in teams with a supplied robotics kit of parts to design and implement a mobile robot.

Components: Lecture
Course Equivalents: EE 555
Attributes: Offered Spring Term
Requirement Group: Prerequisites: EE321, EE/ME324, or MA339; or instructor permission
Req. Designation: Technology

EE 456(3)
Course ID: 012863
2018-02-26

Robotics II
The course presents an introduction to the fundamentals of industrial robotics. Topics explored will include: Robotic manipulation, direct kinematics, inverse kinematics, workspace analysis and trajectory planning, differential motion and statics, manipulator dynamics, robot control, robot vision and task planning. Throughout the course, students will work in teams with a supplied robotics kit of parts and appropriate software tools to design and implement a robot manipulator that demonstrates various aspects of the course applied to a real-world problem.

Components: Lecture
Course Equivalents: EE 556
Attributes: Offered Fall Term
Req. Designation: Technology

EE 462(3)
Course ID: 008155
2015-01-20

Software System Architecture
A study of system software components in the context of a modern operating system such as UNIX, together with the necessary tools and utilities for software development. Topics will include software development tools, operating system interfaces and utilities, and network access methods. Emphasis will be placed on conceptual understanding and practical use of system software components rather than on detailed implementation.

Components: Laboratory, Lecture
Attributes: Offered Spring Term
Req. Designation: Technology
Digital Systems Design

A study of embedded microcomputer system design. Topics include CPU architecture, memory organization, interrupts, real-time operation, and interfacing with a wide range of external devices. Practical problems in digital design, testability, hardware and software trade-off analysis are covered. In addition to the technical topics, students develop teamwork skills, learn project management, system specification and documentation. Each student does both significant written documentation and oral presentations of his or her work. This course and the senior lab (EE 416) together provide both the conceptual knowledge and practical skills necessary to design application-oriented digital systems.

Components: Lecture
Attributes: One communication unit, Offered Fall Term
Requirement Group: Prerequisites: EE316 and EE260 Corequisites: EE416
Req. Designation: Technology
Computer Graphics
(Cross-listed with CS 452) An introduction to computer graphics. Graphics hardware, algorithms for generating and displaying two and three-dimensional geometric figures, animation, interactive displays. Programming projects using OpenGL will be assigned.
Prerequisites: Programming experience in C/C++ family language, basic concepts in linear algebra and matrices.

Components: Lecture
Course Equivalents: CS 452
Attributes: Offered Spring Term
Requirement Group: Prerequisites: CS142 or EE361, and MA232 or MA239 (or MA339 as a corequisite)
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>008158</td>
<td>Computer Architecture</td>
</tr>
<tr>
<td>008159</td>
<td>Database Systems</td>
</tr>
<tr>
<td>012932</td>
<td>High Performance Computing</td>
</tr>
<tr>
<td>008132</td>
<td>Coding and Info Transmission</td>
</tr>
<tr>
<td>008161</td>
<td>Principles of Digital and Data Communications</td>
</tr>
</tbody>
</table>

Computer Architecture
A study of modern processor system architecture including set design and performance enhancement of computer systems will be discussed. Topics include pipelining, cache organization, memory management, and multiprocessors. Tradeoffs in system design and the impact of hardware/software interactions will be discussed.

Components: Lecture

Attributes: Offered Spring Term

Requirement Group: Prerequisite: EE264.

Req. Designation: Technology

Database Systems
[Cross-listed with CS 460] An introduction to database systems. The entity-relationship and relational models are presented and applied to the design of typical databases. New developments in object-oriented and multimedia databases are presented. Emphasis will be placed on database design for applications in the context of an existing database management system such as ORACLE or ACCESS.

Components: Lecture

Course Equivalents: CS 460

Attributes: Offered Spring Term

Requirement Group: Prerequisites: Programming experience in a high-level language

Req. Designation: Technology

High Performance Computing
Principles and practices of high-performance computing (HPC) programming, associated computer architectures, and techniques for computing performance optimization. Topics include concepts of parallel and distributed computing, multicore CPU architecture, POSIX threads programming, OpenMP (Open Multi-Processing), GPGPU (General purpose GPU) architecture, NIVIDIA CUDA programming, computer cluster management system, MPI (Message Passing Interface) programming, and case studies regarding large-scale engineering applications through HPC and computing performance improvement. Hands-on assignments utilizing Linux based open source tools and compilers will be assigned. Students must have basic C/C++ programming skills to enroll. Suitable for junior and senior undergraduate and graduate students in all engineering and computer science majors.

Components: Lecture

Course Equivalents: EE 561, EE 519

Attributes: Given When Needed

Requirement Group: Prerequisites: EE262 or CS142, or consent of instructor.

Req. Designation: Technology

Coding and Info Transmission

Components: Lecture

Attributes: Offered Fall Term

Requirement Group: Corequisite: STAT389

Req. Designation: Technology

Principles of Digital and Data Communications

Components: Lecture

Attributes: Offered Spring Term

Requirement Group: Corequisite: STAT389

Req. Designation: Technology
EE 485(3) Course ID: 011169 2014-11-20
Neural Engineering

Cross-listed with BY 485, ES 485, EE 585. This course applies engineering principles to the study of neuroscience and to the design of devices or techniques intended to replace missing or augment existing functions such as seeing, hearing, speaking, and walking. The course provides a detailed overview of sensorimotor systems, neurophysiology, neuroanatomy, neuropathology, and clinical neurology. The class sequences through the various sensory and movement systems, providing a quantitative basis for how the nervous systems works for these systems, for how it dysfunctions, for the disability produced, and finally for how function can be restored by neuroprostheses. Students will prepare and present a paper on a neural engineering topic.

Components: Lecture

Course Equivalents: EE 585, BY 485, ES 485

Requirement Group: Prerequisites: MA132 and PH132 or PH142.

Req. Designation: Technology

EE 491(1-3) Course ID: 008164 2015-02-03
Directed Study in Electrical and Computer Engineering

Investigation of a special topic in consultation with a designated faculty member.

Components: Independent Study

Req. Designation: Technology

EE 501(3) Course ID: 008166 2017-08-18
Digital Signal Processing

Prerequisite: EE321.

Components: Lecture

Attributes: Offered Fall Term

Req. Designation: Technology

EE 502(3) Course ID: 008167 2022-02-02
Machine Learning on Biomedical Signals

Cross listed with EE402. Machine learning methods and their application to the analysis and processing of biomedical signals. Topics include: A review of ECG, EMG, EEG, and other biomedical signals. Acquisition of biomedical signals and filtering, spectral analysis, characteristic feature extraction and selection, and dimensionality reduction. In addition, basic classification methods such as LDA, Decision tree, Naïve Bayes, KNN and Support Vector Machines will be studied. Basic regression analysis on biomedical signals for the prediction task will be covered. (Odd Fall)

Components: Lecture

Attributes: Offered Odd Falls

Req. Designation: Technology

EE 503(3) Course ID: 012901 2019-01-14
Advanced Topics in Neuromorphic Computing

Neuromorphic Computing was originally referred to as the hardware that mimics neuro-biological architectures, and was then extended to the computing systems that can run bio-inspired computing models such as neural networks and deep learning networks. In this course, students will learn the basic knowledge of artificial neural networks and the advanced hardware architectures/systems for efficient neural network computing. We will emphasize both the basic knowledge and practical tricks through a series of hand-on practices including paper readings and projects.

Components: Lecture

Req. Designation: Technology
EE 505(3) Course ID:008168 2016-01-13

Computer Graphics

(Cross-listed with CS 552) An introduction to computer graphics. Graphics hardware, algorithms for generating and displaying two and three-dimensional geometric figures, animation, interactive displays. Programming projects using OpenGL will be assigned. Students will be expected to independently explore some aspects of the course material.

Prerequisites: Programming experience in C/C++ family language, basic concepts in linear algebra and matrices.

Components: Lecture

Course Equivalents: CS 552

Req. Designation: Technology
EE 507(3) Course ID: 008170 2015-08-15

Computer Networks
(Cross-listed with CS 555) This course covers layered networking protocols with an emphasis on common Internet protocols such as TCP, IP, HTTP, and SMTP. It also covers local area networking, focusing on link layer standards such as the IEEE standards for Ethernet and wireless. Additional topics such as security and congestion control will also be covered. EE407 and CS455 are offered each fall as one course with multiple listings.

Prerequisites: One of course in computer architecture (EE264, CS241 or IT502 or equivalent). One course in computer programming (EE261, CS141 or equivalent.) Note: IT501 also satisfies the programming requirement.

Components: Laboratory, Lecture
Course Equivalents: CS 555
Req. Designation: Technology
Computer and Network Security

[Cross-listed with CS 557] Attacks on networked computer systems are an increasingly important problem. This course covers the types of vulnerabilities that are present in modern computer systems and the types of malicious software that exploit these vulnerabilities. It also covers best practices for preventing, detecting and responding to such attacks including anti-virus software, defensive programming techniques, intrusion detection systems, honeypots and firewalls.

Prerequisites: A general course in computer networking such as CS455/555 or EE407/507. Programming experience to the level of CS142 or EE361.

Components: Lecture

Course Equivalents: CS 457, CS 557, EE 410

Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Title</th>
<th>Description</th>
<th>Prerequisites</th>
<th>Components</th>
<th>Course Equivalents</th>
<th>Attributes</th>
<th>Requirement Group</th>
<th>Req. Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 511(3)</td>
<td>Wireless Sensor Networks</td>
<td>This course will present state-of-the-art wireless sensor networks. Both hardware and operating system considerations based on the OSI protocol stack will be covered. Clustering and localization techniques will be presented along with security threats and solutions. Various wireless sensor network applications will be presented. Prerequisites: EE408/CS455 Computer Networks or permission of the instructor.</td>
<td></td>
<td>Lecture</td>
<td>EE408, EE455</td>
<td>Given When Needed</td>
<td>Prerequisites: EE262 or CS142, or consent of instructor.</td>
<td>Technology</td>
</tr>
<tr>
<td>EE 519(3)</td>
<td>High Performance Computing</td>
<td>Principles and practices of high-performance computing (HPC) programming, associated computer architectures, and techniques for computing performance optimization. Topics include concepts of parallel and distributed computing, multicore CPU architecture, POSIX threads programming, OpenMP (Open Multi-Processing), GPGPU (General purpose GPU) architecture, NVIDIA CUDA programming, computer cluster management system, MPI (Message Passing Interface) programming, and case studies regarding large-scale engineering applications through HPC and computing performance improvement. Hands-on assignments utilizing Linux based open source tools and compilers will be assigned. Students must have basic C/C++ programming skills to enroll. Suitable for junior and senior undergraduate and graduate students in all engineering and computer science majors.</td>
<td></td>
<td>Lecture</td>
<td>EE561, EE469</td>
<td>Given When Needed</td>
<td>Prerequisites: EE262 or CS142, or consent of instructor.</td>
<td>Technology</td>
</tr>
<tr>
<td>EE 520(3)</td>
<td>Data Driven Analysis of Complex Systems</td>
<td>The goal of this course will be an integration of concepts of complex systems with big data analysis. Methodology will be drawn from statistical and Bayesian analysis, time-frequency analysis, image processing, linear algebra and principal component analysis, machine learning and image recognition, dimensionality reduction for dynamical systems, system identification, data assimilation, compressed sensing, and equation free modeling. Applications may include PDEs such as advection diffusion from atmospheric data and also steady flow, networked and social data-sets, feature identification in neurological applications, music analysis and identification, and image denoising.</td>
<td></td>
<td>Lecture</td>
<td>Offered Fall Term</td>
<td>Offered Odd Falls</td>
<td>Prerequisites: EE529 Recommended: EE401 or EE501</td>
<td>Technology</td>
</tr>
<tr>
<td>EE 522(3)</td>
<td>Advanced Signal Processing with Biomedical and Other Applications</td>
<td>Statistical aspects of signal processing that includes such topics as: autocorrelation/crosscorrelation, autoregressive, moving average models, linear prediction, power spectral density, adaptive filters. Each student will utilize real data for an application from his/her research or data from a biomedical application can be provided. Each subject will be approached in three states: fundamental, advanced, and application. Class participation is critical through presentations which include: (1) journal papers for Advanced section, (2) results from their data for Application section, and (3) semester project results. Prerequisites: Programming experience in C/C++ or Matlab, basic understanding of signal processing and probability.</td>
<td></td>
<td>Lecture</td>
<td>Offered Odd Falls</td>
<td>Offered Odd Falls</td>
<td>Prerequisites: EE529 Recommended: EE401 or EE501</td>
<td>Technology</td>
</tr>
<tr>
<td>EE 523(3)</td>
<td>Introduction to Biometrics</td>
<td>Biometrics is the automated recognition of an individual based on their physiological or behavioral characteristics. This course is an introduction of fingerprint, face, voice, and iris recognition, as well as related aspects of system design, security, privacy, performance evaluation, and novel biometric modalities.</td>
<td></td>
<td>Discussion, Lecture</td>
<td>EE423</td>
<td>Offered Spring Term</td>
<td>Offered Spring Term</td>
<td></td>
</tr>
</tbody>
</table>
EE 526 (3) Detection and Estimation Theory
Combines the classical techniques of statistical inference and the random process characterization of communication, radar, and other modern data processing systems.

Components: Lecture

Attributes: Offered Even Springs

Requirement Group: Prerequisites: EE529 or equivalent, or instructor approval

Restriction: Admission to the graduate Electrical Engineering program

Req. Designation: Technology

EE 529 (3) Stochastic Processes in Engineering
\[\text{Cross-listed as ME 529}\]

Components: Lecture

Attributes: Given When Needed

Req. Designation: Technology

EE 530 (3) High-Voltage Techniques and Measurements

Components: Lecture

Req. Designation: Technology

EE 531 (3) Power System Planning
Long-term planning will identify a financially viable and physically feasible mix of resources, including traditional generation and transmission sources as well as advanced techniques such as renewable generation, demand response, and the microgrid, to enhance the overall reliability of power systems. This course will introduce the students generation and transmission expansion planning of a vertically integrated utility and in a competitive market.

Components: Lecture

Same As Offering: EE 531

Attributes: Given When Needed

Req. Designation: Technology
Power System Planning

Long-term planning will identify a financially viable and physically feasible mix of resources, including traditional generation and transmission sources as well as advanced techniques such as renewable generation, demand response, and the microgrid, to enhance the overall reliability of power systems. This course will introduce the students generation and transmission expansion planning of a vertically integrated utility and in a competitive market.

Components: Lecture
Same As Offering: EE 531
Attributes: Given When Needed
Req. Designation: Technology
Advanced Electric Machines and Drives
Development of state models of conventional and electronically controlled electric machinery and drive systems. Use of linear transformations in the development of dynamic models of synchronous, induction, permanent magnet, and other rotating machinery, as well as electronically controlled drive systems. Study of the dynamic and transient characteristics of these machinery and drive systems by computer-aided methods. Study of the effects of electronic power conditioning and associated harmonics on the design of these machinery systems, including nonlinearities.
Prerequisite: EE 331 (Energy Conversion) or equivalent

Operation and Control of Electric Power Systems
Course topics include: modeling of generators and transmission networks; security-constrained economic dispatch and security-constrained unit commitment formulations (linear programming and mixed-integer programming) and methodologies (dynamic programming, Lagrangian relaxation, and Benders decomposition); market clearing under different time scales; locational marginal price.
Prerequisite: EE 333 or equivalent.

Advanced Topics in Energy Power Systems
This course is designed to discuss advanced topics in emerging power systems. In particular, this course will cover various issues related to the Microgrid. This course will discuss concepts, technical features, operational and management issues, economic viability and market participation in deregulated environment of Microgrid with the presence of significant distributed energy resources (DER).
Prerequisite: EE331.

Power System Protection
Power system fault performance, protective system goals, fault sensing and protection algorithms. Applications to generator, transformer, bus transmission line, and distribution line protection. Distributed generation and the connection to the grid.
Prerequisite: EE333, or knowledge of symmetrical components and fault current calculations

Alternate Energy Systems
The basic technology of emerging renewable or non-carbon based energy sources will be considered, and contrasted with traditional sources of energy. Topics will include photovoltaic, wind and others. The impacts of energy storage and electrified transportation will be discussed. The capability of these technologies will be assessed, and barriers to implementation will be explored. The role of the electric power grid in enabling alternate energy technologies will be covered.
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Title</th>
<th>Course ID</th>
<th>Course Title</th>
<th>Course ID</th>
<th>Course Title</th>
<th>Course ID</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>008183</td>
<td>EE 539(3) Dielectrics Dielectric properties of materials and polarization models. Complex permittivity and relaxation spectra. Electrical breakdown in gases, liquids and solids.</td>
<td>008184</td>
<td>EE 541(3) Electronic Devices [Cross listed with EE441] Study of modern electronic devices, p-n junctions, bipolar junction transistors (BJTs) and metal-oxide-semiconductor field-effect transistors (MOSFETs), for integrated circuit applications. SPICE device models are introduced, and several SPICE simulation projects are given for integrated circuit design and analysis. This course provides a foundation for understanding SPICE device models and the basics of the microelectronic technology. Prerequisites: ES260 and EE341, or consent of the instructor.</td>
<td>008185</td>
<td>EE 542(3) CMOS IC Design An introduction to CMOS integrated circuit design and simulation. Students will learn CMOS device models and study design, simulation and layout of digital CMOS integrated circuit blocks. Prerequisites: EE264 and EE341, or consent of the instructor.</td>
<td>012757</td>
<td>EE 544(3) Semiconductor Material and Devices for Engineers [Cross-listed with EE443] Fundamentals of quantum mechanics, energy band concept in crystalline materials, band structure modeling, band structure modification, semiconductor device physics, carrier recombination processes, carrier transport phenomena, lattice vibrations, advanced concepts in quantum device technology.</td>
</tr>
<tr>
<td>008188</td>
<td>EE 550(3) Control Systems Introduction to the analysis and design of continuous-time feedback control systems. Topics include: mathematical representation of physical systems with linear differential equations, Laplace transforms, transfer functions, block diagrams and signal flow graphs, feedback, sensitivity, transient specifications, steady-state tracking errors, stability, root locus plots, compensator design, simulation. Prerequisite: EE321.</td>
<td>008189</td>
<td>EE 551(3) Digital Control Introduction to the analysis and design of discrete-time feedback control systems. Topics include: mathematical representation of physical systems with linear difference equations, z-transforms, transfer functions, sampling, A/D and D/A converters, sampled-data systems, discrete equivalent systems, transient specifications, steady-state tracking errors, stability, controller design, quantization effects. Significant independent investigation of advanced topics will be required. Prerequisite: EE321.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EE 552 (3) Optimization Techniques in Engineering

Introduction to optimization techniques in engineering. Topics include: engineering applications of optimization, types of optimization problems, linear programming and the simplex method, one-dimensional optimization, unconstrained nonlinear programming, nonlinear programming with equality and inequality constraints, advanced optimization techniques, practical aspects of optimization.

Course ID: 011742
Offered: Fall Term
Prerequisites: MA339 or equivalent or consent of instructor.

EE 555 (3) Robotics I

[Cross-Listed EE445] The course presents an introduction to the fundamentals of mobile robotic systems including common mechanical configurations with sensors and actuators, as well as the typical sensory, perceptual, and cognitive layers that comprise the field of study. Topics explored will include: Mobile Robot Locomotion (e.g., Legged, Wheeled, and Aerial), Mobile Robot Kinematics (e.g., Models and Constraints, Maneuverability, Workspace Analysis, and Motion Control), Mobile Robot Perception (e.g., Exploration of Sensors, Fundamentals of Computer Vision, Fundamentals of Image Processing, Feature Extraction, and Place Recognition), Mobile Robot Localization (e.g., Noise and Aliasing, Localization-Based Navigation, Map Representations, Probabilistic Map-Based Localization and Autonomous Map Building), and Planning and Navigation (Path Planning, Obstacle Avoidance, and Navigation Architectures). Throughout the course, students will work in teams with a supplied robotics kit of parts to design and implement a mobile robot.

Course ID: 012846
Offered: Spring Term

EE 556 (3) Robotics II

The course presents an introduction to the fundamentals of industrial robotics. Topics explored will include: Robotic manipulation, direct kinematics, inverse kinematics, workspace analysis and trajectory planning, differential motion and statics, manipulator dynamics, robot control, robot vision and task planning. Throughout the course, students will work in teams with a supplied robotics kit of parts and appropriate software tools to design and implement a robot manipulator that demonstrates various aspects of the course applied to a real-world problem.

Course ID: 008194
Offered: Fall Term

EE 559 (3) Microgrid Design and Control

The focus of the course will be microgrid design with PV, Wind, and Energy Storage, and their control and integration into the power systems using power electronics devices. Various topics will be covered in this course to provide students with cutting-edge knowledge in microgrid applications, design, and control. In this course, students will have a chance to 1) learn power converters (DC/DC, DC/AC, and AC/DC) and utilize the converters to create an AC or DC Microgrid with PV, Wind, or Batteries, 2) learn how to control the power flow in islanded and grid-connected modes, 3) learn how to regulate the power flow in islanded and grid-connected modes, and 4) learn about anti-islanding controls and low voltage ride through requirements.

Course ID: 012902
Offered: Fall Term
EE 559 (3)
**Course ID: 012902
2020-10-19**

Microgrid Design and Control
The focus of the course will be microgrid design with PV, Wind, and Energy Storage, and their control and integration into the power systems using power electronics devices. Various topics will be covered in this course to provide students with cutting-edge knowledge in microgrid applications, design, and control. In this course, students will have a chance to 1) learn power converters (DC/DC, DC/AC, and AC/DC) and utilize the converters to create an AC or DC Microgrid with PV, Wind, or Batteries, 2) learn how to control the power quality (voltage, frequency) in islanded and grid-connected modes, 3) learn how to regulate the power flow in islanded and grid-connected modes, and 4) learn about anti-islanding controls and low voltage ride through requirements.

Components: Lecture
Same As Offering: EE 559
Attributes: Given When Needed
Req. Designation: Technology

EE 561 (3)
**Course ID: 011744
2019-03-05**

Many-Core Architecture and Programming Model
This course will introduce students with the concepts of the state-of-the-art many-core processors. It intends to provide students with deep understandings of hardware architecture as well as the software programming model of such processors. The advanced dynamic power management features will also be covered. The students will have the opportunity to gain hands-on experience through programming a real many-core processor.
Prerequisites: EE446 or equivalent or consent of instructor.

Components: Lecture
Course Equivalents: EE 469, EE 519
Attributes: Offered Fall Term
Req. Designation: Technology

EE 562 (3)
**Course ID: 008199
2015-01-23**

Field Programmable Gate Arrays for Digital Signal Processing
This is an advanced project based graduate level course on embedded digital signal processing (DSP) system design using Field Programmable Gate Arrays (FPGAs). FPGAs provide a highly reliable and high performance alternative to the ubiquitous microprocessor based DSP platforms. This course introduces advanced DSP theory and algorithms and applications that can be implemented using MATLAB/Simulink blocks from leading FPGA vendors. The course will have a strong lab component. Students will use tools to design DSP systems using demo FPGA boards.

Components: Lecture
Attributes: Offered Spring When Needed
Req. Designation: Technology

EE 563 (3)
**Course ID: 008200
2016-11-18**

Advanced Software Engineering
Study of the principles and practices of software engineering. Topics include software quality concepts, process models, software requirements analysis, design methodologies, software testing, and software maintenance. Hands-on experience building a software system using the waterfall life cycle model and CASE tools. Students working in teams develop all life cycle deliverables; requirements document, specification and design documents, system codes, and user manuals. Students will learn theoretical concepts from research, such as APFD and PORT for test case prioritization, and apply these concepts to their project.

Components: Lecture
Attributes: Offered Spring Term
Req. Designation: Technology

EE 564 (3)
**Course ID: 010463
2014-12-05**

Enterprise Software Development
This course will examine the design, implementation, and deployment of distributed applications in the J2EE environment. Common J2EE architectures, models, technologies, and components will be discussed including RMI, SOAP, JDBC, servlets, JSP, MVC, EJB, and JMS. Students will be required to design and develop a multi-tier, enterprise application using the J2EE and a state-of-the-art J2EE application development tool.
Prerequisites: EE408, CS242 or equivalent.

Components: Lecture
Req. Designation: Technology
Artificial Intelligence: Theory and Practice

This course is an introduction to the computational study of intelligent systems. Topics include heuristic search, knowledge representation, automated reasoning, knowledge-based systems, reasoning under uncertainty, planning, and intelligent agents. Additional topics may be drawn from machine learning, neural networks, computer vision, and natural language understanding. AI programming techniques and methods will also be covered throughout the course.

Prerequisites: CS344 or equivalent or consent of the instructor.

Components: Lecture

Course Equivalents: CS 551

Attributes: Given When Needed

Req. Designation: Technology
EE 566 (3)
Course ID: 008202
2015-02-19
Computer Architecture
A study of computer system design. Topics include system structure, instruction sets and addressing modes, software control structures, microprogramming, cache memory and different replacement policies, memory hierarchies, paging, vector processing, pipeline techniques, parallel architectures and interconnection networks. Independent investigation of advanced topics is required.
Prerequisite: EE264.
Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology

EE 567 (3)
Course ID: 008203
2015-01-20
Software System Architecture
A study of system software components in the context of a modern operating system such as UNIX, together with the necessary tools and utilities for software development. Topics will include software development tools, operating system interfaces and utilities, and network access methods. Emphasis will be placed on conceptual understanding and practical use of system software components rather than on detailed implementation. Independent investigation of advanced topics will be required.
Prerequisite: EE261 or equivalent programming experience in C.
Components: Laboratory, Lecture
Attributes: Offered Spring Term
Req. Designation: Technology

EE 568 (3)
Course ID: 008204
2014-11-18
Database Systems
[Cross-listed with CS 560] An introduction to database systems. The entity-relationship and relational models are presented and applied to the design of typical databases. New developments in object-oriented and multimedia databases are presented. Emphasis will be placed on database design for applications in the context of an existing database management system such as ORACLE or ACCESS. Substantial independent investigation of advanced topics will be required.
Prerequisite: programming experience in a high level language.
Components: Lecture
Course Equivalents: CS 560
Attributes: Offered Spring Term
Req. Designation: Technology

EE 570 (3)
Course ID: 008206
2016-09-23
Coding and Information Transmission
Corequisite: MA/STAT381 or MA/STAT383 (MA/STAT381 is preferred.)
Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: STAT383 or STAT381 or equivalent, or instructor approval
Req. Designation: Technology

EE 572 (3)
Course ID: 012753
2016-09-23
Digital Communications
A graduate course covering the foundations of digital communications. Topics covered include EM propagation, multipath and antennas for wireless communications. Communication standards for 3G, WiFi and LTE. Advanced topics include channel capacity, digital modulation techniques, and error correcting codes for data communications.
Components: Lecture
Attributes: Offered Odd Falls
Requirement Group: Prerequisites: EE321, and STAT383 or STAT381 or equivalent, or instructor approval
Req. Designation: Technology
EE 573(3)
Course ID: 013073
2020-11-04
Computer Vision
[Cross-Listed CS473/CS573] This course will cover an overview of basic theoretical underpinnings and practical applications of computer vision, with particular emphasis on geometrical techniques underlying 2D and 3D vision. Topics covered include, but are not restricted to, estimation of image transformations, image formation, pose estimation, camera calibration, epipolar geometry, structure-from-motion, stereo reconstruction, filtering, interest point detection, motion estimation, image segmentation, and object recognition.
Components: Lecture
Requirement Group: Prerequisites: CS142 or EE262, and MA339 (or equivalent, with consent from the instructor)
Req. Designation: Technology

EE 574(3)
Course ID: 008209
2022-02-09
Pattern Recognition and Machine Intelligence
Prerequisite: MA/STAT381 or equivalent.
Components: Lecture
Attributes: Offered Even Falls
Requirement Group: Prerequisites: MA/STAT383, or MA/STAT381, or EE529 or equivalent
Req. Designation: Technology

EE 576(3)
Course ID: 012800
2017-03-29
Secure Computer System Design
An advanced course on cybersecurity with focus on hardware security. Roles that computer hardware plays in cybersecurity which includes implementing cryptography primitives in hardware, security threats from hardware and their countermeasures, and enhancement of system security and trust by hardware.
Components: Lecture
Req. Designation: Technology

EE 579(3)
Course ID: 012869
2018-03-19
Distributed Algorithms for Wireless Sensor Networks
This research-driven course involves the study of state-of-the-art distributed algorithms for wireless sensor networks. We will study algorithms for inference. We will also examine algorithms that are fully distributed, specifically, algorithms in the family of consensus methods.
Components: Research
Attributes: Offered Even Falls
Requirement Group: Prerequisites: EE529 or instructor approval. A graduate course in detection and estimation theory and
Req. Designation: Technology

EE 582(3)
Course ID: 012794
2017-02-27
Advanced Electromagnetics
Study of time-varying electromagnetic fields and applications. Fundamental electromagnetic theory will be covered in order to analyze the solutions of time-varying Maxwell's equations in problems involving wave propagation, radiation and guidance.
Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

EE 583(3)
Course ID: 012848
2018-01-23
Modeling and Design of Electromagnetic Structures
This course will cover the theory, analytical and numerical modeling and design of various composite engineered structures that operate in different spectral ranges, including devices that operate in the optical region, others that operate in the IR, and others in microwave spectral range. Devices and structures that will be studied include: surface plasmonic structures, photonic crystals, metamaterials, diffraction grating, antennas. The modeling tools HFSS and Lumerical FDTD will be covered.
Components: Lecture
Same As Offering: EE 583
Attributes: Offered Spring Term
Req. Designation: Technology
Modeling and Design of Electromagnetic Structures
This course will cover the theory, analytical and numerical modeling and design of various composite engineered structures that operate in different spectral ranges, including devices that operate in the optical region, others that operate in the IR, and others in microwave spectral range. Devices and structures that will be studied include: surface plasmonic structures, photonic crystals, metamaterials, diffraction grating, antennas. The modeling tools HFSS and Lumerical FDTD will be covered.

Components: Lecture
Same As Offering: EE 583
Attributes: Offered Spring Term
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID:</th>
<th>Course Title</th>
<th>Offer Date</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>012920</td>
<td>EE 584(3) Metamaterials</td>
<td>2018-12-11</td>
<td>EE583 or permission of the instructor</td>
</tr>
<tr>
<td>011168</td>
<td>EE 585(3) Neural Engineering</td>
<td>2014-11-20</td>
<td>MA132 and PH132 or PH142</td>
</tr>
<tr>
<td>012877</td>
<td>EE 586(3) Advanced Electromagnetics II</td>
<td>2018-04-26</td>
<td>EE582 and PH580</td>
</tr>
<tr>
<td>012878</td>
<td>EE 591(3) Blockchain Technology: Cryptocurrencies and Beyond</td>
<td>2018-05-02</td>
<td></td>
</tr>
<tr>
<td>013169</td>
<td>EE 593(3) Control and Management of Modern Electric Power Distribution System</td>
<td>2022-06-02</td>
<td>EE333 or equivalent.</td>
</tr>
</tbody>
</table>
Disruptive Technology
[Cross-listed with ME 600] [Formerly EER 600] This course is designed to prepare the student to be able to efficiently evaluate potential disruptive technologies and their potential for application/commercialization. The course will cover such topics as the CO2 Mitigation, Solid state Energy Systems, Bio Energy and Fusion that have potential to impact the future. In order to cover this broad range of technical topics, the course will utilize multiple instructors that have technical depths as well as experience in the field.

Components: Lecture
Same As Offering: EE 600
Req. Designation: Technology

EE 602(3) Course ID:012342 2016-07-01
Engineering Statistics
[Cross-listed with CS 506, ME 577] [Formerly EER 572] Modern engineering practice makes extensive use of statistical methods for the efficient collection and analysis of engineering data, and to support data-based decision making. This course will introduce the statistical tools that are of greatest importance for practicing engineers. Core topics to be covered will include probability and distribution theory, the construction and interpretation of statistical intervals, statistical hypothesis testing, regression analysis and empirical modeling, statistical experimental design, and statistical quality/process control. Additional specialized topics may also be covered, depending upon the interests of the class; possible topics include system reliability analysis, measurement system analysis, process capability analysis (and "six-sigma"), accelerated life testing, and acceptance sampling.

Components: Lecture
Course Equivalents: CS 506, ME 577
Req. Designation: Technology

EE 603(3) Course ID:012971 2019-11-11
Statistical Methods for Reliability and Life Data Analysis
[Cross-listed with ME578 and BOE623] Reliability analysis is concerned with understanding the failure modes that affect an engineered product, estimating the expected life of the product under service conditions, and predicting the failure rate of the product as a function of time in service. The primary response variable in reliability analysis is time to failure, which may be measured in controlled laboratory experiments, or observed empirically from post-introduction studies of products "in the field". The analysis of data for which the primary variable of interest is time to failure requires specialized statistical concepts and tools; this course will cover some of the most useful approaches.

Components: Lecture
Same As Offering: EE 603
Course Equivalents: ME 578, ME 578, BOE 623
Attributes: Offered Winter Term
Requirement Group: Prerequisites: EE602, ME577, or CS506 or instructor consent.
Req. Designation: Technology
Statistical Methods for Reliability and Life Data Analysis

Reliability analysis is concerned with understanding the failure modes that affect an engineered product, estimating the expected life of the product under service conditions, and predicting the failure rate of the product as a function of time in service. The primary response variable in reliability analysis is time to failure, which may be measured in controlled laboratory experiments, or observed empirically from post-introduction studies of products “in the field”. The analysis of data for which the primary variable of interest is time to failure requires specialized statistical concepts and tools; this course will cover some of the most useful approaches.
EE 610 (1 - 0) Course ID: 008212 2020-04-24

ECE Seminar

Components: Seminar

Same As Offering: EE 610

Req. Designation: Technology

EE 613 (1 - 15) Course ID: 008213 2020-04-24

Thesis, Dissertation Credits

Analytical or experimental studies in electrical and computer engineering under the direction of a faculty adviser. Credit for this work is given when the requirements for the degree are completed including the presentation of a thesis or dissertation as appropriate to the degree program.

Components: Thesis Research

Same As Offering: EE 613

Attributes: Offered Each Term

Req. Designation: Technology
Thesis, Dissertation Credits
Analytical or experimental studies in electrical and computer engineering under the direction of a faculty adviser. Credit for this work is given when the requirements for the degree are completed including the presentation of a thesis or dissertation as appropriate to the degree program.

Components: Thesis Research
Same As Offering: EE 613
Attributes: Offered Each Term
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Title</th>
<th>Offered Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>011460</td>
<td>EE 616 (Project Credits)</td>
<td>2015-02-03</td>
</tr>
<tr>
<td>012030</td>
<td>Advanced Biometrics</td>
<td>2016-09-23</td>
</tr>
<tr>
<td>012752</td>
<td>Adaptive Signal Processing</td>
<td>2016-09-22</td>
</tr>
<tr>
<td>013093</td>
<td>Data Analytics for Power System Applications</td>
<td>2021-02-26</td>
</tr>
</tbody>
</table>

EE 616 (Project Credits)

Special Project Credits

Engineering project credits associated with a Masters of Engineering degree under the direction of a faculty advisor.

- **Components:** Project Team
- **Attributes:** Offered Each Term
- **Req. Designation:** Technology

EE 622 (Advanced Biometrics)

This special topics graduate level course will focus on the field of biometrics. With increasing reliance on the cyber-domain, knowledge of the individual plays a vital role in trusted electronic transactions, whether they be social, professional or financial. The course will be driven by in-depth review and discussion of journal papers, as well as a semester long project. Students will explore a variety of topics within biometrics including various modalities (fingerprint, iris, face, voice, keystroke, ECG), multi-modal fusion, image processing, pattern recognition, quality assessment, vulnerabilities, social implications, and performance evaluation.

- **Components:** Lecture
- **Attributes:** Given When Needed
- **Requirement Group:** Prerequisites: EE523 or equivalent
- **Req. Designation:** Technology

EE 628 (Adaptive Signal Processing)

An introduction to adaptive signal processing. Topics include; Applications of adaptive systems, adaptive linear combiner, Wiener least-squares solution, gradient search, the LMS/RLS algorithms, block time/frequency domain LMS, system identification.

- **Components:** Lecture
- **Attributes:** Offered Odd Springs
- **Requirement Group:** Prerequisites: EE401/501 or equivalent, and EE529 or equivalent, or instructor approval.
- **Req. Designation:** Technology

EE 630 (Data Analytics for Power System Applications)

A graduate level course on data analytics for power system applications with selected topics covering: 1) remote terminal unit data and its application for state estimation; 2) PMU data and its application for event detection and linear state estimation; 3) Electricity data for load forecasting (including multi-variable linear regression & Artificial Neural Network (ANN) methodology, Singular Value Machine based load forecasting, and recent development of probabilistic load forecasting technologies); 4) Wind generation forecasting and wind resource assessment; 5) Solar generation forecasting.

- **Components:** Lecture
- **Same As Offering:** EE 630
- **Attributes:** Given When Needed
- **Requirement Group:** Prerequisite: EE333 or Equivalent
- **Req. Designation:** Technology
Data Analytics for Power System Applications
A graduate level course on data analytics for power system applications with selected topics covering: 1) remote terminal unit data and its application for state estimation; 2) PMU data and its application for event detection and linear state estimation; 3) Electricity data for load forecasting (including multi-variable linear regression & Artificial Neural Network (ANN) methodology, Singular Value Machine based load forecasting, and recent development of probabilistic load forecasting technologies); 4) Wind generation forecasting and wind resource assessment; 5) Solar generation forecasting.

Components: Lecture

Same As Offering: EE 630

Attributes: Given When Needed

Requirement Group: Prerequisite: EE333 or Equivalent

Req. Designation: Technology
Interconnection of Distributed Energy Resources to the Power System

This is a graduate level course on the topic interconnection of Distributed Energy Resources (DER) to the power system. It covers DER technology types such as PV, fuel cell, battery storage, wind, ICE, combustion turbines and others. The course shows students how to evaluate and analyze the power system impacts of DER, and determine the allowable penetration limits of DER. It deals with various interconnection issues such as voltage regulation, ground fault overvoltage, system grounding, load rejection overvoltage, overcurrent protection coordination, islanding protection, synchronization, voltage flicker, harmonics and other factors. Solutions to common problems are explained and addressed. Includes many examples and methodologies. Also covers various industry interconnection standards such as IEEE1547 and the application of various utility, federal and state interconnection protocols. Future DER trends in interconnection technology and emerging solutions are discussed as well.

Components: Lecture

Requirement Group: Prerequisite: EE681 or equivalent.

Req. Designation: Technology

Grid Connected Renewable Energy Systems

Components: Lecture

Attributes: Given When Needed

Requirement Group: Prerequisites: EE681 or equivalent.

Req. Designation: Technology
EE 639(3) Course ID:013015 2021-09-23
Electric Power Distribution Systems - Part 1
A graduate level course on modern electric power distribution systems, with topics selected from: distribution feeder & substation layouts, overhead and underground line configurations, voltage regulation, capacitor applications, distribution faults and protection, reliability and power quality, lightning protection, grounding, interconnection of distributed generation, basic distribution planning. This is part 1 of a 2 part series.

Components: Lecture
Same As Offering: EE 639
Attributes: Given When Needed
Requirement Group: Prerequisites: EE681 or equivalent.
Req. Designation: Technology

EE 640(3) Course ID:012346 2016-06-13
Fuel Cell Science and Hydrogen Engineering
(Cross-listed with ME 581) [Formerly EER 580] Introduce the student to the science and engineering of fuel cell technology. Emphasis will be on developing an understanding of different types of fuel cells, their applications, and the engineering of complete fuel cell systems. Elements of the class will include: electrochemistry; polymer materials science for proton exchange membrane (PEM) based systems; ceramics for solid oxide fuel cells; liquid-electrolytes for phosphoric acid and alkaline fuel cells; and other methods of generating power directly from a fuel and an oxidant. They system requirements of the fuel cell stack will be introduced to provide a complete picture of the technology. Other elements addressed during the course will include thermochemistry; electrochemistry; fuel processing or reforming; electrical & power management; polymer science and systems engineering. Developing an understanding of the proton exchange membrane fuel cell will be the primary objective. After completing this course, the student is expected to have an understanding of electrochemistry; polymer science; fuel cell systems engineering; and systems engineering. Developing an understanding of the proton exchange membrane fuel cell will be the primary objective. After completing this course, the student is expected to have an understanding of electrochemistry; polymer science; fuel cell systems engineering; and systems engineering.

Components: Lecture
Course Equivalents: ME 581
Req. Designation: Technology

EE 642(3) Course ID:008215 2016-07-01
Electronic Power Conversion
(Formerly EER 542) This course examines the application of power semiconductor devices to the efficient conversion of electrical energy. Circuit analysis, signal analysis, and energy concepts are integrated to develop steady-state and dynamic models of generic power converters. Specific topics include AC/DC conversion, DC/DC conversion, DC/AC conversion, and AC/AC conversion. These generic converters are applied as controlled rectifiers, switching power supplies, motor drives, HVDC transmission, induction heating, and others. Ancillary circuits needed for the proper operation and control of power semiconductor devices are also discussed. Prerequisites: Courses in circuit analysis, signals and systems.

Components: Lecture
Req. Designation: Technology

EE 643(3) Course ID:012347 2016-07-01
Photovoltaic Engineering
(Cross-listed with ME 582) [Formerly EER 580A] The course focuses on the physical principles, technology, and design of efficient semiconductor photovoltaics. Course goals equip students with the concepts and analytical skills to understand efficiency limitations, to assess the viability of various solar and thermophotovoltaic technologies, and to introduce the physics required for understanding photovoltaic energy conversion. The course will focus on three primary aspects of photovoltaic energy conversion, (i) the transfer and conversion of solar (i.e. thermal) radiation to electronic energy, (ii) the theory and design of the semiconductor photovoltaic cell and (iii) photovoltaic systems and applications.

Components: Lecture
Course Equivalents: ME 582
Req. Designation: Technology
Solid State Electronics
[Formerly EER 574] Course reviews the physics and technology of semiconductor electronic devices and their
dynamic behavior. Emphasis will be placed on semiconductor devices used in high-power and high frequency
applications such as power electronic switching elements and microwave power amplifiers. Course emphasizes
physical understanding of device operation and limitations through energy band diagrams, electron carrier
statistics and transport, charge control equations, and equivalent circuit models. Derivation of electrical
characteristics and dynamic limitations will be presented for (1) power diodes, (2) bipolar devices such as
the power bipolar junction transistor and thyristors, (3) unipolar devices such as the microwave field effect
devices and (4) new classes of controlled power electronic devices such as the insulated gate bipolar
transistor. Issues such as reduction of parasitic electrical losses, high band-gap semiconductor material
development, and thermal management will be discussed.

Components: Lecture
Req. Designation: Technology
EE 652(3) Course ID:011279 2016-01-13

Computer Vision
(Cross-listed with CS 652) This course will cover both classical and recent progress in the field of computer vision, both on the theory and practice. Material covered will be from both the textbook and relevant research papers in the area. After taking this course, students will achieve the necessary knowledge to solve various practical computer-vision problems and build a solid background for further computer-vision research. Topics covered include: Early vision on one and multiple images (linear filters, edge detection, stereopsis), mid-level vision (segmentation, object tracking), high-level vision (model-based vision, graph-based image segmentation) and applications (medical image analysis, image-based rendering).

Prerequisites: CS344 and MA339 (or equivalent, with consent from the instructor)

Components: Lecture

Req. Designation: Technology
Course ID: 012330
Course Title: EE 653 (3)
Course Name: Modeling and Control of Energy Conversion
Course Year: 2016-07-01
Course Description: [Formerly EER 542A] This course examines modeling and control techniques appropriate for application to power electronic and electric machine systems. The course will involve examination of the appropriate theory, followed by application through examples and small design projects. Simulation will be used to evaluate the merits of various techniques.

Components: Lecture
Req. Designation: Technology

Course ID: 012327
Course Title: EE 657 (3)
Course Name: Linear Control Systems
Course Year: 2016-07-01
Course Description: [Cross-listed with ME 560] [Formerly EER 522] This course addresses practical control system design primarily from a classical perspective. Beginning with transfer function modeling of dynamic systems, the course moves through transient, root locus, and frequency response analysis to end with frequency domain techniques for controller design.

Components: Lecture
Course Equivalents: ME 560
Req. Designation: Technology

Course ID: 012328
Course Title: EE 658 (3)
Course Name: Digital Control Systems
Course Year: 2016-07-01
Course Description: [Formerly EER 528] The course begins with a brief review of continuous-time control methods before transitioning to the theory and implementation techniques for control of dynamic processes by digital computers. Topics covered include discrete system analysis, sampled data systems, quantization effects, state space representation of digital control systems, and the design of digital control algorithms.

Components: Lecture
Req. Designation: Technology
Electric Power Distribution Systems - Part 2
A graduate level course on modern electric power distribution systems, with advanced topics selected from: distribution automation and smart grid, advanced lightning protection, microgrid architectures/systems, DC systems, advanced planning, reliability and power quality concepts, energy conservation and efficiency concepts.

Components: Lecture
Attributes: Given When Needed
Requirement Group: Prerequisite: EE 639 or equivalent
Req. Designation: Technology
Computer Algorithms

(Cross-listed with CS 547) This course will study and contrast a variety of computational algorithms and develop tools for algorithm analysis. Methods and topics such as dynamic programming, greedy algorithms, graph algorithms, circuits, parallel algorithms, matrix and polynomial algorithms, string matching, and geometrical algorithms will be explored. The theory of NP-completeness and methods of managing NP-complete problems will also be covered.

Prerequisites: CS344, MA211 or MA346.

Components: Lecture

Course Equivalents: CS 547

Req. Designation: Technology
EE 680(3) Course ID: 012338 2016-07-01
Power System Analysis I
Prerequisite: Electric Circuits or equivalent.
Components: Lecture
Req. Designation: Technology

EE 681(3) Course ID: 012339 2016-07-01
Power System Analysis II
Prerequisites: Electric Circuits or equivalent.
Components: Lecture
Req. Designation: Technology

EE 682(3) Course ID: 012331 2016-07-01
Electromechanical Energy Conversion
[Formerly EER 542B] This course is designed to introduce the student to the inside of AC electric machinery. It begins with a review of computing inductance using the integral form of Maxwell’s equations. Next, the energy method for computing the forces of electrical origin is introduced. These forces are then combined with circuit equations and the equations of mechanics to obtain dynamic models of electromechanical systems. The methodology developed is applied to simple electromechanical structures and then to various types of synchronous machines; induction machines are also considered. Consideration will be given to the electronic control of electric machines.
Prerequisite: A undergraduate course in electromagnetics.
Components: Lecture
Req. Designation: Technology

EE 683(3) Course ID: 012348 2016-07-01
Turbine Engineering
[Cross-listed as ME 583] [Formerly EER 580B] Course on fundamentals of design, analysis, and technology of turbo machinery - jet engines, gas turbines, steam turbines, water turbines, and wind turbines. The course will provide an understanding of all aspects of system development: thermodynamic cycles, design-point and off-design performance; function and design of components (inlets, compressors, combustors, turbines, outlets), operational limits, and environmental concerns; structural analysis, lifting, and materials; rotor dynamics and blade aeromechanics; clearance analysis, sealing, and packing; heat transfer, blade and component cooling; starting and control; power and thrust generation; testing and instrumentation. The student is expected to develop a broad understanding of the state-of-the-art, challenges, and future of turbine systems.
Components: Lecture
Course Equivalents: ME 583
Req. Designation: Technology

EE 684(3) Course ID: 012349 2016-07-01
Wind Energy Engineering
[Cross-listed with ME 588] [Formerly EER 580D] The course focuses on 'Wind Farm Project Design and Development' and 'Wind Turbine Technology.' Part I: Teams will demonstrate understanding of complete wind farm design/development process inclusive of site selection, wind resource evaluating target land area, turbine choice, location, energy projection, cost, transmission. Part 2: Focuses on technical understanding of Wind Turbine attributes such as structural, blade system, Nacelle system, electrical system, performance, and future opportunities.
Components: Lecture
Course Equivalents: ME 588
Req. Designation: Technology
EE 685(3)
Course ID: 012350
2016-07-01

Solar Energy Engineering

[Cross-listed as ME 587] [Formerly EER 580E] This course is designed to enable the student to effectively grasp the complex and quickly changing solar industry. The course will cover such topics as the economy of solar, photovoltaic devices, systems and applications. In order to cover this broad range of technical topics, the course will utilize multiple instructors. Each instructor has significant expertise and depth in the given field and the student will be able to draw from their experience. Students completing this course will develop knowledge of the solar industry, looking at the past, present and future of this technology area. Students will gain key technical background in every aspect of the industry and will be able to assess new technologies as they are developed. Understanding of the economics of solar and its future will also be obtained.

Components: Lecture
Course Equivalents: ME 587
Req. Designation: Technology

EE 686(3)
Course ID: 012351
2016-07-01

Synchronous Electrical Generators

[Cross-listed with ME 589] [Formerly EER 580G] Course on fundamentals of design and analysis of power generators, such as those used in thermal power plants and wind turbines. The course will address the basic operating principles of the synchronous machine and consider configurations such as wound field, permanent magnet, and doubly fed generators. Key topics will include understanding and analysis of the magnetics within the machine, losses and efficiency, thermal performance, mechanical behavior, operation on the power system, and key IEEE and IEC standards. Further topics will include the duty imposed on the machine during service as well as the duty it imposes on the turbine. The student is expected to develop a broad functional understanding of the current engineering technology, challenges, and future of generator technology.

Components: Lecture
Course Equivalents: ME 589
Req. Designation: Technology

EE 687(3)
Course ID: 012341
2016-07-01

Nuclear Engineering

[Cross-listed with ME 575] [Formerly EER 570] The purpose of this course is provide students of various engineering disciplines a functional knowledge of nuclear engineering principles and those most important to the design of nuclear power generation systems. The course will focus both on the nuclear reactor core as well as plant systems. The intent is that students will gain a physical understanding of nuclear engineering principles as they relate to their own field of interest. Class participation will be highly encouraged and focused through the discussion of current events in the nuclear industry as well as proposed future nuclear technologies.

Components: Lecture
Course Equivalents: ME 575
Req. Designation: Technology

EE 690(3)
Course ID: 012355
2019-08-30

Independent Study

[Formerly EER 590] Advanced graduate course in the field of engineering sciences. Topics of special interest will be selected for current needs. A description of the course content in any particular term will be announced in advance.

Components: Independent Study
Same As Offering: EE 690
Attributes: Given When Needed
Req. Designation: Technology
EE 690(3) Course ID:012355 2019-08-30
Independent Study
[Formerly EER 590] Advanced graduate course in the field of engineering sciences. Topics of special interest will be selected for current needs. A description of the course content in any particular term will be announced in advance.

Components: Independent Study
Same As Offering: EE 690
Attributes: Given When Needed
Req. Designation: Technology

EE 691(3) Course ID:012352 2019-08-30
Special Topics in Electrical Engineering
[Formerly EER 581] Topics chosen from the current literature according to faculty and student interest. Possible topics include new developments in the major areas of electrical engineering such as electromagnetic fields, communications, controls, circuits, power, devices, electronics, and computer design. Topics may include but not be limited to image processing, machine vision, speech synthesis, integrated optics, antenna systems, adaptive filtering, variational methods, stochastic processes, optical communications, space and satellite communications, and computer networks. Each of these special topics courses has a variable content addressing specific current areas of interest to students.

Components: Lecture
Same As Offering: EE 691
Attributes: Given When Needed
Req. Designation: Technology
EE 691(3)

Course ID: 012352
2019-08-30

Special Topics in Electrical Engineering

[Formerly EER 581] Topics chosen from the current literature according to faculty and student interest. Possible topics include new developments in the major areas of electrical engineering such as electromagnetic fields, communications, controls, circuits, power, devices, electronics, and computer design. Topics may include but not be limited to image processing, machine vision, speech synthesis, integrated optics, antenna systems, adaptive filtering, variational methods, stochastic processes, optical communications, space and satellite communications, and computer networks. Each of these special topics courses has a variable content addressing specific current areas of interest to students.

Components: Lecture
Same As Offering: EE 691
Attributes: Given When Needed
Req. Designation: Technology

EE 692(3)

Course ID: 008219
2022-01-01

Independent Study

Advance graduate course in the field of engineering sciences. Topics of special interest will be selected for current needs. A description of the course content in any particular term will be announced in advance.

Components: Independent Study
Attributes: Given When Needed
Req. Designation: Technology
EE 693 (1 - 3)

Course ID: 008220
Year: 2015-02-03
Instructor Consent Required:

Directed Study in Electrical and Computer Engineering

Investigation of topics of current interest in selected areas of electrical and computer engineering.

Components: Independent Study
Req. Designation: Technology

EE 694 (1 - 3)

Course ID: 008221
Year: 2014-12-04
Instructor Consent Required:

Directed Study in Electrical & Computer Engineering

Investigation of topics of current interest in selected areas of electrical and computer engineering.

Components: Independent Study
Req. Designation: Technology
EE 698(0)
Course ID: 013007
2020-01-02
MS-EE Graduate Project - Studies
This non-credit Seminar project provides a capstone experience for Electrical Engineering graduate students not completing a thesis or independent study (i.e., all course work). The candidate and faculty advisor agree on project scope and evaluation process. The candidate performs required analytical and/or experimental studies to complete a Graduate Project Paper and Presentation.
Components: Seminar
Attributes: Given When Needed
Req. Designation: Technology

EE 699(0)
Course ID: 012360
2020-01-02
MS-EE Graduate Project - Defense
[Formerly EER 599] This non-credit Seminar project provides a capstone experience for Electrical Engineering graduate students not completing a thesis or independent study (i.e., all course work). The candidate will deliver and defend results from studies documented in a Graduate Project Paper and Presentation. The candidate receives a pass/fail grade which appears on the official transcript.
Components: Seminar
Attributes: Given When Needed
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 739(1 - 10)</td>
<td>2018-01-03</td>
<td>Seminar in Nonlinear Processes</td>
</tr>
<tr>
<td>Attributes: Given When Needed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 999(1 - 10)</td>
<td>2015-01-13</td>
<td>Special Topics in Electrical Engineering</td>
</tr>
<tr>
<td>Attributes: Transfer Credit Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Institute for STEM Education - CRC Education Program - Subject: English

EGL 575(3)
Course ID: 012906
2022-04-08
Interdisciplinary Connections of History and Multicultural Literature
Framed around universal concepts of humanity (change, diversity, intolerance, ethics, creativity, freedom, and legacy), this course is designed to illustrate the interdisciplinary connections between secondary social studies and English language arts. Recognition that these key concepts span time and place, and are applicable to every period in history, will help to develop a broad understanding of the human experience, and the unity of humanity, through the study of history and multicultural literature. In addition to the historic and literature specific content of the course, other goals include development of empathy and a respect for diversity, as well as learning how to guide discussions that value different points of view.
Components: Seminar
Course Equivalents: HST 575
Attributes: Given When Needed
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program.
Req. Designation: Technology

EGL 580(3)
Course ID: 012375
2021-10-08
MAT Project in English (Content Area)
The MAT Project is a one-term research project whose purpose is to allow students time and supervision to develop breadth and/or depth of knowledge to become a better teacher in their certification field. What the project will entail varies greatly from student to student. The course is intended to be custom-tailored to meet the specific needs of an individual intern. MAT projects are well-grounded in research and theory, but also include a strong and extensive applied aspect, directly addressing the question: What would this look like in the classroom?
Components: Seminar
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program.
Req. Designation: Technology

EGL 585(3)
Course ID: 012378
2018-01-16
Nonfiction in the English Classroom
The Common Core Standards for ELA mandate a shift in the English classroom towards the use of more nonfiction/informational texts. The precise nature of this mandate and its impact on the practices of English teachers continues to be a source of controversy and confusion. In this 3-credit course, we will come to terms with this controversy, and articulate a vision for using nonfiction texts in the English classroom. Additionally, we will explore reading and writing in the literary genres that comprise the category of nonfiction, including memoir, the essay, argumentative writing, and literary journalism.
Components: Lecture
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program.
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Title</th>
<th>Components</th>
<th>Attributes</th>
<th>Requirement Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHS 1(2 - 4)</td>
<td>Industrial Hygiene Elective</td>
<td>Lecture</td>
<td>Transfer Credit Only</td>
<td></td>
</tr>
<tr>
<td>EHS 2(2 - 4)</td>
<td>Industrial Hygiene Elective</td>
<td>Lecture</td>
<td>Transfer Credit Only</td>
<td></td>
</tr>
<tr>
<td>EHS 309(3)</td>
<td>Introduction to Environmental and Occupational Health</td>
<td>Lecture</td>
<td></td>
<td>Corequisites: CM132 or CM104/106</td>
</tr>
<tr>
<td>EHS 310(2)</td>
<td>Introduction to Industrial Hygiene Laboratory</td>
<td>Laboratory</td>
<td>One communication unit, Offered Spring Term</td>
<td>Corequisite: EHS309</td>
</tr>
<tr>
<td>EHS 330(3)</td>
<td>Occupational Safety and Ergonomics</td>
<td>Lecture</td>
<td>Offered Odd Falls</td>
<td></td>
</tr>
</tbody>
</table>
EHS 405(4)
Course ID: 008412
2022-03-08

Methods and Analysis
IH405, Methods and Analysis, is a combined lecture/laboratory course. Students complete nine full laboratory assignments requiring complete reports (~10 pages) to be turned in weekly or bi-weekly. Students are provided feedback on content and writing mechanics (technical reporting) and are offered (sometimes requested) the opportunity to resubmit.

Components: Laboratory, Lecture
Attributes: One communication unit, Given When Needed
Requirement Group: Prerequisites: EHS 309 and open to students majoring in EHS, ES&P and Chemistry only. Two years of college chemistry is recommended.

Req. Designation: Technology

EHS 406(3)
Course ID: 008413
2022-03-08

Industrial Hygiene Control Methods
Various ways to prevent and solve common industrial hygiene problems will be considered; topics will include typical engineering controls, administrative controls and personal protection to control chemistry exposure and releases. In addition controls for temperature extremes, noise and vibration exposure, and ergonomic stressors will be studied. About two-thirds of the course is devoted to industrial exhaust ventilation design. (2 credits of design, for Civil and Environmental Engineering Majors)

Components: Lecture
Course Equivalents: EHS 506
Attributes: Two Design Credits, Offered Even Falls
Requirement Group: Prerequisite: EHS 309 or consent of the instructor.

Req. Designation: Technology
EHS 408(1)
Course ID: 013143
2022-01-26

Exposure Assessment Laboratory
This class is a laboratory based course exploring human exposure. Each class (once per week, 3 hour lab) will include a 30-45 minute lecture addressing the theory and application of the laboratory material. The laboratory experiments are designed to acquaint students with a variety of environmental and occupational field sampling methods and their corresponding laboratory analytical methods.

Many analytical techniques are used to analyze industrial hygiene and environmental samples. Some techniques provide immediate results while others require laboratory analysis. This course will allow the student to use a variety of methods to analyze contaminants, and an opportunity to compare and contrast sampling and analytical methods. In addition to collecting the samples, data analysis techniques and modeling exposures will be used to analyze the data with a few types of software. While the course will focus on sampling and sample analysis, related topics will be discussed briefly. Variables and conditions such as, who, when, how

Components: Laboratory
Course Equivalents: EHS 508
Attributes: Offered Even Falls
Requirement Group: Prerequisites: EHS309, and CE433, or consent of the instructor.
Req. Designation: Technology
EHS 416(3)
Course ID: 008415
2022-03-08

Principles of Toxicology and Epidemiology

(Cross-listed with BY 416) This is an introductory course in toxicology and epidemiology. Toxicology is the study of the harmful interactions, including absorption, distribution, metabolism and disease effects, of chemical, biological and physical agents with biological systems, when administered by accident or design. Epidemiology is the study of the distribution and determinants of disease frequency in populations exposed to these toxicants and stressors. The first two thirds of this course will focus on the toxicological interaction and effects of environmentally and occupationally derived toxicants with the human body. The last third of the course will focus on the epidemiological tools to evaluate the risk of exposure to such toxins, and will examine, in detail, several important historical and recent case studies of toxic exposures to individuals and populations in the home, the outdoor environment, and the work place. Toxicology and Epidemiology are important sciences that provide a sound basis for developing measures to reduce the risk of Components:
- Lecture

Course Equivalents: BY 416, EHS 518, BY 518

Attributes: Offered Fall Term

Requirement Group: Prerequisites: EHS 309 or consent of the instructor.

Req. Designation: Technology

EHS 481(3)
Course ID: 008416
2022-01-26

Advanced Topics in Environmental and Occupational Health

This course is a project based course that requires students to work on a broad array of topics in environmental health. Students will have multiple projects (6-8) running simultaneously and each will require writing assignments and presentations. Literature and text reviews will be necessary for most of the projects. Group communication skills are also developed as some projects are done in groups. Course work and lab preparation call for combining both lab work and lecture material in a cohesive and accessible format. The course also involves consistent review of student work by the instructor, in the form of both written and oral feedback. IH481 also requires for a minimum of three oral presentations by individuals.

Components:
- Lecture

Attributes: One communication unit, Offered Spring Term

Requirement Group: Prerequisite: Senior standing in the following majors or minors: EHS or ES&P, or consent of the instructor.

Req. Designation: Technology
Internship/Co-op

Students who obtain a (summer) internship/co-op position may obtain credit for the work experience by registering for this course the semester following the position. Students will be required to keep a daily journal of work activities and submit the journal entries to the EHS Program Director every two weeks. During the semester following the internship/co-op, a 10-page report on some aspect of their work experience and a 30 minute presentation will be required.

Components: Independent Study
Attributes: Offered Spring Term
Requirement Group: Prerequisite: Open to EHS or ES&P major or minor only, or by consent of the program director
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Course Title</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHS 494(1-3)</td>
<td>011306</td>
<td>Directed Research for Undergraduates</td>
<td>2022-03-08</td>
<td>A research project will be completed; research projects may include laboratory projects or individual study of industrial hygiene topics not available in other industrial hygiene courses. Components: Research. Attributes: Offered Fall and Spring. Requirement Group: Prerequisite: Open to EHS or ES&P major or minor only, or by consent of the program director. Req. Designation: Technology.</td>
</tr>
<tr>
<td>EHS 495(1-3)</td>
<td>011307</td>
<td>Directed Research for Undergraduates</td>
<td>2022-03-08</td>
<td>A research project will be completed; research projects may include laboratory projects or individual study of industrial hygiene topics not available in other industrial hygiene courses. Components: Research. Attributes: Offered Fall and Spring. Requirement Group: Prerequisite: Open to EHS or ES&P major or minor only, or by consent of the program director. Req. Designation: Technology.</td>
</tr>
<tr>
<td>EHS 497(1-3)</td>
<td>011316</td>
<td>Directed Study</td>
<td>2022-03-08</td>
<td>A research project will be completed; research projects may include laboratory projects or individual study of industrial hygiene topics not available in other industrial hygiene courses. Components: Independent Study. Requirement Group: Prerequisite: Open to EHS or ES&P major or minor only, or by consent of the program director. Req. Designation: Technology.</td>
</tr>
<tr>
<td>EHS 505(4)</td>
<td>008420</td>
<td>Methods and Analysis</td>
<td>2022-03-08</td>
<td>This course covers the same topics as EH405 and includes additional material on the graduate level. Prerequisites: two years' college chemistry and major Industrial Hygiene, EH309. Components: Laboratory, Lecture. Attributes: Given When Needed. Req. Designation: Technology.</td>
</tr>
<tr>
<td>EHS 506(3)</td>
<td>008421</td>
<td>Industrial Hygiene Control Methods</td>
<td>2022-03-08</td>
<td>This course covers the same topics as IH 406 and includes additional material on the graduate level. Prerequisites: IH309 or consent of the instructor. Components: Lecture. Course Equivalents: EH 406. Attributes: Offered Even Falls. Req. Designation: Technology.</td>
</tr>
<tr>
<td>EHS 508(1)</td>
<td>013142</td>
<td>Exposure Assessment Laboratory</td>
<td>2022-03-08</td>
<td>This class is a laboratory based course exploring human exposure. Each class (once per week, 3 hour lab) will include a 30-45 minute lecture addressing the theory and application of the laboratory material. The laboratory experiments are designed to acquaint students with a variety of environmental and occupational field sampling methods and their corresponding laboratory analytical methods. Many analytical techniques are used to analyze industrial hygiene and environmental samples. Some techniques provide immediate results while others require laboratory analysis. This course will allow the student to use a variety of methods to analyze contaminants, and an opportunity to compare and contrast sampling and analytical methods. In addition to collecting the samples, data analysis techniques and modeling exposures will be used to analyze the data with a few types of software. While the course will focus on sampling and sample analysis, related topics will be discussed briefly. Variables and conditions such as, who, when, how. Components: Laboratory. Course Equivalents: EH 408. Attributes: Offered Even Falls. Req. Designation: Technology.</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course ID</td>
<td>Course Title</td>
<td>Terms Available</td>
<td>Attributes</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>--</td>
<td>-----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>EHS 518(3)</td>
<td>010303</td>
<td>Principles of Toxicology and Epidemiology</td>
<td>2022-01-26</td>
<td>Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Cross-listed with BY 518] This course covers the same topics as EHS 416 and includes additional material on the graduate level.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Components: Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Course Equivalents: BY 416, EHS 416, BY 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EHS 581(3)</td>
<td>010316</td>
<td>Advanced Topics in Environmental and Occupational Health</td>
<td>2022-01-26</td>
<td>Offered Spring Term</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This course covers the same topics as IH481 and includes additional material on the graduate level.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Components: Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attributes: Offered Spring Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EHS 999(1 - 10)</td>
<td>011111</td>
<td>Special Graduate Topics</td>
<td>2022-01-26</td>
<td>Transfer Credit Only</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A graduate level course for which there is no comparable Clarkson course. This course may be used to satisfy course requirements for a graduate degree.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Components: Independent Study</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attributes: Transfer Credit Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Business - Engineering & Management - Subject: Engineering & Mgmt

EM 1(2 - 4) Course ID:008224 2015-01-19
Engineering and Management Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.

Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

EM 2(2 - 4) Course ID:009666 2015-01-19
Engineering & Management
A college level course for which there is no comparable Clarkson course. Used for transfer credit only. This course may be used as a Professional Elective.

Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

EM 120(3) Course ID:008225 2015-02-19
Team-based Design and Innovation
The first in a two-course sequence, this course is required for all first-year students in the Engineering & Management Program. Students will undertake a yearlong project to design, produce, and potentially commercialize a product. Projects will require the application of both engineering and management tools and principles. The primary focus of the fall semester is to build functional teams, introduce design tools and complete a conceptual design of the product. Open only to E&M, University Studies, Engineering Studies, and Science Studies first-year students unless approved by E&M Director.

Components: Laboratory, Lecture
Attributes: One communication unit, Offered Fall Term
Req. Designation: Technology

EM 121(2) Course ID:008226 2015-10-20
Technological Entrepreneurship
The second in a two-course sequence, this course is required for all first-year students in the Engineering & Management Program. Students will undertake a yearlong project to design, produce, and potentially commercialize a product. The primary focus of the spring semester is to build a business plan from the fall semester conceptual design. Open only to E&M, University Studies, Engineering Studies, and Science Studies first-year students unless approved by E&M Director.

Components: Laboratory, Lecture
Attributes: One communication unit, Offered Spring Term
Requirement Group: Prerequisite: EM120.
Req. Designation: Technology

EM 190(1 - 3) Course ID:008227 2015-01-23
Independent Study
An investigation of an interdisciplinary socio-technical problem undertaken by an upperclass student under the guidance of a faculty member.

Components: Independent Study
Attributes: Given When Needed
Req. Designation: Technology

EM 205(3) Course ID:011133 2022-02-10
Introduction to Financial and Managerial Accounting
[Cross-listed with AC 205] An introductory survey of accounting information to guide and improve decision making. Many course topics involve cost planning and control techniques used to evaluate and improve the financial performance of organizations and/or products.

Components: Lecture
Course Equivalents: AC 205
Attributes: Offered Fall and Spring
Requirement Group: Prerequisites: Restricted to E&M majors only
Req. Designation: Technology
Intro to Enterprise Information Systems
This course will introduce students to enterprise information systems, their components, integration, and use as part of the business process. The distributed, accurate, real time flow of information is a critical success factor for most organizations. The ability of an organization to collect and analyze this information is crucial in today’s data-driven economy. The focus of this course is on the functional and strategic use of enterprise resource planning (ERP) software, its application, input devices, implementation issues and use. Hands-on experience with SAP ERP is integral to this course. Offered fall and spring semesters.

Components:
Lecture
Attributes:
Offered Each Term
Requirement Group:
Prerequisites: students may not receive credit for IS200 as well as EM211 and restricted to E&M majors

Organizational Behavior I
[Cross-listed with OS 286, PY 286] (May be used to satisfy a CUSB MBA or MS foundation requirement.) An introduction to the processes required to manage contemporary organizations with a focus on individual behaviors as they relate to the functions of planning, organizing, controlling, and leading. The most recent concepts of behavioral science in the practice of management are presented to assist the student in gaining understanding of the pervasiveness of the discipline in all types of organizations and processes. Topics include motivation, leadership, perceptions, personality theory, learning theory, personnel issues, stress management, organizational culture, and decision making.

Components:
Lecture
Course Equivalents:
OS 286, PY 286
Attributes:
Individual and Group Behavior, Offered Each Term
Requirement Group:
Prerequisites: sophomore standing and restricted to E&M majors.
Applied Data Analytics
[Cross-listed with IS301] Proper utilization of modern analytical tools is a critical component of effective and timely creation and use of organizational intelligence in a variety of fields of human endeavor: management, social science, health care, engineering etc. This course focuses on critical skills for using software tools such as Excel, SQL, and Tableau (or their equivalents) for the purpose of conducting a variety of analytics tasks and operations to improve gathering, generation and presentation of organizational intelligence. Focus is on proper data gathering and preparation, followed by the use of key analysis grouping and summation tools as well as data presentation and visualization.

Components: Lecture
Course Equivalents: IS 301
Attributes: Offered Fall and Spring
Requirement Group: Prerequisite: IS110
Req. Designation: Technology

E&M Professional Experience
Project-based professional experience in engineering & management, related to student career interests and/or field of study. Fulfills Clarkson Common Experience Professional Experience requirement for E&M students. Course registration requires E&M approval of application. Completion of course requires approval of E&M Director.

Components: Independent Study
Attributes: Offered Fall and Spring
Req. Designation: Technology
EM 313(3) Course ID:012967 2022-02-10

Professional Communication

(Cross-listed with COMM313) This course presents students opportunities to learn how to design and present effective professional documents. The course emphasizes a rhetorical approach to analyzing the issues and details important to the communication to be produced (e.g., audience, style, format, purpose). Students will practice writing both individually and collaboratively and will be expected to present their work orally on occasion. Students will encounter topics such as, but not limited to, abstracts, email, instructions, letters, memoranda, proposals, and various types of reports. Students of any major may take this course.

Components: Lecture

Course Equivalents: COMM 313

Attributes: Two communication units, Offered Fall and Spring

Req. Designation: Technology
EM 314(3) Database Design & Management

Course ID: 011634
2014-11-19

- **Database Design & Management**
- [Cross-listed with IS 314] This course provides the student with in-depth knowledge of database analysis, design, and implementation principles. Students who successfully complete this course will be able to use the entity-relationship data model to represent business data requirements, to translate that model into a relational schema, to normalize this schema and to build and use a relational database that implements the schema, using the Standard Query Language (SQL).

Components:	Lecture
Requirement Equivalents:	IS 314
Requirement Group:	Prerequisite: Restricted to E&M students
Req. Designation:	Technology

EM 331(3) Operations & Supply Chain Management

Course ID: 011137
2022-02-10

- **Operations & Supply Chain Management**
- [Cross-listed with OM 331] (May be used to satisfy a CUSB MBA and MS foundation requirement.) An introduction to the planning, analysis and control of production systems. Topics include product and service design, manufacturing processes, aggregate production planning, inventory models and MRP, just-in-time systems, facility layout, forecasting/demand planning, project management, and quality management. Students acquire problem solving experience using ERP software.

Components:	Lecture
Requirement Equivalents:	OM 331
Attributes:	Offered Fall and Spring
Requirement Group:	Prerequisites: STAT 282 or STAT 383 or MA 330, and at least sophomore standing
Req. Designation:	Technology

EM 333(3) Elements of Operations Research

Course ID: 011280
2022-02-10

- **Elements of Operations Research**
- Application of optimization models to typical engineering and management situations and problems. Topics include: optimization theory (linear programming, transportation and assignment models), decision analysis under uncertainty, queuing theory and Monte Carlo simulation.

Components:	Lecture
Attributes:	Offered Fall and Spring
Requirement Group:	Prerequisites: STAT383 and at least junior standing, and restricted to E&M majors only.
Req. Designation:	Technology

EM 341(3) Supply Chain Design & Management

Course ID: 011139
2017-10-11

- **Supply Chain Design & Management**
- [Cross-listed with OM 341] Fierce competition in today's global markets has forced business enterprises to focus on reducing costs while meeting rising customer expectations by designing and managing effective and sustainable supply chains. This course focuses on a systems approach to review state-of-the-art models and practical tools for inventory and materials management, design for supply chain, as well as supply chain integration. Topics covered include managing inventories in the supply chain, the bullwhip effect, risk pooling, delayed differentiation, measuring the financial performance of supply chains, the value of information and the role of information technology in the supply chain, coordination and collaboration with channel partners, supply chain related strategic alliances, and outsourcing/off-shoring/reshoring trends. Several team projects and hand-on experiences are utilized to demonstrate real world issues and applications.

Components:	Lecture
Requirement Group:	Prerequisites: EM331 and restricted to E&M majors.
Req. Designation:	Technology

EM 356(3) Invention Development and Protection

Course ID: 012871
2022-02-10

- **Invention Development and Protection**
- [Cross-listed with SB356] In this course, students learn how to develop inventions and protect them. Students will work in small teams to develop and describe their inventions in a form suitable for filing provisional patent applications with the U.S. Patent and Trademark Office. Aspects of intellectual property laws in the US and other countries will be covered to guide the student inventing process. Open only to E&M students.

Components:	Lecture
Requirement Group:	Requirements: E&M major and Junior standing
Req. Designation:	Technology
EM 361(3) Course ID:011144 2014-11-18
Supply Chain Environmental Management
(Cross-listed with SB 361) This course aims to gain a greater understanding of supply chain environmental management by examining: (i) the advantages and business risks of adopting and implementing environmental practices and technologies in the supply chain, (ii) the role of suppliers and customers to facilitate the adoption/implementation of environmental practices and technologies, and (iii) the implications of such supply chain activities on an organization's operations strategy. This course consists of a mix of lectures and class discussion.

Components: Lecture
Course Equivalents: SB 361
Attributes: Offered Spring Term
Requirement Group: Prerequisite: EM331 and restricted to E&M majors.
Req. Designation: Technology
EM 371(3) Course ID:012841 2022-02-10

Strategic Sourcing
This course provides an in-depth analysis of the procurement process and supplier management, with strong emphasis on managing a supplier base for both products and services. Topics covered include the strategic role of sourcing in supply chains, the identification and evaluation of requirements, the strategic make versus buy decision, supplier selection, development and evaluation processes, the supplier coordination and control mechanisms, the relationship between product design and the supplier base and the impact of information technology on strategic sourcing. Both theoretical and quantitative perspectives will be offered. In addition, the topics will be addressed from strategic, financial, sustainability and global perspectives. Students will also develop practical skills in using quantitative tools to select and evaluate suppliers.

Components: Lecture
Course Equivalents: OM 371
Attributes: Offered Fall Term
Requirement Group: Prerequisites: OM/EM331 and at least junior standing
Req. Designation: Technology
EM 380 (3)
Course ID: 011142 **Date:** 2022-03-09

Project Management
[Cross-listed with OM 380] This course will introduce students to all phases of project management from project initiation to termination. Topics covered include project selection, organization, contracts, planning and scheduling (PERT and CPM), estimating, budgeting and cost control, procurement, resource allocation, variance analysis, auditing and termination procedures. Project management software, case studies, and student team projects will be an integral part of the course.

Components: Lecture

Course Equivalents: OM 380

Attributes: Economics and Organizations, Offered Fall and Spring

Requirement Group: Restrictions: Enrollment is limited to students in E&M, or consent of instructor. Corequisites: STAT 383

Req. Designation: Technology

EM 381 (3)
Course ID: 012742 **Date:** 2022-03-09

Logistics Management
[Cross-Listed SB381] Logistics involves planning, implementation and control of the forward and reverse flow and storage of goods, services, and information in the supply chain in order to effectively meet customer demand. Primary topics covered include management and location of facilities, management of channel networks, warehousing, transportation, management and design of integrated logistics networks, distribution strategies, third-party logistics, international logistics, and vehicle routing. In addition to lectures, case studies, numerical assignments and simulation of logistics systems may be utilized.

Components: Lecture

Course Equivalents: SB 381

Attributes: Offered Spring Term

Requirement Group: Prerequisites: MK 320 and OM/EM 331

Req. Designation: Technology
EM 415(3) Course ID:011691 2022-03-09

Data Warehousing for Analytics
(Cross-listed with IS 415) This course covers the fundamental concepts, design, management and application of data warehouses and business/enterprise intelligence systems. Specific topics covered include the logical design of a data warehouse, the data staging area and extraction-transformation-loading process, the design, implementation and utilization of multi-dimensional data analysis systems, as well as key business/enterprise intelligence concepts, processes and techniques including knowledge discovery and exploratory analysis.

Offered Fall semesters.

Components: Lecture
Course Equivalents: IS 415
Attributes: Offered Spring Term
Requirement Group: Prerequisite: EM314 or CS460/EE468 and Restricted to E&M students.
Req. Designation: Technology
EM 432(3) Course ID: 011138 2015-03-03
Organizational Policy and Strategy
(Cross-listed with OS 432) A capstone course designed to integrate the functional areas and tools of management studied in previous courses within a strategic planning framework giving due attention to ethical and social responsibility concerns and international business issues. Emphasis is placed on the business environment in a global economy, industry analysis, tactical planning, overall strategic planning, policy establishment and implementation. Case analysis, in the small group setting, is utilized, enabling students to share their expertise and explore their value structure. Students present results via written and oral reports.

Components: Lecture
Course Equivalents: OS 432
Attributes: Two communication units, Offered Each Term
Requirement Group: Prerequisites: FN361, EM331, EM286, MK320, senior standing, and restricted to E&M majors.
Req. Designation: Technology

EM 441(3) Course ID: 011143 2014-11-18
Advanced Topics in Global Supply Chain Management
(Cross-listed with SB 441) This course introduces several emerging topics in supply chain management, including: demand management, revenue management, risk management, supply chain agility and flexibility, supply chain disruption management, and supply chain contracts. This course also provides students with the opportunity to gain experience dealing with complex supply chain issues by utilizing a simulation game. The simulation deals with both strategic and tactical aspects of managing the supply chain.

Components: Lecture
Course Equivalents: SB 441
Requirement Group: Prerequisite: EM341 and restricted to E&M majors.
Req. Designation: Technology

EM 451(3) Course ID: 011140 2022-02-10
Quality Management & Lean Enterprise
(Cross-listed with OM 451) This course will introduce the students to both the managerial and technical aspects of quality improvement. The course emphasizes statistical applications to quality related topics such as process/product design, process capability, quality control, design of experiment, and inspections/sampling. Other topics of interest include: Juran quality trilogy, six-sigma project methodology, and cost of quality. The course consists of a series of lecture and problems solved in class.

Components: Lecture
Course Equivalents: OM 451
Attributes: Offered Fall and Spring
Requirement Group: Prerequisites: STAT 383 and restricted to E&M majors.
Req. Designation: Technology

EM 456(3) Course ID: 010732 2022-02-10
Process Engineering and Design
This course is a capstone design experience for students who have completed a foundation engineering science education. Primarily designed for the Engineering & Management (E&M) program, this course involves solution of a real world technical problem. Requires both written reports and oral presentations.

Components: Lecture
Attributes: One communication unit, Offered Fall and Spring
Req. Designation: Technology

EM 476(3) Course ID: 011141 2022-02-10
Management of Technology
(Cross-listed with OM 476) Management of technology links together the engineering, science, and management disciplines to plan, develop, and implement technological capabilities to be competitive in the global arena. Students taking the course will gain an understanding of the following topics: innovation, product life cycles, product development process, concurrent engineering, management of technology strategy, selecting technical projects, management of the R&D process, initiating new ventures, international technology transfer, and the management of complex projects.

Components: Lecture
Course Equivalents: OM 476
Attributes: Science, Technology and Society, Offered Fall and Spring
Requirement Group: Prerequisites: EM331 and restricted to E&M majors.
Req. Designation: Technology
Business - Engineering & Management - Subject: Engineering & Mgmt

EM 482(3)
Course ID: 012744
2022-02-10

Systems Engineering and Management

Systems Engineering (SE) is an iterative process of top-down synthesis, development, and operation of real-world systems that combines technical leadership and systems management. Technical leadership is necessary for incorporating and balancing the contributions of structural, mechanical, electrical, software, systems safety, and power engineers, among others, to produce a coherent whole. Through the interdisciplinary approach of SE, systems management is focused on effectively and efficiently managing the development and operation of complex systems that result from integrating physical, smart, software, and connectivity components. Students taking this course will gain an understanding of how to create a design that considers both the business and technical needs of all customers with the goal of providing a quality product that meets customers' needs and maintain its integrity throughout its life cycle. Topics include but are not limited to fundamental concepts of systems theory and systems thinking used for SE, life cycle process

Attributes: Offered Fall Term
Requirement Group: Restrictions: Junior or Senior standing in an engineering or EM major, or permission by the instructor
Req. Designation: Technology

EM 484(3)
Course ID: 012746
2022-02-10

Advanced Project Management

(Cross listed with OM484) This course builds on the foundation of EM/OM380 (Project Management) by introducing advanced topics in decision making, risk, and cost control as well as providing comprehensive knowledge of project scheduling and other PM tools. This course also provides an opportunity for students to further extend their PM skills in managing and controlling projects by applying the PM methods in a project management simulation using typical project management software. Students are exposed to advanced research topics in the emerging PM areas.

Components: Lecture
Attributes: Offered Fall and Spring
Requirement Group: Prerequisite: EM/OM380
Req. Designation: Technology
Special Project in Engineering and Management

An investigation of a problem or in-depth topic undertaken by the student under the guidance of a faculty member. Prerequisites: Permission of instructor

- **Components:** Research
- **Attributes:** Given When Needed
- **Req. Designation:** Technology
Internship
An investigation of a problem or in-depth topic undertaken by the student under the guidance of a faculty member. Prerequisite: Permission from the instructor.

Components: Independent Study
Attributes: Given When Needed
Req. Designation: Technology

Directed Research
A research project will be completed; research projects may include laboratory projects, literature research, or individual study of interdisciplinary engineering and management topics not available in other Clarkson courses.

Components: Research
Attributes: Given When Needed
Requirement Group: Restriction: Open to Engineering and Management majors only
Req. Designation: Technology
Project Controls and Lean Methods in Construction

[Cross-listed with CE 505] This course will cover the use of construction project management controls typical in varying scales of projects. Using the Lean Construction model, the course will cover Lean as both a system and culture, while emphasizing the central place of project delivery processes. Topics in project controls will include: Goal Setting, Scheduling, Budgeting, Problem Solving, and Decision-Making.

Prerequisites: Graduate standing, CE 305, or consent of the instructor

Components: Lecture
Course Equivalents: CE 505
Attributes: Offered Spring Term
Req. Designation: Technology
Operations Management and Factory Physics

This course introduces the principles of manufacturing and service management while taking a cursory and scientific look at the processes and operations that impact an organization. The course exposes the student to a wide range of management terms and theories as they relate to strategic and tactical decision making. As such, it provides a basis on which to assess, evaluate, and recommend corrective management actions. In addition, focus is placed on developing an understanding of the relationship between operations and other business functions, such as marketing, finance, accounting, and human resources. Another aspect of the course is Factory Dynamics. This is the study of the factory interactions between people, equipment, raw materials and operations. It is the scientific study of how best to manage these complex interactions so the factory or operations as a whole will work effectively.

Components: Lecture
Attributes: Given When Needed
Requirement Group: Restriction: This course requires admission to the Engineering Management MS program.
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID:</th>
<th>012946</th>
<th>2019-05-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM 620(3)</td>
<td>Introduction to Artificial Intelligence: Principles and Techniques</td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Given When Needed</td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
</tr>
</tbody>
</table>

This course will explore and discuss various theories, models, techniques and practical applications revolving around the topics of Artificial Intelligence and Machine Learning. In a rapidly changing and increasingly global economy, AI or Artificial Intelligence has become the all-powerful and omnipresent tool/solution and is being used in some form or fashion by every industry. Artificial Intelligence is the machines which are designed and programmed in such a manner that they think and act like humans. The greatest advantage of artificial intelligence is that machines do not require sleep or breaks and are able to function without stopping. They can continuously perform the same task without getting bored or tired. When employed to carry out dangerous tasks, the risk to human health and safety is reduced. AI systems have the ability to execute tasks naturally associated with human intelligence, like speech recognition, decision-making, visual perception, and translating languages. AI would have a low error rate compared to...

<table>
<thead>
<tr>
<th>Course ID:</th>
<th>013144</th>
<th>2021-11-05</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM 625(3)</td>
<td>Analytics for Decision Making</td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Given When Needed</td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
</tr>
</tbody>
</table>

The overall course objective is to provide a broad data science foundation that enables students to grasp the fundamental methods, techniques and software used to design, develop, and deploy solutions. This objective is met by introducing frameworks for understanding descriptive, predictive, and prescriptive analytics and their relationship with real life applications.
Course ID: 012857
Course: Law for Engineers
Description:
This course provides engineers the legal background and introductory knowledge they need to successfully navigate the many different areas of law they will encounter throughout their careers. Students will learn critical aspects of corporate law, tort (liability/accident) law, intellectual property (IP) law, and contract law during the course. They will also become familiar with, and learn to recognize, key areas of constitutional law, comparative/international law, environmental law, administrative law, and computer network/cyber law which often affect technical work on a daily basis.
Components: Lecture
Attributes: Given When Needed
Requirement Group: Restriction: This course requires admission to the Engineering Management MS program.

Course ID: 012928
Course: Leading and Managing Organizations
Description:
Success in leading people and managing performance demands that you have an understanding of how work groups operate and what motivates employees, as well as a candid assessment of your own personality and style. The purpose of this course is to help you understand the general principles and processes of effective leadership so that you can lead in a wide variety of organizational situations. Leadership development is relevant for any student pursuing a managerial career, and is particularly relevant to students who already hold leadership positions in their organizations. Topics covered in the on-campus sessions will focus on aspects of interpersonal behavior, including personality, leadership, teamwork, and conflict management. During the online sessions we will take a more macro perspective, examining firm-level issues such as power and influence, culture, and organizational congruence.
Components: Seminar
Attributes: Given When Needed
Requirement Group: Restriction: This course requires admission to the Engineering Management MS program.

Course ID: 012930
Course: Enterprise Sustainability
Description:
There is a growing sense of urgency around climate change and resource scarcity, and a lack of trust in the ability of global economic and political systems to solve large-scale societal environmental and social problems. Increasingly, the general public expects business to proactively contribute to solving these societal problems, striving towards making a net positive environmental and social impact on the world. Sustainability managers need to know how to lead projects, and more importantly how to help bring about a cultural change within their organizations so that ultimately sustainability is fully integrated into every function. The goal of this course is to empower managers in any function (not just sustainability managers) to lead in sustainability.
This course will provide an introduction to corporate sustainability in manufacturing companies. We will
Components: Lecture
Attributes: Given When Needed
Requirement Group: Restriction: This course requires admission to the Engineering Management MS program.

Course ID: 012721
Course: Cost Management and Financial Analysis
Description:
The overall course objective is to increase the student's ability to deliver a project within cost expectations and to make decisions within the corporate financial perspective. This objective is met by understanding the technical underpinning of engineering economic and simulation based costing analysis, understanding how project decisions impact the organization's profit/financial health, and understanding the role of life cycle costing.
Components: Lecture
Same As Offering: EM 660
Attributes: Given When Needed
Req. Designation: Technology
Graduate Interdisciplinary - Engineering Management MS - Subject: Engineering & Mgmt

EM 660(3) Course ID:012721 2017-01-12
Cost Management and Financial Analysis
The overall course objective is to increase the student's ability to deliver a project within cost expectations and to make decisions within the corporate financial perspective. This objective is met by understanding the technical underpinning of engineering economic and simulation based costing analysis, understanding how project decisions impact the organization’s profit/financial health, and understanding the role of life cycle costing.

Components: Lecture
Same As Offering: EM 660
Attributes: Given When Needed
Req. Designation: Technology

EM 680(3) Course ID:012720 2017-01-12
Decision Analysis and Risk Management
A successful manager needs to be equipped with the techniques and tools of decision analysis in today's competitive business environment. The primary goal of this course is to develop the student's ability to define business problems, construct quantitative models and effectively utilize decision making tools (such as MS Excel Solver, Analytic Solver Platform, and decision trees). This course introduces decision modeling techniques by focusing on the development and analysis of models for a variety of business management problems. Topics include supply chain network design, transshipment and logistics management, capital budgeting and fixed charge problems, and decision making under uncertainty and risk.

Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology
EM 690(3) Course ID:011777 2017-01-12
Capstone Project
Students complete a semester-long project which applies engineering management problem-solving skills to a real-world problem. Students demonstrate the application of engineering problem-solving methodology and project management. Students must demonstrate the ability to engage with a client, define a problem, derive specifications for a successful solution, generate and evaluate appropriate solutions, generate the optimal solution, successfully complete the process and present the result professionally in both oral and written format.

Components: Lecture
Req. Designation: Technology
Engineering - School of Engineering - Subject: Engineering Science

ES 124 - 4
Course ID: 008229 **2015-01-19**

Engineering Science Elective

A college level course for which there is no comparable Clarkson course. Used for transfer credit only.

Components: Independent Study

Attributes: Transfer Credit Only

Req. Designation: Technology

ES 224 - 4
Course ID: 008230 **2015-01-19**

Engineering Science Elective

A college level course for which there is no comparable Clarkson course. Used for transfer credit only. This course may be used as a Professional Elective.

Components: Independent Study

Attributes: Transfer Credit Only

** Req. Designation:** Technology

ES 41
Course ID: 011738 **2015-01-23**

Spatial Thinking Skills

This course develops 3D spatial visualization skills through tutorials and exercises. Coverage includes (as time permits): surfaces and solids of revolution, combining solid objects, isometric drawings and coded plans, orthographic drawings, orthographic projections and inclined and curved surfaces, flat patterns, rotation of objects about axes, object reflections and symmetry, and cutting planes and cross sections.

Components: Lecture

Attributes: Given When Needed

Req. Designation: Technology

ES 100(2)
Course ID: 008232 **2014-11-20**

Introduction to Engineering Use of the Computer

(Cross-listed with HP 103) Introduction to computer programming using equation solving software applied to engineering problems.

Components: Laboratory, Lecture

Course Equivalents: HP 103

Attributes: Offered Spring Term

Req. Designation: Technology

ES 110(3)
Course ID: 009795 **2015-08-26**

Engineering and Society

Engineers apply scientific knowledge and principles, and use the engineering design process to develop technology. While engineers frequently develop solutions to problems in controlled environments, the products that are developed are used by 'real people' in the 'real world.' Thus, it is essential that engineers have an understanding of the interactions between engineering, technology development, and society. This course will highlight the diverse applications of engineering and technological skills in addition to ethical and other concerns about the societal consequences of technological developments. Students will gain an understanding of ways that conceptual models can be used to frame how both science and technology shape society and how society can shape science and technology. Students will be introduced to the engineering design process and use it to solve a simple engineering problem. Then, through case study, they will apply the societal models and gain an understanding of how the design process can be used to solve complex,

Components: Lecture

Attributes: One communication unit, Science, Technology and Society, Offered Each Term

Requirement Group: Corequisites: MA 180 or equivalent. Open to all majors - engineering majors must be first year student

Req. Designation: Technology

ES 147(0)
Course ID: 011288 **2017-01-13**

First Year Research Experience

The student conducts research under the guidance of a research advisor. Appropriate for paid or voluntary non-credit bearing research experiences. By permission of research advisor or academic advisor only. Pass/no credit only.

Components: Research

Attributes: Offered Each Term

Req. Designation: Technology
ES 220 (3)
Course ID: 008236
2015-02-09

Statics
Fundamental concepts of the statics of rigid bodies using a vector analysis approach; force systems, analysis of simple structures, centroids and centers of gravity, free body diagrams, equilibrium, friction and moments of inertia.
Components: Lecture, Tutorial
Attributes: Offered Fall, Spring, and Summer
Requirement Group: Prerequisites: MA131 and PH131
Req. Designation: Technology

ES 222 (3)
Course ID: 008238
2015-09-11

Strength of Materials
Elementary analysis of the strength and deformation of deformable bodies; stress and strain at a point, Mohr's circle, axial loads, flexure, torsion, deflections and column action. Introduction to design concepts.
Components: Lecture, Tutorial
Attributes: Offered Fall, Spring, and Summer
Requirement Group: Prerequisites: ES220 or consent of instructor
Req. Designation: Technology

ES 223 (3)
Course ID: 008239
2022-04-06

Rigid Body Dynamics
Introduction to the basic principles of Newtonian mechanics. Topics covered include kinematics of particles; Newton's laws of motion, energy and momentum methods; systems of particles; planar kinematics of rigid bodies; planar dynamics of rigid bodies; forces and acceleration energy and momentum methods. Special topics such as non-inertial reference frames may be introduced.
Components: Lecture
Requirement Group: Prerequisites: ES220
Req. Designation: Technology

ES 238 (3)
Course ID: 011252
2020-11-05

Introduction to Energy Systems
The focus of this course is to introduce fundamental energy principles and discuss various energy resources and options currently available, including the supply and availability as well as the demand for these energy resources. Primary consideration is given to current strategies for energy production, conversion and use, with a brief overview of renewable technologies. The course topics are presented within a social, economic, political, and environmental context to provide a comprehensive understanding of the role of energy in our current and future society. Students examine the sustainability of our current and future systems of energy resource consumption, including U.S. and global energy consumption rates as well as societal and environmental impacts. Issues such as energy efficiency, conservation, systems analysis and life cycle analysis, and the environmental and economic consequences of various sources, will be discussed. Finally, implications and relationships between global climate change and growing global energy use in the 21st century are examined.
Components: Lecture
Attributes: Science, Technology and Society, Offered Spring Term
Requirement Group: Prerequisite: ES110 OR Corequisite: ES110
Req. Designation: Technology

ES 241 (3)
Course ID: 012860
2018-01-29

Solid-State Material Systems for Advanced Technologies
Topics include: Crystal structure of solid-state materials system, structural stability of materials, electronic properties of materials, optoelectronic properties of materials, engineered materials, metamaterials, low-dimensional materials, introduction of solid-state materials-based device technologies.
Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: PH131, CM103 or CM131, and MA131 Coerequisites: MA132
Req. Designation: Technology

ES 243 (1 - 4)
Course ID: 011282
2017-01-20

Introductory Undergraduate Research I
The student participates in the research process under the guidance of a faculty research advisor. May include some independent work. For 1-2 credits, student prepare a short paper or report. For 3-4 credits, student prepares a paper and gives an oral presentation. By permission of research advisor only.
Components: Research
Attributes: Offered Each Term
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Year</th>
<th>Instructor Consent Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES 244(1-4)</td>
<td>011283</td>
<td>2017</td>
<td>Yes</td>
</tr>
<tr>
<td>Introductory Undergraduate Research II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Continuation of ES 243. By permission of research advisor only.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components: Research</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes: Offered Each Term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Year</th>
<th>Instructor Consent Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES 247(0)</td>
<td>011289</td>
<td>2017</td>
<td>Yes</td>
</tr>
<tr>
<td>Sophomore Research Experience</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The student conducts research under the guidance of a research advisor. Appropriate for paid or voluntary non-credit bearing research experiences. By permission of research advisor or academic advisor only. Pass/no credit only.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components: Research</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes: Offered Each Term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Year</th>
<th>Instructor Consent Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES 250(3)</td>
<td>008240</td>
<td>2016</td>
<td>No</td>
</tr>
<tr>
<td>Electrical Science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network concepts. DC circuits: mesh and node equations, network theorems, operational amplifiers. Complex numbers, effective values, sinusoids and phasors. AC circuits: phasor diagrams, power. Time domain solution of first order circuits.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components: Lecture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes: Offered Each Term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Year</th>
<th>Instructor Consent Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES 260(3)</td>
<td>008241</td>
<td>2015</td>
<td>Yes</td>
</tr>
<tr>
<td>Materials Science and Engineering I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The fundamentals of the interactions between structure, processing, properties and applications of solid metals, non-metallic elements, inorganic compounds, and polymers. Topics include atomic bonding, structure, imperfections, diffusion, mechanical properties, deformation and strengthening mechanisms, failure. Possible additional topics include phase diagrams, phase transformations, electrical properties, processing, composites, corrosion, thermal properties, and environmental consideration.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components: Lecture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes: Offered Each Term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requirement Group: Corequisites: MA232, and PH132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Year</th>
<th>Instructor Consent Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES 330(3)</td>
<td>008246</td>
<td>2015</td>
<td>Yes</td>
</tr>
<tr>
<td>Fluid Mechanics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic principles of fluid mechanics. Topics include statics, forces on plane and curve surfaces, kinematics of fluid motion, integral and differential representation of conservation of mass, balance of linear and angular momenta, the first Law of Thermodynamics, Bernoulli's equation, dimensional analysis, and elementary viscous flow. Frictional losses, simple pipeline analysis and steady channel flow are covered. Understanding of the physical phenomena is stressed and vector notation is used wherever suitable.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components: Lecture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes: Offered Fall, Spring, and Summer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requirement Group: Prerequisites: MA232 or MA231 and ES220.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Year</th>
<th>Instructor Consent Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES 340(3)</td>
<td>008247</td>
<td>2015</td>
<td>Yes</td>
</tr>
<tr>
<td>Thermodynamics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The fundamental concepts of thermodynamics and their application to pure substances. Topics include: properties of pure substances; work, heat, energy and the First Law of Thermodynamics; technique of First Law analysis; disorder, entropy and the Second Law of Thermodynamics; technique of Second Law analysis.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components: Lecture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes: Offered Fall, Spring, and Summer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requirement Group: Prerequisites: MA231 and PH132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Junior Research Experience
The student conducts research under the guidance of a research advisor. Appropriate for paid or voluntary non-credit bearing research experiences. By permission of research advisor or academic advisor only. Pass/no credit only.

- **Components:** Research
- **Attributes:** Offered Each Term
- **Req. Designation:** Technology

Materials Science and Engineering II
Continuation of the study of the science and engineering of materials. Emphasis is placed on the processing of materials to achieve optimum engineering properties. Topics include: heat treatment of metals and ceramics to yield strength and toughness at high temperatures; formation of composite materials (directionally solidified superalloys, transformation strengthened ceramics, fiber reinforced polymers); processing of amorphous materials for optical applications (lens, fibers, lasers); processing of magnetic materials for both hard and soft applications; and, protection of materials in corrosive environments.

- **Components:** Lecture
- **Attributes:** Offered Spring Term
- **Requirement Group:** Prerequisites: ES260.
- **Req. Designation:** Technology

Fine Particle Technology
An introduction to the characterization, processing and applications of ceramic, metal and polymer fine particles and composites. Analysis of property-structure relationships. Formation of novel bulk materials from fine powders through sintering.

- **Components:** Lecture
- **Attributes:** Offered Fall Term
- **Requirement Group:** Prerequisite: CM104 or CM132.
- **Req. Designation:** Technology

Directed Study
Special reading or laboratory study of a specific problem or subject area under the direction of a member of the faculty.

- **Components:** Independent Study
- **Attributes:** Given When Needed
- **Req. Designation:** Technology
Special Topics: Biomechanics

This course will examine the application of engineering principles to biologic systems. The structure and function of biologic tissue will be examined in the context of engineering mechanics. Emphasis will be placed on the biomechanics of human movement, including the basic principles of orthopedic biomechanics. Students will develop the skills necessary to explore biomechanics in the contemporary scientific literature and will write a term paper on a biomechanics topic of their choice.

Components: Discussion, Lecture

Course Equivalents: ME 380

Requirement Group: Prerequisites: PH131 and MA132

Req. Designation: Technology
Numerical and Engineering Computing

Topical coverage includes numerical methods for solving single nonlinear equations, matrix computations, systems of nonlinear equations, ordinary differential equations, partial differential equations, differential algebraic equations, and much more.

Components: Lecture
Attributes: Given When Needed
Requirement Group: Prerequisite: ES100 or consent of the instructor.
Req. Designation: Technology
Biomedical Engineering Fundamentals

This interdisciplinary course will introduce students to basic principles of biomedical rehabilitation engineering. The course will present principles of disability and the diverse roles of engineering in medicine and rehabilitation. Students will use engineering methods to study anatomical and physiological systems including applications in rehabilitation engineering, bioinstrumentation, biosignal and image processing, biomechanics, and biomaterials.

Components:
- Lecture

Course Equivalents: BY 440, BR 400, BR 500, BY 540

Requirement Group: Prerequisites: MA131/132, PH131/132, junior or senior standing.

Req. Designation: Technology
Signal Processing and Applications
This project-driven course involves qualitative and quantitative descriptions of DSP algorithms, software and applications. The class covers applications in engineering, computing, music, and the arts, with MATLAB, Java and mobile simulations.

Components: Lecture
Course Equivalents: ES 522, EE 422
Attributes: Offered Even Falls
Requirement Group: Prerequisites: MA132 or equivalent, or instructor approval.
Req. Designation: Technology
Risk Analysis

Risk assessment entails the evaluation of the hazardous properties of substances, the extent of human exposure to them and the characterization of resulting risk. It is a systematic approach to organizing and analyzing the scientific knowledge regarding potentially hazardous activities or substances. Variability and uncertainty are used to estimate the level of confidence in the risk assessment. The general approach to risk assessment including the use of default assumptions and uncertainty analysis will be presented along with illustrative examples. Graduate Students will be required to do an additional work at the graduate level.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Equivalents:</td>
<td>EV 532</td>
</tr>
<tr>
<td>Attributes:</td>
<td>1.5 Design Credits, One communication unit, Offered Spring Term</td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisites: CM131 or CM103.</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>
Global Climate Change: Science, Engineering & Policy

The primary objective of the course is to provide the necessary background that will permit undergraduate students to understand and accurately describe the workings of the Earth’s climate system, the interactions between the atmosphere, ocean, and climate, and human’s involvement in altering these processes. The course is broken into four primary components: earth science, energy, policy, and programming. The highly quantitative course will use project-based experiences to allow each student an opportunity to complete a data acquisition/modeling project of their own design to show correlations between human activities, current atmospheric concentrations and resulting ecosystem change. Students will use computational programming tools (Matlab) in combination with mapping tools (Google Maps API) to quantify, analyze, and display geographical variations of integrated and averaged values of quantities studied.

Prerequisites: Quantitative and modeling skills (Matlab, Excel) are required, statistics is recommended.

Components: Lecture
Attributes: Contemporary and Global Issues, Science, Technology and Society, University Course, Offered Odd Springs

Req. Designation: Technology
ES 438 (3)
Alternate Energy Systems

[Cross-listed with EE 438] The basic technology of emerging renewable or non-carbon based energy sources will be considered, and contrasted with traditional sources of energy. Topics will include photovoltaic, wind and others. The impacts of energy storage and electrified transportation will be discussed. The capability of these technologies will be assessed, and barriers to implementation will be explored. The role of the electric power grid in enabling alternate energy technologies will be covered.

Components: Lecture
Course Equivalents: EE 538, EE 438
Attributes: One Design Credit, Offered Even Springs
Requirement Group: Prerequisite: ES250 or permission of the instructor.

ES 443 (1 - 4)
Undergraduate Research I

The student develops and conducts a self-contained independent research project under the guidance from a faculty research advisor. For 1-2 credits, student prepares a short paper or report. For 3-4 credits, student prepares a paper and gives an oral presentation. Junior standing required. By permission of research advisor only.

Components: Research
Attributes: Offered Each Term
 Req. Designation: Technology

ES 444 (1 - 4)
Undergraduate Research II

A Continuation of ES 443. Junior standing required. By permission of research advisor only.

Components: Research
Attributes: Offered Each Term
 Req. Designation: Technology

ES 445 (1 - 4)
Undergraduate Research III

A Continuation of ES 444. Junior standing required. By permission of research advisor only.

Components: Independent Study
Attributes: Offered Each Term
 Req. Designation: Technology

ES 446 (1 - 4)
Undergraduate Research IV

A Continuation of ES 445. Junior standing required. By permission of research advisor only.

Components: Research
Attributes: Offered Each Term
 Req. Designation: Technology

ES 447 (0)
Senior Research Experience

The student conducts research under the guidance of a research advisor. Appropriate for paid or voluntary non-credit bearing research experiences. By permission of research advisor or academic advisor only. Pass/no credit only.

Components: Research
Attributes: Offered Each Term
 Req. Designation: Technology
ES 452(3) Course ID:011046 2021-08-06
Biomaterials and Biomedical Engineering Applications
This course will examine the biomaterials, biomolecular engineering, and tissue engineering aspects of biomedical engineering. Topics covered will include metallic, ceramic, and polymeric biomaterials; manufacturing technologies; sterilization and degradation; the characterization of bulk and surface properties; mechanical and electrical properties of tissues; the interactions between biomaterials and the physiological environment; orthopedic, neural, and cardiovascular biomaterials; and biomaterials for drug delivery and medical imaging.
Components: Lecture
Requirement Group: Requirement: Junior or Senior Standing
Req. Designation: Technology

ES 459(3) Course ID:012965 2021-11-08
Electrochemical Processes for Sustainability
[Cross-listed with ES559] This course introduces the fundamentals of electrochemistry and applications of electrochemical technologies for sustainability. General theory, electroanalytical techniques, and interfacial structure are discussed. These principles are then used to describe and quantify the controlling features in electrochemical separations, electrochemical water treatment, and electrochemical energy systems.
Attributes: Offered Even Springs
Requirement Group: Prerequisites: CM132 (or CM104) and Corequisites: ES340 (CH260 or CM371) and junior or senior standing
Req. Designation: Technology

ES 464(3) Course ID:008268 2020-03-02
Corrosion of Metals
Components: Lecture
Course Equivalents: ES 564
Attributes: Offered Fall Term
Requirement Group: Prerequisite: CM132 (or CM104), and ES 260
Req. Designation: Technology
Engineering - School of Engineering - Subject: Engineering Science

ES 485(3) Course ID:011672 2014-11-20
Neural Engineering
(Cross-listed with EE 485, BY 485) This course applies engineering principles to the study of neuroscience and to the design of devices or techniques intended to replace missing or augment existing functions such as seeing, hearing, speaking, and walking. The course provides a detailed overview of sensorimotor systems, neurophysiology, neuroanatomy, neuropathology and clinical neurology. The class sequences through the various sensory and movement systems, providing a quantitative basis for how the nervous systems works for these systems, for how it dysfunctions, for the disability produced, and finally for how function can be restored by neuroprostheses. Students will prepare and present a paper on a neural engineering topic.

Components:
Course Equivalents:
EE 585, EE 485, BY 485

Requirement Group:
Prerequisites: MA132 and PH132 or PH142.

ES 499(0) Course ID:011237 2022-02-11 Instructor Consent Required
Professional Experience for Engineering Majors
This course number is used to matriculate the Professional Experience requirement of the Clarkson Common Experience curriculum. The student must participate in a project-based professional experience such as a co-op, internship, directed research, significant responsibility in an appropriate team project, or a community project clearly related to the student's professional goals. Enrollment is restricted to engineering majors.

Prerequisite: Pre-approval (using the PRE-APPROVAL WORKSHEET for the PROFESSIONAL EXPERIENCE Requirement in the Wallace H. Coulter School of Engineering.)

Components:
Attributes:
Offered Each Term

ES 500(3) Course ID:010658 2021-04-02
Numerical and Engineering Computing

Components:
Same As Offering:
Attributes:
Offered Fall Term

Req. Designation:
Technology
ES 500 (3)
Course ID: 010658
2021-04-02

Numerical and Engineering Computing

Components: Lecture
Same As Offering: ES 500
Attributes: Offered Fall Term
Req. Designation: Technology

ES 510 (3)
Course ID: 008277
2021-08-17

Strategic Project Management
[Cross-listed with OM 680, OM 681] A project is a one-time or infrequently occurring operation with a unique goal, a limited lifespan and limited resources. This course will focus on project management from a decision-making perspective and how projects can be used to implement organizational strategy. The course follows the project life cycle model from project initiation to implementation to termination. Topics covered include such things as project scope development, project selection, organizational strategy, leadership, team building, planning, conflict resolution, budgeting, resource allocation, information management, control, auditing, and termination procedures. Computer applications such as MS Project, case studies, project simulations and student project teams will be an integral part of the course. This course satisfies the educational prerequisite for the Project Management Institute’s (PMI) Certified Associate in Project Management (CAPM) and Project Management Professional (PMP) certifications.

Components: Lecture
Course Equivalents: OM 680, OM 681
Attributes: Offered Fall Term
Req. Designation: Technology
Signal Processing and Applications
This project-driven course involves qualitative and quantitative descriptions of DSP algorithms, software, and applications. The class covers applications in engineering, computing, music, and the arts, with MATLAB, Java, and mobile simulations. Prerequisites: EE321 Signals and Systems, or equivalent, or instructor approval.

Components: Lecture
Course Equivalents: ES 422, EE 422
Attributes: Offered Even Falls
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES 552(3)</td>
<td>Biomaterials and Biomedical Engineering Applications</td>
<td>This course will examine the biomaterials, biomolecular engineering, and tissue engineering aspects of biomedical engineering. Topics covered will include metallic, ceramic, and polymeric biomaterials; manufacturing technologies; sterilization and degradation; the characterization of bulk and surface properties; mechanical and electrical properties of tissues; the interactions between biomaterials and the physiological environment; orthopedic, neural, and cardiovascular biomaterials; and biomaterials for drug delivery and medical imaging. Students enrolled in ES552 will be expected to complete extra assignments in addition to those given to ES452 students.</td>
</tr>
<tr>
<td></td>
<td>Components:</td>
<td>Lecture</td>
</tr>
<tr>
<td></td>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
<tr>
<td></td>
<td>Lectures</td>
<td></td>
</tr>
<tr>
<td>ES 559(3)</td>
<td>Electrochemical Processes for Sustainability</td>
<td>[Cross-listed with ES459] This course introduces the fundamentals of electrochemistry and applications of electrochemical technologies for sustainability. General theory, electroanalytical techniques, and interfacial structure are discussed. These principles are then used to describe and quantify the controlling features in electrochemical separations, electrochemical water treatment, and electrochemical energy systems. The topics are the same as ES459 but there are additional assignments required of graduate students.</td>
</tr>
<tr>
<td></td>
<td>Components:</td>
<td>Lecture</td>
</tr>
<tr>
<td></td>
<td>Attributes:</td>
<td>Offered Even Springs</td>
</tr>
<tr>
<td></td>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
<tr>
<td></td>
<td>Lectures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Components:</td>
<td>Lecture</td>
</tr>
<tr>
<td></td>
<td>Course Equivalents:</td>
<td>ES 464</td>
</tr>
<tr>
<td></td>
<td>Attributes:</td>
<td>Offered Fall Term</td>
</tr>
<tr>
<td></td>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>
Sustainable Nanotechnology

The goal of this course is to provide graduate students and advanced undergraduates with a modern view of current and emerging research in nanotechnology. Topics will include: fundamental nanoscale properties and applications, green manufacturing and assembly in functional devices, interaction of nanomaterials with biological systems, the physical and chemical phenomena at nano-bio interfaces, fate, transport and transformation of engineered nanomaterials, environmental and health impact, nanometrology, nanotoxicology and hazard identification of nano-based products. Development of analytical methods and characterization tools for assessing nanoscale properties and materials will also be discussed. Students will be exposed to interdisciplinary topics and an integrated training bridging material and environmental sciences with biology and analytical chemistry. Students will be able to demonstrate a basic awareness of risks and benefits of emerging technologies and evaluate overall environmental and societal components.

Course ID: 012127
Course Equivalents: CM 475, CM 575, MSE 575
Attributes: Offered Spring Term
Req. Designation: Technology
Foundations of Teaching College Engineering Courses

The course introduces students to the foundations of engineering education. It couples pedagogical theory and best practices with practical approaches to provide a basis for teaching college level engineering courses. Topics to be covered include: theories of student learning, educational research and best practices, design of courses, delivery of course material, and developing, delivering, and assessing college level engineering courses.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Offered Fall Term</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

Selected Topics in Engineering Science

An advanced graduate course in the field of engineering sciences. Topics of special interest will be selected for current needs. A description of the course content in any particular term will be announced in advance.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Given When Needed</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

Applications of Synchrotron and Electron Based Techniques

The purpose of the course is to familiarize all students with the x-ray and electron based experimental techniques available at Brookhaven National Lab and other similar facilities. Students will be cognizant of the applications of these cutting edge facilities, and well positioned to use them in their own research. This course is suitable for graduate students, postdocs, and advanced undergrads in physical sciences and engineering, as well as students in biological, environmental, and chemical sciences who may have the interest to learn more about the techniques they may use for their research.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Equivalents:</td>
<td>PH 587, CM 487, CM 587, PH 487, MSE 587</td>
</tr>
<tr>
<td>Attributes:</td>
<td>Offered Spring Term</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>
Mechanics of Fracture I
A study of the fundamentals of fracture mechanics is presented. Linear elastic fracture mechanics (LEFM):
elastic solutions, energy balance approach, LEFM testing. Elastic-plastic fracture mechanics (EPFM): EPFM
testing. Concepts for crack growth: fatigue crack growth, dynamic crack growth and arrest. Mechanism and
mechanics of fracture in metallic materials, polymers, ice, composites.
Prerequisites: ES222, CE/ME554, CE/ME551, or consent of instructor.
Components:
 Lecture
Req. Designation: Technology
Engineering - School of Engineering - Subject: Engineering Science

ES 610(1 - 2)
Course ID: 008289
2015-02-03
Engineering Science Seminar
Students, staff and visiting lecturers present research results and topics of current interest.
Components: Seminar
Attributes: Offered Each Term
Req. Designation: Technology

ES 612(1 - 4)
Course ID: 008291
2017-08-27
Directed Study in Engineering Science
For graduate students with baccalaureate degree in an engineering field.
Components: Independent Study
Attributes: Given When Needed
Req. Designation: Technology

ES 615(1 - 15)
Course ID: 008294
2015-02-03
Thesis, Dissertation Credits
Analytical or experimental studies in interdisciplinary engineering science under the direction of a faculty adviser. Credit for this work is given when the requirements for the degree are completed including the presentation of a thesis or dissertation as appropriate to the degree program.
Components: Thesis Research
Attributes: Offered Each Term
Req. Designation: Technology

ES 999(1 - 10)
Course ID: 011130
2015-01-19
Special Topics in Engineering Science
Used for graduate transfer credit for which Clarkson does not have an equivalent course number.
Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Date</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV 1(2 - 4)</td>
<td>008298</td>
<td>2022-01-26</td>
<td>Environmental Elective</td>
<td>A college level course for which there is no comparable Clarkson course. Used for transfer credit only. Components: Independent Study, Attributes: Transfer Credit Only, Req. Designation: Technology</td>
</tr>
<tr>
<td>EV 2(2 - 4)</td>
<td>008299</td>
<td>2022-01-26</td>
<td>Environmental Elective</td>
<td>A college level course for which there is no comparable Clarkson course. Used for transfer credit only. Components: Independent Study, Attributes: Transfer Credit Only, Req. Designation: Technology</td>
</tr>
<tr>
<td>EV 100(1)</td>
<td>008300</td>
<td>2022-01-26</td>
<td>Introduction to Environmental Science & Policy Professions</td>
<td>The purpose of this course is to introduce students to environmental science and policy issues. The course is an overview of local and global issues relating to safety, health, environmental science and policy, and industrial hygiene concerns in the community and the workplace. Components: Lecture, Attributes: Offered Fall Term, Req. Designation: Technology</td>
</tr>
<tr>
<td>EV 280(3)</td>
<td>009806</td>
<td>2022-03-08</td>
<td>Environmental Science</td>
<td>This course will investigate the key concepts and principles of environmental science, emphasizing human impacts to the earth. The themes will include, energy flows through nature, and biogeochemical systems and how they have been perturbed by human activities. Technology and population growth have enabled humans to increase both the rate and scale of their impact on the environment. Quantitative analysis or air, soil, and water quality on local, regional, and global scales will be a significant component of the course. Emerging principles in environment science, including sustainability, industrial ecology, risk assessment, and the precautionary principle will be introduced. The course will prepare students to qualitatively and quantitatively analyze fluid and contaminant flow in varied biological and geologic systems. Components: Lecture, Course Equivalents: BY 280, Attributes: Offered Fall Term, Requirement Group: Prerequisite: sophomore standing, CM131/CM132 or CM103/CM104, or consent of the instructor, Req. Designation: Technology</td>
</tr>
<tr>
<td>EV 305(3)</td>
<td>008301</td>
<td>2022-03-08</td>
<td>Sustainability & the Environment</td>
<td>This course is an introduction to sustainability and the environment. Students are expected to harness initial knowledge from science, engineering, and policy courses to collectively address environmental problems and issues on campus, or in the local community. Class time is split between lectures on sustainability and the environment, and a projects (real-world) on a local community or campus environmental issue. In addition, EV 305 allows for direct review and instructor on the quality of the written and oral communication by the students. Written and oral progress reports will be required throughout the semester by each student/group. The papers and presentations are intended to be professional format to motivate. Components: Lecture, Attributes: One communication unit, Offered Odd Falls, Requirement Group: Prerequisite: At least Sophomore standing, Req. Designation: Technology</td>
</tr>
</tbody>
</table>
EV 312(3)
Course ID: 011659
2022-03-08
Instructor Consent Required

Adirondack Ecology and Environmental Science

This course introduces ecological and environmental science concepts relevant for understanding the structure and function of terrestrial, aquatic, and human systems in the Adirondack Park. Students will learn to identify important plant and animal species representative of the Adirondack Mountains, and learn major features of ecological systems in the Park. The course will also provide students an assessment of human impacts on the ecology of the Adirondack Park. Enrollment is limited to those students participating in the Adirondack Semester Program.

Components: Laboratory, Lecture
Course Equivalents: BY 312
Attributes: Offered Fall Term
Req. Designation: Technology

EV 313(3)
Course ID: 011377
2022-01-26

Biogeochemical Earth Systems Science

This course will investigate the key concepts and principles of environmental science emphasizing the earth’s biogeochemical cycles and how they have been perturbed by human activities. Quantitative analysis or air, soil and water quality on local, regional and global scales will be a significant component of the course. Emerging principles in environmental science, including sustainability, industrial ecology, risk assessment and the precautionary principle will be introduced. In addition to the quantitative aspects, the course will consider the historical, social, and political contexts in which the practice of environmental science takes place.

Components: Lecture
Course Equivalents: BY 313, CE 313
Attributes: Offered Spring Term
Requirement Group: Prerequisites: CM132 (or CM104), or consent of the instructor
Req. Designation: Technology

EV 314(3)
Course ID: 011660
2022-03-08
Instructor Consent Required

Adirondack Integrated Research Project

This problem-based learning course will task students to analyze and suggest solutions to complex problems relevant to the economic, social, and environmental welfare of the Adirondack Park. The course is intended to reinforce what students have learned in other Adirondack courses. Enrollment is limited to students participating in the Adirondack Semester Program.

Components: Research
Attributes: One Design Credit, Two communication units, Contemporary and Global Issues, Science, Technology and Society, University Course, Offered Fall Term
Req. Designation: Technology

EV 316(1 - 3)
Course ID: 011640
2022-01-26
Instructor Consent Required

Adirondack Environmental Science

A brief history of air, soil, and water pollution in the Adirondacks followed by an investigation into the major sources and concerns of pollution in the region. Through lectures and laboratory experiences the following areas will be studied: air, water and soil quality parameters and their measurements; material and energy balances; water, air and soil chemistry concepts; toxicology and risk assessment.

Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

EV 320(3)
Course ID: 011642
2022-03-08
Instructor Consent Required

Social and Political Issues in the Adirondacks

The historical, social, political, and environmental factors contributing to the fabric of the Adirondack Park is an evolving social experiment. The course readings will focus upon the New York State constitutional provisions that engendered the park, the policies that shaped the park, along with the political actions that influence the park today. The Adirondack State Park is extraordinary for its history and because it is a place where human residents live and recreate in sustainable ways that conserve resources and 'forever wild' regions of the park.

Enrollment is limited to those students participating in the Adirondack Semester Program.

Components: Lecture
Course Equivalents: SS 320
Attributes: Two communication units, Cultures and Societies, Offered Fall Term
Req. Designation: Technology
Inst for a Sustainable Environ – Inst for a Sustainable Environ – Subject: Environmental Science & Policy

EV 322 (3)

Adirondack Park

To understand a place, one must often understand the views of nature and the environment as seen by writers and essayists. Students will explore the Adirondacks through literature while experiencing the lakes, rivers, streams, and mountains. The readings, discussions, and written assignments will explore the aesthetics, the social and political climate, and the prevailing attitudes toward the environment that helped create the Adirondack Park. In addition, the course will provide students with an opportunity to participate in seasonal outdoor activities to learn how recreational activities have impacted the social, cultural, economic, and physical aspects of the Park.

Enrollment is limited to those students participating in the Adirondack Semester Program.

Components:
- Lecture

Attributes:
- One communication unit, Cultures and Societies, Imaginative Arts, University Course,
- Offered Fall Term

Req. Designation: Technology

Course ID: 011643

Instructor Consent Required

2022-03-08

EV 330 (3)

Great Lakes Water Protection

[Cross-listed with BY 330] The Laurentian Great Lakes contain 20% of the world’s surface fresh water and serve both municipal supply and waste disposal services for over 30 million residents in the United States and Canada. Technological advances have controlled the outflow of the Great Lakes at the St. Lawrence River and this has brought with it social benefits and environmental costs. The United States and Canada share the management of this resource and have shared notable success controlling environmental consequences of development yet are faced with emerging issues. The LGL/SLR system will be examined from a multidisciplinary, multinatinal perspective to illustrate that a shared resource can be maintained. Students will be able to understand the forces (geomorphic, biological, chemical, social, economic, and political) that have shaped and impacted a globally significant resource.

Components:
- Lecture

Course Equivalents: BY 330

Attributes:
- One communication unit, Contemporary and Global Issues, Science, Technology and Society, University Course, Offered Spring Term

Requirement Group:
- Prerequisite: At least sophomore standing.

Req. Designation: Technology

Course ID: 011413

Instructor Consent Required

2022-01-26

EV 390 (3)

Sustainability Project Experience

This course prepares students for and includes a two-week intensive work/study experience at a business with a stated sustainability focus. Students will study the nature of the business and their current sustainability practices through structured class time prior to traveling. Students successfully completing this course will gain a better perspective on the technology, business, cultural and regulatory constraints and opportunities that enable the enterprise to operate in a sustainable fashion. Interdisciplinary teams of students will identify additional possible projects to creatively overcome complex, real-world sustainability challenges for the business, and complete a preliminary feasibility study that includes interdependent technical, economic and environmental considerations. Project ideas and progress will be communicated through oral presentations and progress reports throughout the semester, culminating in a presentation and report to the business staff.

Components:
- Lecture

Attributes:
- Three Design Credits, Two communication units, Science, Technology and Society, Offered Spring Term

Requirement Group:
- Prerequisites: At least sophomore standing & permission of the instructor

Req. Designation: Technology

Course ID: 011676

Instructor Consent Required

2022-01-26

EV 400 (1 - 3)

Environmental Science Capstone

This course is part one of a two course sequence with EV 401 that acts as the cornerstone of the Environmental Science and Policy and Environmental Health Science Programs. Each student will conduct a research project as an individual or in a group that involves several components of the scientific process. Students will be given lectures on research methods and will be required to have weekly meetings with a capstone advisor. At these meetings, work that has been completed will be evaluated and subsequent goals will be planned and established. In addition, several drafts of a final Capstone report will be written throughout the semester. The final paper is meant to be similar to the process of writing a thesis, both in scope and quality. The final presentation of this course is designed to be the culmination of a student’s experience in the Environmental Science & Policy and Environmental Health Science Program, and the projects will be presented at the SURE conference or a similar type of forum.

Components:
- Lecture

Attributes:
- One communication unit, Offered Fall and Spring

Requirement Group:
- Prerequisites: Senior status in EHS or ES&P or consent of the instructor

Req. Designation: Technology

Course ID: 008308

Instructor Consent Required

2022-03-08
EV 401 (1 - 3)
Course ID: 010966
2022-03-08
Capstone Project (continuation)
This senior level course is the conclusion of the Capstone Project. The course is for students who have taken EV400 and will be finishing their Capstone Project. The course will conclude with a final paper and presentation.
Components: Independent Study
Attributes: Offered Fall and Spring
Requirement Group: Prerequisite: EV400 or consent of the instructor.
Req. Designation: Technology

EV 490 (0 - 3)
Course ID: 008312
2022-03-08
Internship/Co-op
Students who obtain a internship/co-op position should register for this course to document their professional experience on their transcript. During the fall semester, spring semester, or summer, a student must complete a professional experience that is not necessarily directly environmental science or environmental health science related, but clearly meets the professional goals of the student and the Clarkson university-wide requirements for a professional experience. The experience must involve a minimum of 120 hours of training and work, and must be pre-approved by the student's faculty advisor or director of the program. The student can obtain credit for the work experience by registering for this course the semester following the position, then writing a paper 20 page paper and doing a formal presentation. The amount of credit will be commiserate with the amount of work. Students will be required to keep a journal of work activities and submit the journal entries to the EHS program director upon completion of the professional experience.
Components: Independent Study
Attributes: Offered Fall and Spring
Requirement Group: Prerequisite: Open to EHS or ES&P major or minor only, or by consent of the program director
Req. Designation: Technology

EV 492 (0 - 3)
Course ID: 010330
2022-03-08
Internship/Co-op
Students who obtain a (summer) internship/co-op position may obtain credit for the work experience by registering for this course the semester following the position. Students will be required to keep a daily journal of work activities and submit the journal entries to the ES&P Program Director every two weeks. During the semester following the internship/co-op, a 10-page report on some aspect of their work experience and a 30 minute presentation will be required.
Components: Independent Study
Attributes: Offered Fall Term
Requirement Group: Prerequisite: Open to EHS or ES&P major or minor only, or by consent of the program director
Req. Designation: Technology

EV 494 (1 - 3)
Course ID: 010352
2022-03-08
Directed Research for Undergraduates
A research project will be completed; research projects may include laboratory projects, literature research, or individual study of environmental science, environmental engineering, and/or environmental policy topics not available in other Clarkson courses.
Components: Research
Attributes: Offered Fall and Spring
Requirement Group: Prerequisite: Open to EHS or ES&P major or minor only, or by consent of the program director
Req. Designation: Technology

EV 495 (1 - 3)
Course ID: 011304
2022-03-08
Directed Research for Undergraduates
A research project will be completed; research projects may include laboratory projects, literature research, or individual study of environmental science, environmental engineering, and/or environmental policy topics not available in other Clarkson courses.
Components: Research
Attributes: Offered Fall and Spring
Requirement Group: Prerequisite: Open to EHS or ES&P major or minor only, or by consent of the program director
Req. Designation: Technology

EV 496 (1 - 3)
Course ID: 011305
2022-03-08
Directed Research for Undergraduates
A research project will be completed; research projects may include laboratory projects, literature research, or individual study of environmental science, environmental engineering, and/or environmental policy topics not available in other Clarkson courses.
Components: Research
Attributes: Offered Spring Term
Requirement Group: Prerequisite: Open to EHS or ES&P major or minor only, or by consent of the program director
Req. Designation: Technology
Applications in Geospatial Analytics, Science, and Engineering

[Cross-listed with CE 502, SC 502] This course will use techniques in geospatial analytics, science, and engineering to address applied challenges in various contextual situations. Geotagging, network analysis, spatial visualization, geospatial data manipulation, cartographic presentations, and other similar methods will be studied and applied to real-world or research applications. Students will develop a set of tools that enable completion of projects in the major field using geospatial capabilities.

Prerequisites: Graduate standing, CE 301, or consent of the instructor

Components: Laboratory, Lecture

Course Equivalents: CE 502, SC 502

Attributes: Offered Spring Term

Req. Designation: Technology
EV 532(3)
Course ID: 008278
2022-01-26
Risk Analysis
Risk assessment entails the evaluation of the hazardous properties of substances, the extent of human exposure to them and the characterization of resulting risk. It is a systematic approach to organizing and analyzing the scientific knowledge regarding potentially hazardous activities or substances. Variability and uncertainty are used to estimate the level of confidence in the risk assessment. The general approach to risk assessment including the use of default assumptions and uncertainty analysis will be presented along with illustrative examples.

Prerequisites: graduate standing or senior with >B average.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Equivalents:</td>
<td>ES 432</td>
</tr>
<tr>
<td>Attributes:</td>
<td>Offered Spring Term</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

EV 536(3)
Course ID: 011518
2022-01-26
Global Climate Change: Science, Engineering & Policy
The primary objective of the course is to provide the necessary background that will permit students to understand and accurately describe the workings of the Earth's climate system, the interactions between the atmosphere, ocean, and climate, and human's involvement in altering these processes. The course is broken into four components covering earth science, energy, policy, and database access/programming. This highly quantitative course will use project-based experiences to allow each student an opportunity to complete a data acquisition/modeling project of their own design to show correlations between human activities, current atmospheric concentrations, and resulting ecosystem change. For example, the global spatial and temporal distributions of greenhouse gases, clouds, aerosols, radiation, etc. Students will use computational programming tools (Matlab, Excel) in combination with mapping tools (Google Maps, API) to quantify, analyze, and display geographical variations of integrated and averaged values of quantities studied. The project will

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

EV 590(1 - 3)
Course ID: 011924
2022-01-26
Special Topics in Environmental Science and Engineering
Advanced study of special topics in the area of environmental science and engineering.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Independent Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Given When Needed</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

EV 591(1 - 3)
Course ID: 011923
2022-01-26
Special Topics in Environmental Politics and Governance
Advanced study of special topics in the area of environmental politics and governance. With approval, students may take this class up to three times as long as the topical area is substantially different and the course is not repeated in the same semester.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Given When Needed</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

EV 610(1)
Course ID: 011012
2022-01-26
ISE Graduate Seminar
Seminar course for ISE graduate students in the Environmental Science and Engineering and the Environmental Politics and Governance (EPG) programs.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Offered Each Term</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

EV 612(1 - 15)
Course ID: 010920
2022-01-26
Thesis, Dissertation or Special Project
Analytical or experimental studies in civil and environmental engineering under the direction of a faculty adviser. Credit for this work is given when the requirements for the degree are completed including the presentation of a thesis, dissertation, or project report as appropriate to the degree program.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Thesis Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Offered Each Term</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
<tr>
<td>Course ID: 011098</td>
<td>2022-01-26</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>

Special Graduate Topics
A graduate level course for which there is no comparable Clarkson course. This course may be used to satisfy course requirements for a graduate degree.

- **Components:** Independent Study
- **Attributes:** Transfer Credit Only
- **Req. Designation:** Technology
FILM Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.

Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

FILM 226(3)
Course ID:011931 2015-03-05
Short Film Screenwriting
[Cross-listed with COMM 226] In this course, you will learn the process of writing short screenplays for
narrative fiction films of any genre. Short films can be anywhere from 30 seconds to 40 minutes long, though
the majority of them fall between seven and fifteen minutes. Each student will complete two short scripts and
then revise one of these from the ground up. Since this is a workshop, you are expected to comment
thoughtfully on your classmates' work, as they will comment thoughtfully on yours. Though there is some
reading in this course, your primary concern should be writing, writing, writing!

Components: Lecture
Course Equivalents: COMM 226
Attributes: Two communication units, Imaginative Arts, Given When Needed
Req. Designation: Technology

FILM 230(3)
Course ID:012113 2015-10-21
Cinemas of Resistance
This course means to explore major film-making movements that fall within a category of "cinema of
resistance." We will discuss concepts in and approaches to film theory and film-making that resist a Western,
hetero-normative, white, and/or patriarchal discourse and will contextualize feminist and queer cinema, black
cinema, postcolonial, imperfect, and third cinema, among others. We will furthermore emphasize how films are
tied to the political reality of their time and place, including major historical moments of resistance such as
decolonization, the feminist movements, the Civil Rights Movement, LGBTQ rights movements, and others.
While these will be our major points of discussion, we will also touch on issues like genre, spectatorship,
and politics of marketing and distribution. We will watch and discuss films by filmmakers such as Vittorio De
Sica, Ousmane Sembene, Julie Dash, Sally Potter, Spike Lee, Gillo Pontecorvo, and Stephen Frears, among
others.

Components: Laboratory, Lecture
Attributes: One communication unit, Contemporary and Global Issues, Given When Needed
Req. Designation: Technology

FILM 235(3)
Course ID:012136 2018-02-23
Crossing Borders
In this class, we want to take a close look at the representation of migration and border crossings in global
cinema from the U.S., Canada, Germany, France, the U.K. Senegal, Nigeria, Algeria, Iran, Israel, Mexico,
Argentina, and China.

More often than not, conversations approach the issue of migration on a policy level, but in this class we
want to take a look at how filmmakers from around the world imagine individual migrant stories and get a
sense of the body of migration films that has emerged over the past three decades. Although we will certainly
address policy issues, political debates, and legal frameworks, we want to focus on how cinema can create an
individual humanity of migrant and refugee characters. What are the politics of representation in an unequal
world order? How is the migrant humanized or de-humanized? Does a certain way of representing immigrants
indicate specific national anxieties? We will discuss issues such as clandestine border crossings, migrant
School of Arts and Sciences - Humanities & Social Sciences - Subject: Film Studies

FILM 237(3) Course ID:012882 2022-02-11
The Horror Film
In addition to being one of the most consistently profitable film genres, horror movies also provide a window into the culture anxieties captured at the time these films were made. This course examines horror films across a variety of sub-genres over the past several decades. In addition to watching these films, students will read commentary by critics and scholars that has shaped the way we think about horror films. Students will also have an opportunity to learn the basic tools of film studies while also honing their writing abilities.

Components: Lecture
Attributes: One communication unit, Imaginative Arts, Offered Even Falls
Req. Designation: Technology

FILM 250(3) Course ID:012759 2016-09-27
Dystopian Visions in International Cinema
In this course we want to explore the representations of various forms of dystopias in international cinema and our own fascination with these "bad" fictional places. How might dystopian films represent and recreate societal developments and anxieties? How do filmmakers and authors respond to different socio-political contexts and concerns, such as oppressive totalitarian regimes, environmental destruction, natural disasters, and/or medical catastrophes? Finally, we will investigate issues such as religion, gender, sexuality, race, and class as they relate to dystopian scenarios.

Components: Laboratory, Lecture
Attributes: One communication unit, Imaginative Arts, Given When Needed
Req. Designation: Technology

FILM 260(3) Course ID:013137 2022-02-11
Major Marginalized Movie-Makers
Using the lens of the director, or auteur, and mainly focusing on American films from the last 20 years, this course will study the productions of people who have historically been—and continue to be—underrepresented in mainstream cinema: BIPOC, LGBTQIA2+ people, and women. We will consider, for example, how directors implement their creative vision in a largely collaborative industry, as well as how directors from marginalized groups have "broken into" Hollywood. Over the course of the semester we will watch two or three films by each director and discuss not only social and cultural aspects of each film but also how to analyze theme and style across an auteur's body of work. Our primary objectives will be to consider how marginalized peoples use fictional narrative films to engage audiences with cultural and social worldviews to which they may not have been previously exposed, AND for audiences who don't often see their own cultural and social experiences reflected on screen. We might think, for example, about how Taika Waititi's vision for Thor: Ragnarock can be

Components: Laboratory, Lecture
Attributes: One communication unit, Imaginative Arts, Offered Even Springs
Req. Designation: Technology

FILM 322(3) Course ID:008590 2015-03-05
The Hollywood Cinema
[Formerly LF373] The Hollywood Cinema was launched in the early part of this century when a group of New Yorkers transferred their operations to the warmth and bright natural light of Los Angeles. Since then, the Hollywood style of filmmaking has grown to be a dominant influence in world cinema. In this course, students will study the history, economics, technology and theory of Hollywood filmmaking. The course will explore the different means through which movies communicate with views, focusing on technical components such as photography, frame compositions, movement, sound, and editing, as well as more literary components such as screenplay, acting, and directing. It will explore as well the cultural components of film viewing, since the ultimate goal of the course is to gain a better understanding of the movies that both reflect and affect the lives and times of those who make and see them.

Components: Laboratory, Lecture
Attributes: One communication unit, Economics and Organizations, Imaginative Arts, University Course, Given When Needed
Req. Designation: Technology
FILM 326(3)
Course ID: 011955
2015-03-05

Feature Film Screenwriting
In this course, you will learn the process of writing a feature-length screenplay. You will devise an original story idea, craft intermediate documents (i.e. logline, treatment, and beat sheet), and then write a first draft. Our goal is not to complete a polished draft (most screenplays go through at least a dozen revisions), but rather to execute a full draft in proper screenplay format that hits all the dramatic turning points, fleshes out characters and dialog, and leaves you with a document ready for substantive revision - now that you know what you're writing. Since this is a workshop, you are expected to comment thoughtfully on your classmates' work, as they will comment thoughtfully on yours. Along the way, you will read several professional scripts and complete a brief critique of each. We will also learn about the profession of screenwriting, including what to do with finished scripts, how to seek representation, and what the Writers Guild of America is. Though there is a good amount of reading in this course, your primary concern should be

Components: Lecture
Same As Offering: COMM 326
Attributes: Two communication units, Imaginative Arts, Given When Needed
Req. Designation: Technology

FILM 340(3)
Course ID: 008587
2022-02-11

World in a Frame
[Formerly LF370] Film is a complex medium that surrounds its participants, conveying ideas and emotions through the combination of words, images, sounds, and music. This course will explore the different means through which movies communicate with viewers, focusing on technical components such as photography, frame composition, movement, sound, and editing, as well as on more literary components such as screenplay, acting, directing, and producing. In the process of this exploration, class members will also learn about the major areas of film theory, since the ultimate goal of the course is to gain a better understanding of the movies that both reflect and affect the lives and times of those who make and see them.

Components: Laboratory, Lecture
Attributes: One communication unit, Imaginative Arts, Offered Odd Springs
Req. Designation: Technology

FILM 345(3)
Course ID: 013086
2022-02-11

Film and Native America
This course focuses on the filmmaking practices of Native American and global Indigenous communities over the past 30 years. We will consider such concepts as Fourth Cinema, self-representation, authorship and genre definitions. How, for example, does Indigenous horror or documentary film have its own aesthetic and cultural concerns? Students will be introduced to both the history and theory of Indigenous cinema, from the factors motivating its emergence to the major movements and representative filmmakers. Further, students will become acquainted with aesthetic and narrative practices in Indigenous filmmaking. Although our focus will be on Turtle Island (the landmass now known as North America), we will also broaden our perspective to compare global Indigenous movements. Through the study of films by Native American and global Indigenous peoples, along with critical readings about film studies and Indigenous cultures, students will be introduced to, discuss, research, and analyze the complex nature of Indigenous cultures and societies. While the focus of

Components: Lecture
Attributes: One communication unit, Cultures and Societies, Offered Odd Springs
Req. Designation: Technology

FILM 490(1 - 10)
Course ID: 010765
2015-02-03
Department Consent Required

Independent Study
Designed primarily for an advanced student who wishes to pursue special interests in film studies for one or more semesters, this series allows students to design and conduct independent study projects under faculty guidance.

Prerequisite: consent of the instructor.

Components: Independent Study
Attributes: Offered Each Term
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID:</th>
<th>008333</th>
<th>008334</th>
<th>008335</th>
<th>008337</th>
<th>008338</th>
<th>008339</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>Finance Elective</td>
<td>Finance Elective</td>
<td>Financial Management</td>
<td>Venture Capital and Private Equity</td>
<td>Investments</td>
<td>Financial Management II</td>
</tr>
<tr>
<td>Components</td>
<td>Independent Study</td>
<td>Independent Study</td>
<td>Lecture</td>
<td>Lecture</td>
<td>Lecture</td>
<td>Lecture</td>
</tr>
<tr>
<td>Attributes</td>
<td>Transfer Credit Only</td>
<td>Transfer Credit Only</td>
<td>Offered Fall, Spring, and Summer</td>
<td>Given When Needed</td>
<td>Offered Spring Term</td>
<td>Prerequisite: MA/STAT282, MA/STAT383 or MA330, EC150 or EC350, AC203 or AC/EM205 (or their equivalents)</td>
</tr>
<tr>
<td>Req. Designation</td>
<td>Technology</td>
<td>Technology</td>
<td>Technology</td>
<td>Technology</td>
<td>Technology</td>
<td>Technology</td>
</tr>
<tr>
<td>Description</td>
<td>A college level course for which there is no comparable Clarkson course. Used for transfer credit only.</td>
<td>A college level course for which there is no comparable Clarkson course. Used for transfer credit only.</td>
<td>(May be used to satisfy a CUSB M.B.A. or M.S. foundation requirement.) The basic goals of this introductory finance course are to familiarize students with the concepts and tools used in corporate financial management decisions. These include the analysis of financial statements for long-term financial planning, the notion of present value in addition to the relationship between risk and return. The concepts and techniques are, in turn, used to evaluate and make decisions regarding the firm's capital expenditures and capital structure as well as security valuation.</td>
<td>Course is designed to address financial issues relating to high tech industries and the new economy. Topics covered will include venture capital, and in-depth study of the IPO process, valuation, capital structure, long run performance and other issues related to new industries.</td>
<td>Beginning with the formulation of individual and institutional investment objectives and policies, this course examines the various assets, securities, and contracts provided in the private and public sector. Besides the characteristics of these investments vehicles, the course also looks at how trades occur in the respective markets and the general investment-decision making process.</td>
<td>This course introduces students to the complexities of financial management while providing a comprehensive overview of the major issues in Financial Management. Picking up where FN361 left off, FN464 will focus on financial strategy and the right-hand side of the balance sheet. Specific topics will include: an introduction to capital markets and the issuing of securities, capital structure issues, dividend policy, working capital considerations, mergers and acquisitions, and corporate governance. The course will integrate concepts from accounting, statistics, and economics.</td>
</tr>
</tbody>
</table>
Business - School of Business - Subject: Finance

FN 467(3)

Course ID: 008340 **2015-06-30**

International Finance

This course explores issues in international finance, especially as they pertain to financial management. Coverage includes an overview of the international financial environment, encompassing topics such as the international monetary system, balance-of-payments, trade agreements, and capital flows such as foreign direct investment. Specific attention is given to understanding exchange rate systems, purchasing-power parity (PPP), interest rate parity and international arbitrage. Techniques for measuring and managing exchange rate risk are covered in detail.

Components: Lecture

Attributes: Given When Needed

Requirement Group: Prerequisites: FN361, EC/EM150 and EC151 or EC350.

Req. Designation: Technology

FN 468(3)

Course ID: 008341 **2022-02-10**

Financial Markets and Institutions

[Cross-listed with EC 468] Emphasis is placed on understanding the basics of managing financial institutions, such as banks, the flow of funds, markets, and regulatory agencies that affect the institutions. The course addresses risk management, term structure of interest rates, international and domestic market operations and policy questions about financial markets and related topics.

Components: Lecture

Course Equivalents: EC 468

Attributes: Offered Spring Term

Requirement Group: Prerequisite: FN361.

Req. Designation: Technology

FN 470(3)

Course ID: 011335 **2015-07-08**

Strategic Financial Management

This case oriented capstone Finance course is designed to acquaint students with the fundamental issues in strategic financial management using financial markets. Using the underlying principle of shareholder wealth maximization, the key role of valuation in the strategic planning process will be highlighted by studying corporate decisions that interface with financial markets. Both theoretical valuation models and methods used in practice 'on the street' will be discussed, compared and implemented to measure the value created by investment, divestment, and restructuring decisions. The course examines the causes of value gaps in firms and develops methods to close the gaps and unlock hidden value. We will rely heavily on material from all previous Finance and Accounting courses.

Components: Lecture

Attributes: Offered Spring Term

Requirement Group: Prerequisite: FN464

Req. Designation: Technology

FN 474(3)

Course ID: 008343 **2022-02-10**

Models for Financial Analysis

The objective of the course is to understand how financial statement information affects the market value of securities. This course examines assessment of the firm through in-depth analysis of the financial statements. In addition to direct and ratio analysis of the financial statements, the course examines analysis of such topics as short and long-lived assets, tax strategy, leasing, pension plans & benefits, hedging, off-balance sheet considerations, business combinations, other forms of restructuring, multinational operations, credit and other risk analysis. The impacts of import FASB and international accounting and tax rules are examined. Coverage is done within a CFA (TM) framework.

Components: Lecture

Attributes: Offered Fall Term

Requirement Group: Prerequisites: FN361.

Req. Designation: Technology

FN 575(1 - 3)

Course ID: 012002 **2015-07-08**

Professional Fund Management I

Professional fund management involves two principal topic areas: Portfolio management and security analysis. Portfolio management involves establishing an investment strategy and constructing a portfolio of financial assets consistent with said strategy. Security analysis on the other hand involves the evaluation of individual financial securities. While we address both areas throughout the semester, the focus of this class is security analysis. The primary structure of this course is an application of fund management with a focus on a rotating investment style. Each semester, students will be directed to follow different investment styles such as, sector rotation, growth, or quantitative analysis. Furthermore the class will be responsible for managing a designated portion of the Clarkson University endowment. This student managed investment fund (SMIF) will be primarily invested in equity securities; security selection within the equity assets class will be made by the current class members.

Components: Lecture

Req. Designation: Technology
Professional Fund Management II

Professional fund management involves two principal topic areas: Portfolio management and security analysis. Portfolio management involves establishing an investment strategy and constructing a portfolio of financial assets consistent with said strategy. Security analysis on the other hand involves the evaluation of individual financial securities. While we address both areas throughout the semester, the focus of this class is security analysis. The primary structure of this course is an application of fund management with a focus on a rotating investment style. Each semester, students will be directed to follow different investment styles such as, sector rotation, growth, or quantitative analysis. Furthermore the class will be responsible for managing a designated portion of the Clarkson University endowment. This student managed investment fund (SMIF) will be primarily invested in equity securities; security selection within the equity assets class will be made by the current class members.

Components: Lecture
Req. Designation: Technology

Financial Management (MBA Module)

(Cross-listed with FN 608, FN 610) An application of the tools and models that produce better decisions for the firm in short and long term. Asset selection, risk management, inventory management, credit and capital acquisition, and overall value enhancement are covered. Emphasis is put on the quantitative tools, the practices of existing corporations, and the international environment.

Components: Discussion, Lecture
Course Equivalents: FN 608, FN 608
Attributes: Offered Spring Term
Requirement Group: Restriction: Admission to the MBA program required
Req. Designation: Technology

Financial Management

(Cross-listed with FN 607, FN 610) This course introduces students to the complexities of financial valuation and decision-making while providing a comprehensive overview of the major issues in Corporate Finance. Specific topics will include: valuation of financial instruments, capital budgeting, an introduction to capital markets, the assessment and pricing of risk, capital structure issues, dividend policy, and working capital considerations. The course will integrate concepts from Accounting (Income Statement and Balance Sheet Analysis as well as pro forma statements), Decision Sciences (Excel, modeling and sensitivity analysis), and Economics (wealth maximization, demand estimation and forecasting).

Components: Lecture
Same As Offering: FN 608
Course Equivalents: FN 607
Attributes: Offered Summer Term
Req. Designation: Technology
Financial Management

This course introduces students to the complexities of financial valuation and decision-making while providing a comprehensive overview of the major issues in Corporate Finance. Specific topics will include: valuation of financial instruments, capital budgeting, an introduction to capital markets, the assessment and pricing of risk, capital structure issues, dividend policy, and working capital considerations. The course will integrate concepts from Accounting (Income Statement and Balance Sheet Analysis as well as pro forma statements), Decision Sciences (Excel, modeling and sensitivity analysis), and Economics (wealth maximization, demand estimation and forecasting).

Components:
- Lecture

Same As Offering:
- FN 608

Course Equivalents:
- FN 607

Attributes:
- Offered Summer Term

Req. Designation:
- Technology
Business – School of Business – Subject: Finance

FN 610(3) Course ID: 011965 2019-11-01

Financial Analytics
This course introduces methods and tools for financial data analysis in SAS and Python, focusing on analyzing financial information data and stock return data. Topics covered in this course include, but are not limited to, univariate analysis, regression analysis, panel data models, event studies, stock return anomalies, high-frequency data analysis, and Monte Carlo simulations. A variety of data sources are used: financial websites, government sites, and finance research databases such as WRDS. Students will become proficient in financial data analysis, which will prepare them for careers in the financial industry.

Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: IA 530 or equivalent.
Req. Designation: Technology
FN 615(3) Financial Modeling and Analysis
Course ID: 013104
Run Date: 2021-04-23
Objective: The objective for this course is to develop the financial modeling skills used in the application of financial theory to practical problems in investment analysis, portfolio management, and valuation. Financial models have become increasingly complicated over the years, and this course is intended as an introduction to some of the modeling techniques used by professionals in the finance field. Topics covered include construction of free cash flows, forecasting cash flows, capital budgeting, risk measurement, and portfolio choice subject to constraints. The course is suitable for students seeking a career in finance, but also for students with broader interests who wish to strengthen their general modeling skills.
Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisite: FN608
Req. Designation: Technology

FN 619(3) Investments
Course ID: 012546
Run Date: 2016-07-01
Formerly MBA 619 This course provides an in-depth analysis of modern investment strategies and portfolio management techniques. Current theory, empirical evidence, and institutional practices are considered. Topics covered include portfolio theory and asset pricing models, market efficiency, fixed-income portfolio management and immunization, equity valuation models, the valuation of options and option strategies, and portfolio management and performance evaluation.
Components: Lecture
Req. Designation: Technology

FN 629(3) Money, Markets, and Banking
Course ID: 012556
Run Date: 2016-07-01
Formerly MBA 629 The course covers the nature and functions of money and finance in the economy. Commercial and central banking, monetary theory, and monetary policy are also considered.
Components: Lecture
Req. Designation: Technology

FN 661(3) International Finance
Course ID: 012570
Run Date: 2016-07-25
Formerly MBA 661 An analysis is made of international financial markets and the special problems and opportunities associated with the financial management of multinational firms. The international monetary and banking system (including the World Bank and IMF), balance of payments, and economic relationships are also examined. Foreign exchange and interest rate risk management, arbitrage, international equity and debt financing activities, derivatives, multinational capital budgeting, political risk, international taxation and accounting issues are considered. Coursework involves an intensive team research project focused on a specific country and the international financial exposures of select global corporations.
Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology
Business - School of Business - Subject: Finance

<table>
<thead>
<tr>
<th>Course ID: 008357</th>
<th>2015-06-30</th>
</tr>
</thead>
</table>

FN 680(3)
Strategic Financial Management

This course examines in depth (1) financing courses for entrepreneurs and business developers, as well as (2) risk management methods. Besides the capital markets, the sources for operating and fixed asset financing for firms in development or with strategic alliances include venture capital, vendor and customer financing, bank and insurance company loans, and leasing. In addition to financing topics, commodity price risk management, as achieved with forward contracting, futures contracts, over-the-counter options and swaps, is examined as means to control price uncertainty.

- **Components:** Lecture
- **Attributes:** Offered Fall Term
- **Requirement Group:** Prerequisites: FN607 or consent of the instructor
- **Req. Designation:** Technology
Institute for STEM Education – CRC Education Program – Subject: French Language

FRN 580(3) Course ID:012396 2021-10-08
MAT Project in French (Content Area)
The MAT Project is a one-term research project whose purpose is to allow students time and supervision to
develop breadth and/or depth of knowledge to become a better teacher in their certification field. What the
project will entail varies greatly from student to student. The course is intended to be custom-tailored to
meet the specific needs of an individual intern. MAT projects are well-grounded in research and theory, but
also include a strong and extensive applied aspect, directly addressing the question: What would this look
like in the classroom?
Components:
Seminar
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program
Req. Designation: Technology

FRN 585(3) Course ID:013107 2021-04-27
Advanced French Grammar
This course is designed to give students who already have a deep understanding of the French language and
French and francophone cultures the opportunity to more fully develop grammatical knowledge and accuracy in
French. Emphasis will be placed on listening, speaking, reading, and writing in French using complex
grammatical structures. Students will complete a systematic exploration of functional and stylistic features
and gain a firmer grasp on grammar, understanding what grammar is and what purposes it serves, in addition to
knowing grammatical rules.
Components:
Lecture
Attributes:
Given When Needed
Req. Designation: Technology

FRN 988(3) Course ID:012408 2017-07-01
Independent Study in French
A graduate level course for which there is no comparable Clarkson course. This course may be used to satisfy
course requirements for a graduate degree.
Components:
Independent Study
Attributes:
Given When Needed
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program
Req. Designation: Technology

FRN 989(3) Course ID:012409 2017-07-01
Independent Study in French
A graduate level course for which there is no comparable Clarkson course. This course may be used to satisfy
course requirements for a graduate degree.
Components:
Independent Study
Attributes:
Given When Needed
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program
Req. Designation: Technology
FY 100(1)
Course ID: 008361
2022-01-21

First Year Seminar
[Cross-listed with PE 100] With a focus on group work and team dynamics, this adjustment course is required for all first-year students. It introduces the mission and expectations of the learning process at Clarkson; builds communication and teamwork skills; and provides some fundamental content relating to wellness and relationships during the college experience. Discussion, team activities, leadership opportunities, and interaction with upperclass peer educators form the foundation of the course.

Components:
- Seminar

Course Equivalents:
- UNIV 100

Requirement Group:
- Restriction: Freshman standing

Req. Designation:
- Technology
Institute for STEM Education – CRC Education Program – Subject: Geology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO 580(3)</td>
<td>012413</td>
<td>2021-10-08</td>
</tr>
</tbody>
</table>

MAT Project in Earth Science (Content Area)

The MAT Project is a one-term research project whose purpose is to allow students time and supervision to develop breadth and/or depth of knowledge to become a better teacher in their certification field. What the project will entail varies greatly from student to student. The course is intended to be custom-tailored to meet the specific needs of an individual intern. MAT projects are well-grounded in research and theory, but also include a strong and extensive applied aspect, directly addressing the question: What would this look like in the classroom?

Components: Seminar

Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program.

Req. Designation: Technology
MAT Project in German (Content Area)
The MAT Project is a one-term research project whose purpose is to allow students time and supervision to develop breadth and/or depth of knowledge to become a better teacher in their certification field. What the project will entail varies greatly from student to student. The course is intended to be custom-tailored to meet the specific needs of an individual intern. MAT projects are well-grounded in research and theory, but also include a strong and extensive applied aspect, directly addressing the question: What would this look like in the classroom?

Components:
- Seminar

Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program (or by instructor consent)

Req. Designation: Technology

Independent Study in German
A graduate level course for which there is no comparable Clarkson course. This course may be used to satisfy course requirements for a graduate degree.

Components: Independent Study
Attributes: Given When Needed

Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program (or by instructor consent)

Req. Designation: Technology
Health Sciences – Lewis School – Subject: Health Management

HC 190(4) Course ID:013125 2021-08-30

EMT Basic

This course will provide students with the knowledge and skills necessary to care for the sick and injured in the prehospital setting as an Emergency Medical Technician (EMT). Course topics include the recognition and treatment of respiratory, cardiac, diabetic, and other medical emergencies. Environmental exposure, traumatic injuries, emergency childbirth, and psychological emergencies will also be examined. Successfully completing this course will fulfill the educational requirements for the student to take the New York State EMT certification exam. Once certified, students may utilize their skills in a variety of settings including EMS and first responder agencies, health care facilities, and to aid their own friends and family. This course will help prepare students for future healthcare studies and careers. Students planning on working or volunteering with an EMS agency will be capable of performing the job expectations of an entry level EMT safely and effectively on completion of this course.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Independent Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Offered Each Term</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

HC 405(1 - 3) Course ID:013165 2022-04-08

Experiential Learning in Health Care

This is an independent study course under the mentorship of a member of the Lewis School of Health Sciences faculty. This is a variable credit course (1-3cr) where 50hrs is equal to 1 credit hour. The student is required to complete at least 50 hours of work in a health profession setting. The work must include some form of interaction with health professionals and with patients or analogous health-service recipients. Examples include healthcare internships or volunteer positions at a hospital or clinic, completions of HS 210 Health Coaches II, serving as an EMT, or emergency first-responder. Conducting research with medical applications that does not involve working with patients/health-service recipients will not meet the requirements for this course. Upon completing each 50hr experience, the student will prepare a short (around 3 page) self-reflective essay on what the student did and learned during the experience, and how the experience has affected the student’s professional goals and preparation. In the essay(s), specific

<table>
<thead>
<tr>
<th>Components:</th>
<th>Independent Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Given When Needed</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>
Introduction to Health Systems

[Formerly HCM 500] This course examines the determinants of health, illness, and medical care utilization, institutional arrangements and settings for the delivery of acute and chronic care, the doctor-patient relationship, resource allocation and financing, and measuring and evaluating system performance.

- **Components:** Lecture
- **Course Equivalents:** HC 630
- **Attributes:** Offered Fall Term
- **Req. Designation:** Technology

Swiss Healthcare Study Tour

[Formerly HCM 601] This Study tour will give Healthcare MBA students a better understanding of the healthcare delivery system in Switzerland. Students will have an opportunity to visit research hospitals, R&D centers, and pharmaceutical companies and learn firsthand about the unique characteristics of the system. We will also have seminars where experts in the field will discuss current issues in terms of healthcare delivery.

- **Components:** Lecture
- **Req. Designation:** Technology
Advanced Statistics and Data Visualization
[Formerly MBA 606] This is an applied course on advanced statistical techniques that are commonly used in health care and business settings. The course will be based on case studies that incorporate typical challenges of a real-life application: Large data sets with mixed types of variables (e.g., qualitative and quantitative), missing data, lurking variables, correlated variables and uncontrolled variation. The course objective is to enable students to become effective users of advanced statistical techniques in support of business decision making. The topics covered will include logistic regression, multivariate analysis (principal components, clustering, discriminant analysis), partitioning analysis, and time series modeling. Students will learn to identify high impact application opportunities for each technique, plan and execute their own data-based investigations, apply the appropriate statistical modeling technique, and report their findings and recommendations. The role of effective data visualization as a key element in modern data

Components:
- Lecture

Attributes:
- Offered Winter Term

Requirement Group:
- Prerequisites: IS647

Req. Designation:
- Technology

Data Architecture
[Formerly MBA 607] Database management systems are standard tools that enable the storage and retrieval of data within modern information systems. Database concepts are now an accepted part of most computer science courses. These introductory units tend to concentrate on the use of relational database systems. This advanced module, in contrast, deals with implementation aspects of relational systems and provides students with the knowledge of the current enhancements to relational database systems, distributed database systems (e.g. Hadoop) object oriented database and XML database systems. The course will also include an introduction into SQL to query relational databases.

Components:
- Lecture

Attributes:
- Offered Winter Term

Requirement Group:
- Prerequisites: HC468 or IS606

Req. Designation:
- Technology

Hospital Analytics
[Formerly HCM 604] An application of principles of analytics to hospital settings, problems, and strategic issues. Students will learn the array of alternative platforms hospitals use for collecting, storing, and distributing data within the hospital–health system setting, including data displays, analytical modules, and user interfaces. Students will also work with hospital data to answer clinical and strategic questions that senior leaders pose, and understand the promise and limitations of the data. Finally, students will be exposed to issues related to data communication and sharing among internal constituencies including owned physician practices and subsidiaries, related parties (e.g., PHO’s and voluntary physicians), and Health Information Exchanges through RHIO’s.

Components:
- Lecture

Attributes:
- Offered Summer Term

Requirement Group:
- Prerequisites: HC602, HC603, and HC642

Req. Designation:
- Technology

Health Operations
[Formerly HCM 505] This course instructs the students in quantitative methods useful for analysis, improvement, and design of efficient and effective organizational processes within a health-care organization. Operations management (OM) is concerned with evaluating the performance of operating units, understanding why they perform as they do, designing new or improved operating procedures and systems for competitive advantage, making short-run and long-run decisions that affect operations, and managing the work force. Health systems OM is the analysis, design, planning, and control of all steps necessary to provide a service for a client. The course will involve readings from a selected text, review of published studies, exercises in internal and external benchmarking, and exploration of the tools and methods promoted at the national level.

Components:
- Lecture

Attributes:
- Offered Fall and Spring

Req. Designation:
- Technology
Business - CRC Healthcare Data Analytics - Subject: Health Management

HC 606(3)
Course ID: 012435
2017-09-29

Payer Analytics
[Formerly HCM 606] Health insurers and healthcare providers share a common mission of improving health however their means to achieving their mission vary materially. This course will focus on the analytics health insurers utilize to facilitate affordable, quality healthcare. We will discuss and analyze the approaches health insurers take to discover and communicate meaningful patterns in data from historical information reporting to future predictive modeling. Upon completion of this course, the student will have been exposed to key payer analytic frameworks and tool sets used to drive success within a health insurer.

- **Components:** Lecture
- **Attributes:** Offered Fall Term
- **Requirement Group:** Prerequisites: HC602, HC603, and HC642
- **Req. Designation:** Technology

HC 607(3)
Course ID: 012436
2017-09-29

Healthcare Operations Research
[Formerly HCM 607] Health Care Operations Research examines several of the Operations Research models most widely used in the Health Care industry. The primary goal is to enable students to become productive consumers of Operations Research for the support of Health Care Management decision making. Students will learn to recognize opportunities for Operations Research analyses, perform basic analyses, report their findings in non-technical terms, and direct or interact with more complex analyses. Operations Research methodologies covered will include Linear Programming, Queuing Theory, Simulation, and Decision Analysis. Applications to staffing, scheduling, capacity planning, facility layout, facility location, and inventory management will be covered.

- **Components:** Lecture
- **Attributes:** Offered Spring Term
- **Requirement Group:** Prerequisites: IS502
- **Req. Designation:** Technology

HC 609(3)
Course ID: 012437
2017-09-29

Healthcare CRM
[Formerly HCM 609] This course provides a practical overview of how to design and implement modern digital customer relationship marketing. Topics to include: customer insight mining, social media and search analyses, segmentation, customer database design, promotional media selection, campaign operations, sales force automation, digital engagement analytics, and ROI measurement. Textbook and other readings will be supplemented by a small-group case study project that students develop throughout the term.

- **Components:** Lecture
- **Attributes:** Offered Summer Term
- **Requirement Group:** Prerequisites: (IS647 or HC647), and (HC648 or IS606)
- **Req. Designation:** Technology
Business - CRC Business - Subject: Health Management

HC 610(3)
Course ID: 012430
2016-07-25

[Formerly HCM 510] The course covers use of financial statements and financial management in a regulated environment for taxable and tax exempt healthcare entities. Topics covered include: reading, interpreting and analyzing healthcare entity financial statements, time value analysis, valuing healthcare entities and assets, financial decision making and capital budgeting.

Attributes: Offered Fall Term

Components: Lecture

Req. Designation: Technology
HC 617(3)
Course ID: 012438
2017-10-02

Healthcare Finance

[Formerly HCM 617] This course covers financial management in a regulated healthcare environment. Topics include cost-finding and third-party reimbursement, contemporary issues in healthcare financing, sources of capital, capital budgeting, financial planning and analysis, cost accounting, and managed care issues.

- **Components:** Lecture
- **Attributes:** Offered Winter and Spring
- **Requirement Group:** Prerequisites: AC604
- **Req. Designation:** Technology

HC 620(3)
Course ID: 012439
2022-01-26

Health Economics

[Formerly HCM 620] This course is intended for students entering the health field and investigates economic approaches to problems and solutions. Students obtain an understanding of how economics contributes to public and private decision-making in healthcare, and learn to properly interpret economic research results and apply them to work performed by health planners and administrators.

- **Components:** Lecture
- **Attributes:** Offered Summer Term
- **Requirement Group:** Prerequisites: HC600 and IS647
- **Req. Designation:** Technology

HC 626(3)
Course ID: 012431
2022-01-26

Health Systems Marketing

[Formerly HCM 526] This course introduces students to the principles of marketing and their application to healthcare settings. At the end of this course, students should:

- a.) Understand what marketing can do for the healthcare organization in terms of contribution to strategic planning, building business, strengthening relationships between the organization and its constituents, and achieving competitive advantage.
- b.) Clearly understand how to use health data in marketing planning and implementation.
- c.) Appreciate the challenges of evaluating the effectiveness of marketing communications investments made by healthcare organizations.
- d.) Understand the relationship between patient/customer satisfaction and service quality in health organizations.
- e.) Understand how to judge marketing communications quality, both qualitatively and quantitatively.
- f.) Demonstrate effective communications skills through in-class participation, writing assignments, and class presentations.
- g.) Analyze marketing problems and select effective strategies for

- **Components:** Lecture
- **Attributes:** Offered Winter and Spring
- **Req. Designation:** Technology
HC 630(3)
Course ID: 012506
Run Date: 2016-07-01

LIM Introduction to Health Systems
[Formerly LIM 500] This course examines the determinants of health, illness, and medical care utilization, institutional arrangements and settings for the delivery of acute and chronic care, the doctor-patient relationship, resource allocation and financing, and measuring and evaluating system performance.

- **Components:** Lecture
- **Course Equivalents:** HC 600
- **Attributes:** Offered Fall Term
- **Requirement Group:** Restriction: Open to LIM students only
- **Req. Designation:** Technology

HC 633(3)
Course ID: 012508
Run Date: 2016-07-02

LIM Healthcare Leadership
[Formerly LIM 503] This course examines managerial roles and processes within health service organizations - organization design, managerial epidemiology, governance, total quality management, human resource management, labor relations and ethics.

- **Components:** Lecture
- **Attributes:** Offered Winter Term
- **Requirement Group:** Restriction: Open to LIM Students only Prerequisites: HC630
- **Req. Designation:** Technology
<table>
<thead>
<tr>
<th>Course ID: 012509</th>
<th>2018-04-23</th>
</tr>
</thead>
</table>

LIM Health and Human Values

[Formerly LIM 544] An intensive 8 day introduction to current topics in clinical ethics and bioethics, taught seminar style, with a clinical visit to Mount Sinai School of Medicine in New York City. This overview of current issues in bioethics humanities involves four special pro-seminars, case conferences and ethics rounds. There will also be training in the computer skills (demonstrations, workshops) essential to mastering distance learning.

- **Components:** Seminar
- **Attributes:** Offered Summer Term
- **Requirement Group:** Restriction: Open to LIM students only
- **Req. Designation:** Technology
LIM Health Economics
[Formerly LIM 553] This course is intended for LIM students entering the medical profession and investigates economic approaches to problems and solutions. Students obtain an understanding of how economics contributes to public and private decision-making in healthcare, and learn to properly interpret economic research results and apply them to work performed by Physicians, health planners and administrators.

Components: Lecture
Attributes: Given When Needed
Requirement Group: Restriction: Open to LIM students only
Req. Designation: Technology
HC 637(3)
Course ID: 012512
2016-07-25

LIM Clinical Leadership Practicum

[Formerly LIM 571] Students will work in the field with a preceptor in a clinical leadership role. Students may be placed in a variety of healthcare settings including: hospitals, physician offices, health maintenance organizations, etc. Classes meet every other week to discuss students’ field experiences and selected readings.

Components: Practicum
Attributes: Offered Spring Term
Requirement Group: Restriction: Open to LIM students only
Req. Designation: Technology
[Formerly HCM 642] This course provides an introduction to Data Analytics and examines a set of information systems, which specifically support managerial decision makers: Decision Support Systems, Group Decision Support Systems, Executive Information Systems, Data Warehouses, Expert Systems, and Neural Networks. The focus in this course is on data and text mining, using an appropriate software application for the organization, retrieval, and modeling of large structured and unstructured data sets.

Components:
- Lecture

Attributes:
- Offered Spring Term

Requirement Group:
- Prerequisites: HC602 and HC603

Req. Designation:
- Technology
Advanced Applications in Data Analytics

The objective of this course is to introduce students to advanced data analytics applications, using a set of structured and unstructured data (historical and real-time) from various business sectors. The course will build upon concepts and methodologies, which students have learned from previous classes in the data analytics program, but extend the scope and complexity by using a combination of analytic tools (e.g. R, SPSS, RapidMiner, Tableau, and SQL). While some of the 3 day course involves lecturing and hearing guest sessions, students will spend most of their time working in a team to analyze data and prepare presentations to visualize and communicate the insights obtained from the data. This course will be focused on key-concepts in data analytics and provide students with a better understanding of how to analyze and communicate 'big data' and will provide the students in the MS Healthcare Data Analytics program a "capstone" style experience.

Components: Lecture
Attributes: Given When Needed
Requirement Group: Prerequisites: HC602, HC603, HC642, HC647, HC648
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>012443</td>
<td>2022-05-04</td>
</tr>
</tbody>
</table>

Course ID: 012443

Course Equivalents: IS 647, IS 647

Attributes: Offered Winter and Summer

Req. Designation: Technology

Statistical Foundations of Data Analytics

[Formerly HCM 647] [Cross Listed with IS647] This course covers fundamental methods in statistical analysis and data visualization as applied in healthcare. A holistic problem-solving approach is taken covering problem formulation, data acquisition and preparation, selection of appropriate statistical methods, and effective communication of analytic results. Topics covered include data visualization, data description methods, statistical inference, and model building. Examples are drawn from a variety of healthcare applications. Data visualization and analysis will be performed using statistical software.

Components: Lecture
Health Informatics

This course will introduce students to the concepts and practices of health informatics. Topics include:

- an introduction to information systems and specifically to the health informatics field;
- major applications and commercial vendors;
- decision support methods and technologies;
- system analysis, design, implementation, and evaluation of healthcare information systems;
- new opportunities and emerging trends.

Components	Lecture
Attributes	Offered Fall and Summer
Req. Designation	Technology

Health Policy Dynamics

Through the application of public policymaking process and organization theory, this course examines topics associated with health policymaking process and external competitiveness of modern health care organizations. Course topics include policy formulation, agenda-setting, policy implementation, policy modification, organizational design & structure, organizational environment, strategic planning, and managerial ethics. The course covers theoretical, conceptual, and practical foundations of the macro aspects of health policymaking process and healthcare management.

Components	Lecture
Attributes	Offered Winter Term
Requirement Group	Prerequisites: HC600
Req. Designation	Technology
Health Systems Management

[Formerly HCM 501] This course examines the various aspects of managing in the modern health care environment. A variety of methods including lectures, case studies, in-class exercises, and student presentations will be used. Topics covered include quality improvement, ethical management, managing diversity, communications, leadership, motivation, team building, and conflict resolution.

Components: Lecture
Attributes: Offered Fall and Winter
Requirement Group: Prerequisites: HC600
Req. Designation: Technology
Group Practice Administration

The objective of this course is to introduce students to the organization and management of private group practice through seminar and practical experience. It is intended that this course will prepare students for employment in private group practices and/or other ambulatory care organizations.

Components: Lecture

Attributes: Offered Winter and Summer

Requirement Group: Prerequisites: HC600 and HC651

Req. Designation: Technology

Healthcare Leadership Proseminar

[Formerly HCM 507] This Proseminar will provide students with an introduction to the role of management and leadership in healthcare. It includes a preliminary overview of the U.S. health system and changes occurring in the healthcare environment, as well as an introduction to ethical reasoning and ethics as they apply to the healthcare industry. Students will also learn communications concepts and skills required of leaders. The course will involve an intensive three-day on-campus residency, in which students will receive classroom lectures, participate in exercises, hear guest speakers from healthcare organizations, and complete projects as assigned. After completing the 3-day on-campus residency, students will continue the course independently and online, completing an assignment by the end of the Fall term. The Proseminar is designed to provide students with a framework with which they can interpret material to be covered in successive courses. In addition, they will have a unique opportunity to meet and network with healthcare leaders, faculty members,

Components: Lecture

Attributes: Offered Fall Term

Req. Designation: Technology

Legal Aspects of Healthcare

[Formerly HCM 674] This course is designed to familiarize students with basic legal issues involved in managing healthcare systems. Antitrust, consent, labor law, malpractice, professional rights and other problems are explored using actual and hypothetical case studies.

Components: Lecture

Attributes: Offered Spring and Summer

Req. Designation: Technology

Managerial Epidemiology

[Cross listed with BIE577] [Formerly HCM 680] This 10-week course focuses on applying basic epidemiological methodologies in healthcare management. Epidemiological problems are formulated and described in terms of person, place, and time. Health care planning relies on needs assessments to allocate resources to epidemiological and population health issues. A variety of study designs are used to generate data to analyze causes or patterns of disease frequency. Epidemiological methods employed in infectious disease and disaster are examined. Data collection systems specific to public health applications are reviewed. The ethical principles applied in public and population health settings are covered.

Components: Lecture

Course Equivalents: BIE 577

Attributes: Offered Spring Term

Requirement Group: Prerequisites: HC 600. For students in the LIM program, HC 630, and HC 633.

Req. Designation: Technology

Strategic Issues for Healthcare Organizations (Health Capstone)

[Formerly HCM 681] This course is designed to integrate the concepts and skills associated with managerial problem-solving learned throughout the MBA in Healthcare Management program. Students analyze case studies addressing the strategic realignment of health service organizations in today’s healthcare environment. A variety of expert practitioners present their views on this topic. This course begins with a 3-day in-person session that takes place during the first week of the Spring Quarter, beginning Friday at 8:00 am and ending Sunday at 12:00 pm. The remaining coursework is completed working independently in student teams on consulting projects for healthcare organizations under the supervision of faculty mentors.

Components: Lecture

Attributes: Offered Spring Term

Requirement Group: Prerequisites: HC600, HC605, HC651, and HC657.

Req. Designation: Technology
HC 683(0) Course ID:012450 2016-07-01
MBA Internship
[Formerly HCM 683] An Internship for the MBA or Healthcare MBA program. Provides practical, hands-on experience that focuses on an area directly related to the student's field of study.
Components: Independent Study
Attributes: Given When Needed
Req. Designation: Technology

HC 684(3) Course ID:012451 2022-01-26
LIM Strategic Issues in Healthcare (Capstone)
[Formerly HCM 684] A capstone course designed to integrate the concepts and skills associated with healthcare research-based managerial problem solving learned throughout the LIM program in Healthcare Management. The objective of this course is to assist students with a level of professional maturity, confidence and strategic thinking to become a successful physician leader.
Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Restriction: Open to LIM students only
Req. Designation: Technology
Business - CRC Healthcare Management - Subject: Health Management

<table>
<thead>
<tr>
<th>Course Code:</th>
<th>Course ID:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC 999(0 - 10)</td>
<td>012921</td>
<td>2009-01-01</td>
</tr>
</tbody>
</table>

Special Graduate Topics
A graduate level course for which there is no comparable Clarkson course. This course may be used to satisfy course requirements for a graduate degree.

- **Components:** Independent Study
- **Attributes:** Transfer Credit Only
- **Req. Designation:** Technology
HIST 1 (2 - 4)

Course ID: 008511
2015-01-19

History Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.

Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

HIST 2 (2 - 4)

Course ID: 008512
2015-01-19

History Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only. This course may be used to satisfy a Humanities or Social Science Foundation Curriculum Requirement, depending on the specific designator.

Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology
Liberal Arts - Humanities & Social Sciences - Subject: History

HIST 100(3)
Course ID: 011438 **2015-01-19**
European History Survey
Credit for this course is awarded only in the following cases: 1) receipt of a 4 or 5 on the AP European History Exam, 2) receipt of a score of 5 through 7 on the International Baccalaureate European History Higher-Level Examination, or 3) satisfactory completion of a college-level European History survey course.

Components: Independent Study
Attributes: Cultures and Societies, Individual and Group Behavior, University Course, Transfer
Req. Designation: Technology

HIST 101(3)
Course ID: 011439 **2015-01-19**
World History Survey
Credit for this course is awarded only in the following cases: 1) receipt of a 4 or 5 on the AP World History Exam, 2) receipt of a score of 5 through 7 on the International Baccalaureate History Higher-Level Examination, or 3) satisfactory completion of a college-level World History survey course.

Components: Independent Study
Attributes: Cultures and Societies, Individual and Group Behavior, University Course, Transfer
Req. Designation: Technology

HIST 102(3)
Course ID: 011440 **2015-01-19**
History of the Americas Survey
Credit for this course is awarded only in the following cases: 1) receipt of a score of 5 through 7 on the International Baccalaureate History of the Americas Higher-Level Examination or 2) satisfactory completion of a college-level History of the Americas survey course.

Components: Independent Study
Attributes: Cultures and Societies, Individual and Group Behavior, University Course, Transfer
Req. Designation: Technology

HIST 103(3)
Course ID: 011441 **2015-01-19**
Islamic History Survey
Credit for this course is awarded only in the following cases: 1) receipt of a score of 5 through 7 on the International Baccalaureate Islamic History Higher-Level Examination or 2) satisfactory completion of a college-level Islamic History survey course.

Components: Independent Study
Attributes: Cultures and Societies, Individual and Group Behavior, University Course, Transfer
Req. Designation: Technology
The Ancient World
This course traces the birth and development of civilization in the ancient world from the 3rd millennium BC in Mesopotamia to the height of the Roman Empire in the 3rd century AD. Students will study the cultural values, economic organization and political systems of Mesopotamia, Egypt, Greece and Rome. Students will also consider the processes of social, cultural and geopolitical change in the ancient world and critically evaluate primary sources from each area in terms of their original function, and what types of information we can glean from them.

Components: Lecture
Attributes: Cultures and Societies, Given When Needed
Req. Designation: Technology

America: 1776 - 1877
[Formerly LC250] This course will survey developments in American history from the American Revolution to post-Civil War Reconstruction. Topics for special consideration will include: the American Revolution and its aftermath, the economic and political 'revolutions' of the first half of the 19th century, immigration and the opening of the West to settlement, the critical decade of the 1850's, and the Civil War and its aftermath. The focus of the course will be on the larger political and economic trends of this transformative period, but some attention will be paid to the social and intellectual developments as well. The course will alternate between lecture and discussion. A comprehensive text may be used but discussion will center on interpretive texts and primary documents. This is an entry-level course for people who want to prepare for more advanced work in American history at the upper division level.

Components: Lecture
Attributes: Cultures and Societies, Individual and Group Behavior, University Course, Given When Needed
Req. Designation: Technology

America: 1877 - Present
[Formerly LC251] A social, political, cultural and economic survey of the United States from Reconstruction through the present.

Components: Lecture
Attributes: Cultures and Societies, Individual and Group Behavior, University Course, Offered Even Falls
Req. Designation: Technology

Science and Society
This course will acquaint students with the multifaceted ways in which science and society interface in the modern world. It will discuss important developments in the history of modern science (17th century-present). But examining the conceptual development of scientific theories is only part of the story. The course will also explore the broader institutional, cultural and political contexts of the theories in questions. It will analyze how science influenced the societies which nurtured it as well as how societal values impact the nature and practice of science. Relationships between religion and science, science and political authority as well as the social and ethical responsibility of the scientist will be explored. Students will understand science, not as a collection of disembodied ideas about the natural world, but as a historically and socially situated activity best understood in relation to the historical contexts in which it occurs.

Components: Lecture
Attributes: One communication unit, Science, Technology and Society
Req. Designation: Technology

War and Society
[Formerly LP398] War is as old as society, and from earliest times, changes in warfare have reflected changes in society. Through primary source material (eyewitness accounts and descriptions) and selected historical writings, we will study the battle experience of soldiers and civilians, and the shifting relationship between the military and society. The course will concentrate on four stages of military/cultural experience: 'the army of heroes' in which the warrior fights for personal honor; 'the professional army' in which training comes to the fore; 'the gentleman's war', in which the professional soldier follows a strict code of moral behavior; and 'the modern war', in which technology changes conventional warfare with dire consequences to the military and society.

Components: Lecture
Attributes: One communication unit, Cultures and Societies, Individual and Group Behavior, University Course, Given When Needed
Req. Designation: Technology
School of Arts and Sciences - Humanities & Social Sciences - Subject: History

HIST 241(3) Course ID:008594 2020-02-19
War Stories I
[Formerly LF392] [Cross-listed with LIT241] The oldest and most enduring stories describe war and its consequences. Reading these stories helps us see how different societies valued leadership, honor, loyalty, courage, and death on the battlefield. Not all war literature, however, glorifies heroic warriors and their exploits. Some war stories, even in the distant past, question martial codes imposed on men. Others examine what is worth dying or killing for, and still others lament the inevitable wastage and brutality of war, of the costs to individuals, civilizations, and the environment. Most of them are ambivalent. Text will range from the ancient world to the Renaissance and from Asia to Europe.
Components: Lecture
Course Equivalents: LIT 241
Attributes: One communication unit, Cultures and Societies, Imaginative Arts, University Course, Given When Needed
Req. Designation: Technology

HIST 245(3) Course ID:012977 2019-10-21
Introduction to Environmental History
In this class, students will be introduced to the major problems, current trends, and "classic" issues in the study of North American environmental history. Topics may include: climate changes and society, environments and technologies, parks and conservation, the history of environmental racism, gender and the environment, indigenous environmental knowledge, animals, pests, and animal control, water studies, and the history of Arctic environments. By the end of the course, students will have a basic understanding of what environmental history is and how it is conducted, and will be encouraged to think like historians in their everyday lives.
Components: Lecture
Attributes: Cultures and Societies, Given When Needed
Req. Designation: Technology

HIST 253(3) Course ID:012985 2019-10-21
Greek Mythology
[Cross-listed with LIT253] This course will explore the beginnings of Greek culture through its myths, recorded primarily in Homer, Hesiod, the Greek dramatists of the 5th century BCE, and by later writers of the classical period, such as Apollonius of Rhodes, the Roman poet Ovid, and mythographers such as Apollodorus. As important as this rich textual record is the physical evidence of ancient Greek society. Since the late nineteenth century, archaeological excavations of sites associated with the ancient myths have steadily increased our understanding of their meaning and significance, as well as their relationship to ancient Greek religion and ritual. Finally, visual representations of the figures from myth and legend, found in vase paintings and sculptures, are essential to our full comprehension of the role of myth in the lived lives of Greeks.
Components: Lecture
Course Equivalents: LIT 253
Attributes: Two communication units, Cultures and Societies, Imaginative Arts, University Course, Given When Needed
Req. Designation: Technology

HIST 255(3) Course ID:011485 2022-02-11
Introduction to Global History
Introduction to Global History is a course that looks at global patterns through time, and attempts to see history as an integrated whole. Topics are studied in a general chronological order, but each is examined through a thematic lens, showing how people and societies experience exchanges, integration and differences. The course consists of lectures that allow exploration of these issues at either introductory levels or at a more advanced level.
Components: Lecture
Attributes: Cultures and Societies, Individual and Group Behavior, University Course, Given When Needed
Req. Designation: Technology

HIST 260(3) Course ID:012883 2018-09-17
The Soviet Union at War
The Soviet Union engaged in war throughout its 74-year history. This course will address the experience of World War One as a contributing factor to the Russian Revolution, the Russian Civil War (1918-1921), the Russo-Polish War (1919-21), intervention in the Spanish Civil War (1936-9), the Winter War (1939-40), the Great Patriotic War (1941-45), the Cold War including proxy wars and Soviet interventions during the period, the Soviet-Afghan War (1979-89) and the Gulf War (1990-91). Aspects to be considered include the conduct of and experience of war, development of Soviet defense capabilities, the diplomacy of war and peacemaking, the impact of war on Soviet society, and the international reactions to the Soviet Union.
Components: Lecture
Attributes: Cultures and Societies, Individual and Group Behavior, University Course, Given When Needed
Req. Designation: Technology
Course: HIST 270(3)

Course ID: 011756
Term: 2022-02-11
Course: Introduction to Society, Culture & Biology
This course welcomes students into the interdisciplinary world of the human and biological sciences. In this class we will encounter the myriad ways in which the human and biological sciences were constituted, defined, and intertwined in the nineteenth and twentieth century. Students will learn to place ideas and controversies within a broad historical and cultural context. They will gain experience evaluating and interpreting historical texts. They will evaluate scientific theories, controversies, and ethical failures.
Components: Lecture
Attributes: Cultures and Societies, Science, Technology and Society, University Course, Given When Needed
Req. Designation: Technology

Course: HIST 280(3)

Course ID: 012084
Term: 2022-02-11
Course: The Renaissance
This course surveys the age of European Renaissance from the late fourteenth century to the age of Galileo, including the cultural exchange between Europe and the Near East. Studying the process of rapid religious and geopolitical change provides the historical context for analyzing the works of the master painters, sculptors, and architects of the Renaissance.
Components: Lecture
Attributes: One communication unit, Cultures and Societies, Imaginative Arts, University Course, Given When Needed
Req. Designation: Technology

Course: HIST 290(3)

Course ID: 013163
Term: 2022-03-21
Course: Intro. to Africana Studies
This introduction to Africana Studies offers critical inquiry into the discipline of Pan-African (African and African American) Studies. It considers the historical and intellectual life of Africans and members of the African Diaspora from an “Afrocentric” perspective. Africana Studies offers an interrogation of: social and political systems, resistance and anti-colonial movements, and paradigms for cultural reclamation, transformation, and liberation. Students will be introduced to Africology and to Kawaida methodology.
Components: Lecture
Attributes: One Design Credit, Contemporary and Global Issues, Cultures and Societies, University Course, Offered Every Other Term
Req. Designation: Technology

Course: HIST 310(3)

Course ID: 013138
Term: 2022-02-11
Course: Indigenous People's History of New York State
A historical look into the Indigenous People's history within and with what is today called New York State. This course will focus on the specific interactions between Indigenous and non-indigenous peoples and their reflective influences on the history of the State, Federal and International Levels. Providing additional views on the Indigenous historical narrative as it relates to the more common New York State history.
Components: Lecture
Attributes: One communication unit, Contemporary and Global Issues, Cultures and Societies, University Course, Offered Even Springs
Req. Designation: Technology

Course: HIST 321(3)

Course ID: 012027
Term: 2020-02-26
Course: History of Public Health in America
This course surveys the history of public health in the United States from the colonial period to the late twentieth century, with the aim of providing students with an understanding of how history may inform twenty-first century challenges regarding the health of populations. We will explore public health responses to diseases such as smallpox, tuberculosis, typhoid, syphilis, and HIV/AIDS and examine the ways in which those responses actually framed the conceptions of disease. Some of the questions we will address include: Who is responsible for the public’s health? To what extent has the responsibility for the public’s health changed over time? What rights should individuals have if they endanger the health of others? How have class, race, ethnicity, gender, and sexuality shaped public responses to and understandings of disease?
Components: Lecture
Attributes: One communication unit, Cultures and Societies, Science, Technology and Society, University Course, Given When Needed
Req. Designation: Technology
HIST 322(3)
Course ID: 012976
2019-10-21

Indigenous North America Post-Contact
This course studies the history of North America—what some Indigenous peoples call "Turtle Island"—from contact to present. This course will introduce students to the historical processes that shaped Indigenous and settler history in North America. Throughout this course, students will analyse Indigenous history through a variety of historical lenses, including those of ethnohistory, environmental history, political history, and legal history. This course will cover a variety of themes including the nature of contact between Indigenous peoples and settlers, treaties, land claims, and education.
The course explores a variety of sources for studying and engages with Indigenous-centered perspectives that challenge conventional histories of colonialism, focusing on human migrations, economic expansions, and cultural developments.

Components: Lecture
Attributes: Cultures and Societies, Given When Needed
Req. Designation: Technology

HIST 327(3)
Course ID: 008527
2022-02-11

History of Women and Gender in America
This course focuses on the historical experiences of American women from the seventeenth-century era of colonization to the modern era (with an emphasis on the nineteenth and twentieth centuries), and it explores the role gender plays in shaping and defining American history. A separate investigation of women's experiences provides an understanding of 1) the distinct contributions of women to the American heritage, and 2) the ways in which gender intersects with race, ethnicity, class, sexuality, region, and religion in explaining social, cultural, and political developments in the United States.

Components: Lecture
Course Equivalents: HIST 527
Attributes: One communication unit, Cultures and Societies, Individual and Group Behavior, University Course, Given When Needed
Req. Designation: Technology
Liberal Arts - Humanities & Social Sciences - Subject: History

HIST 328(3)
Course ID: 011383
2022-02-11

History of Gender and Sexuality in the Transatlantic World

This is a historical look at the constructions of gender and sexuality throughout the Transatlantic world. Chronologically, it will focus on the period of 1492-1999. Topics to be covered include the constructions of genders in Europe, the Americas and Africa. The course will progress chronologically, however it will cover certain topics in depth and other topics as part of a broad overview. Students will come to understand how cultures and societies shape and are shaped by gender constructions. In addition, students will come to appreciate the historical individual’s negotiation of gender within a social grouping.

Components:
Lecture

Attributes:
Cultures and Societies, Individual and Group Behavior, University Course, Given When Needed

Req. Designation: Technology
School of Arts and Sciences - Humanities & Social Sciences - Subject: History

HIST 329(3) Course ID:010454 2022-02-11

History of the American Family
What is a family? How have social, political, and economic forces shaped American families? How has the family changed throughout history? Did the end of the twentieth century see the demise of the American family, as some social critics have claimed? Focusing on the United States, this course will examine the history of marriage, divorce, childrearing, sexuality, families of different races, ethnicities, religions, classes, and regions, and the portrayal of the family in the media, as well as controversial issues concerning the American family today.

Components: Lecture
Attributes: One communication unit, Contemporary and Global Issues, Cultures and Societies, University Course, Offered Odd Falls

Req. Designation: Technology

HIST 331(3) Course ID:010453 2022-02-11

Ancient Medicine and Magic
(Formerly LC331) In a seemingly hostile world controlled by unseen forces, ancient man fought to gain the upperhand in a daily struggle against illness and death. Using magic and medicine (both thought to be equally valid) he sought to understand his body and maintain his health. Primary written sources and information gleaned from skeletal and mummified human remains allow us to trace the development of medicine from its earliest appearance in Mesopotamia and Egypt to its more advanced form in Greece and Rome. Topics will include: disease, wounds, cures, surgery, the interplay between the supernatural and the mundane, physiology, life expectancy, nutrition, gynecology, and hygiene.

Components: Lecture
Attributes: Science, Technology and Society, Offered Odd Falls

Req. Designation: Technology

HIST 332(4) Course ID:011594 2022-02-11

Documenting Social Activism
The course explores social movements in United States after World War II and allows students to describe and interpret the complex nature of cultures and societies in historical context. The movements will focus on issues of racial civil rights, workers' rights, the women's movement, the gay rights movement, the American Indian Movement and the Students' Movements. Ranging from 1945 until the present day the course illustrates the process of social, cultural, and geopolitical change over time. This is a team taught course in which students will be required to create a documentary film. Therefore students will split their time between history lectures, seminar style discussion and documentary film production. The course has 3 hours of class and 3 hours of lab per week, and students should expect to do extensive out-of-class work. Limit of 20 students. Permission of one of the instructors required.

Components: Laboratory, Lecture
Attributes: One communication unit, Cultures and Societies, Imaginative Arts, University Course, Given When Needed

Req. Designation: Technology

HIST 333(3) Course ID:010808 2016-09-12

Science, Technology, and Society in the Renaissance
(Formerly LC395) Guns and printing were among the many revolutionary technological developments in Renaissance Europe. With the increased scale of war, feudal structures gradually dissolved and nationalism began to emerge. At the same time, religious reformation, with its theses disseminated through the printed page, helped shift the balance of power among states and individuals. Meanwhile, banking, commerce, and colonization, fueled by advances in navigation, promoted the beginning of capitalism. The theories of Copernicus, Kepler, and Galileo irreversibly changed ideas about man's place in the universe. Beginning with mathematical perspective and ending with the new scientific method, this courses will chart the extraordinary technological and scientific advances and profound economic and social changes that together mark the birth of the modern world.

Components: Lecture
Attributes: Cultures and Societies, Science, Technology and Society, University Course, Given When Needed

Req. Designation: Technology

HIST 335(3) Course ID:011511 2022-02-11

History of Medicine in Europe and North America
History of medicine is important even to those who think of themselves primarily as scientists or historians of science. Much of what we might initially see as biology, chemistry or physics was done within medicine, and even today a great deal of science either goes on in hospitals and the associated laboratories, or is at least nominally directed towards medical ends.

Components: Lecture
Attributes: Contemporary and Global Issues, Science, Technology and Society, University Course, Given When Needed

Req. Designation: Technology
**HIST 337(3) **
Course ID: 012036
2015-03-05

Medicine in Europe and America

From a distance, the study of medical history might appear little more than an idle pursuit - perhaps only a study of great men and their discoveries. However, even slight reflection on the social, institutional, and cultural features of medicine will lead us to reconsider much about medicine that we might before have taken for granted. Enrollment is limited to students participating in the Trudeau Semester.

Components: Lecture

Attributes: One communication unit, Cultures and Societies, Science, Technology and Society, University Course, Given When Needed

Requirement Group: Enrollment is limited to students participating in the Trudeau Semester.

Req. Designation: Technology

**HIST 338(3) **
Course ID: 011954
2022-02-11

Women, Gender and Science in American History

Why have science, medicine, and technology traditionally been the domains of men? What are the consequences of that? What has motivated women to become scientists, health care practitioners, and engineers? Has their growing participation changed the cultures of science, medicine, and technology? Focusing on the United States, this course examines (1) how preconceived notions about women, men, gender, and sexuality have shaped scientific ideas, and (2) the history of women as actual participants in science, medicine, and technology. We will use a historical perspective to shed light on current discussions about the gender dimensions of science.

Components: Lecture

Attributes: One communication unit, Cultures and Societies, Science, Technology and Society, University Course, Offered Even Springs

Req. Designation: Technology

**HIST 339(3) **
Course ID: 013029
2020-02-18

Engineering and the Environment in the Ancient World

Since earliest times humans have attempted to improve their lives by controlling their environments, often with unintended consequences. This course explores the impact of engineering on the environment in ancient Mesopotamia, Egypt, Greece and Rome. Students will consider such topics as irrigation and agricultural practices, exploitation of natural resources, water supply and management, fortifications, communication pathways (roads and shipping), sewage systems, and mining. We will also learn about the effects of climate change on human populations and productivity.

Components: Lecture

Attributes: One communication unit, Cultures and Societies, Science, Technology and Society, University Course, Offered Even Falls

Req. Designation: Technology

**HIST 340(3) **
Course ID: 011219
2022-02-11

Warfare in Ancient Greece

Study the major conflicts and conquests from the late Bronze Age to the founding of the Roman Empire. Topics include: weaponry and technological advances; reconstructions and battle-plans of specific engagements; combatants, non-combatants, and leaders; motivations, causes, and consequences; empire-building.

Components: Lecture

Attributes: Cultures and Societies, Offered Odd Springs

Req. Designation: Technology

**HIST 341(3) **
Course ID: 011000
2022-02-11

War in Ancient Rome

The Romans developed the most successful military organization of the ancient world, but it took a great deal of painful experience, political maneuvering, and reform to move from volunteer citizen-soldiers to the highly trained professional legionaries of the Empire. This course traces the history of the Roman military from the inception of the Republic to the height of the Empire. Using primary and secondary sources, we will study the major wars of the Republic and early Empire: the Punic Wars, Caesar's Gallic Wars, the Civil Wars, and the wars of Imperial expansion. Specific topics will include weapons and armor, tactics, strategy, fortifications, artillery, leadership, and the campaign experience of legionaries. We will also consider the social, political, and economic consequences of warfare, and the impact of the Roman army on non-Roman cultures.

Components: Lecture

Attributes: One communication unit, Cultures and Societies, Individual and Group Behavior, University Course, Offered Even Springs

Req. Designation: Technology
HIST 343(3)
War in the Middle Ages

[Formerly LC392] One popular image from the Middle Ages is the brightly armored knight, charging into battle on his steed and performing brave deeds of arms. While war was a defining force in the medieval era, the picture is somewhat more complex. This course will consider European warfare from the Carolingian period to the dawn of the Renaissance, including the origins of feudalism, the Crusades, and the Hundred Years War. Using primary and secondary sources, we will look at developments in arms, armor, training, strategy, tactics, logistics, and battlefield experience. Our problem will be to determine the relationship between warfare and the economic, social, religious, and political culture of medieval Europe.

Components: Lecture
Attributes: Cultures and Societies, Given When Needed
Req. Designation: Technology

HIST 347(3)
World War I

This course offers an in-depth examination of the World War I of 1914-18, its causes, campaigns, and consequences. Taking into account long-term and short-term factors, the war is considered as the first truly 'modern' war with new technologies playing a role in a conflict of truly catastrophic scale. While many of the histories of World War I focus on Western Europe, this course will consider the war in global context, providing an insight into how great power politics was changed by it, an examination of strategy and campaigns, and a consideration of scientific and technological development. Students will engage with both primary and secondary sources relating to the war including government documents, diaries, letters, artistic and literary depictions, film, as well as considering how the war has been and can be represented in various ways.

Components: Lecture
Attributes: One communication unit, Cultures and Societies, Imaginative Arts, University Course, Given When Needed
Req. Designation: Technology

HIST 348(3)
World War II

World War II was one of the pivotal events of the twentieth century, and it's legacies remain important to this day. The course will address the origins, outbreak, course, impact, and resolutions of the war. Taking a global perspective, the course goes beyond simply a study of battles and addresses all aspects of the war, from great civilian and military leaders to the common soldiers, along with social, cultural, and economic changes on the various home fronts. Students will engage with a range of primary and secondary material relating to World War II, including texts, film, novels, and material artifacts.

Components: Lecture
Attributes: One communication unit, Cultures and Societies, Individual and Group Behavior, University Course, Given When Needed
Req. Designation: Technology

HIST 349(3)

This course is intended to provide a general history of the Cold War, 1945-1991. We will discuss not only the evolution of the Soviet-American rivalry, but also the many smaller wars which emerged out of this larger conflict. Special attention will be paid throughout to the social, political, and cultural aspects of the Cold War. We will consider how the conflict was driven by social and political currents within the contending parties, and how the war shaped and transformed the societies that were a part of it.

Components: Lecture
Attributes: One communication unit, Cultures and Societies, Individual and Group Behavior, University Course, Offered Spring Term
Req. Designation: Technology

HIST 362(3)
Public History

This course provides students with knowledge of best practices in the presentation of public history while providing students with the skills and aptitudes for the preservation of African American, Indigenous American, and Ethnic Group History. Public history students learn basic archival theory and methodology and how documents and artifacts are preserved. The course teaches students to analyze, interpret, and evaluate historical evidence, to apply historical perspectives to contemporary issues, and include diverse cultural values. Students explore issues of ethics and politics, interpretation and access. The course provides students with an introduction to fields of inquiry which support preservation and historic interpretation including: museum studies, special collections, historic preservation, oral history and historic archeology. Students of public history gain historical and specialized knowledge and skills through site work and participation in inter-active events with the goal that they will be able to convey historical understanding
Africana Biography

This course examines the lives of African Americans in various modes of work and being. Students will study the life of an African American scientist, journalist, concert singer-humanist, and civil rights leader among others. Each of the biographies selected represent individuals who command respect within their political, scientific, spiritual, or artistic realm. This course allows for exploration of nuances in the Ethos of the people of the African Diaspora. Students will have the opportunity to understand the challenges of being an Africana/ African American Intellectual in the Americas.

Components: Lecture
Attributes: One communication unit, Contemporary and Global Issues, Imaginative Arts, University Course, Given When Needed
Req. Designation: Technology

Technology and the Modern State

In this course, students will explore how technologies of various types have been used in service of, or against, the modern state in the 19th-21st centuries. Topics may include: mega-projects and national identity, military technology, narratives of "invention" and "firsts," gender, race, and technology, technological modernity, technological discourses, and bodily experiences of everyday technology. At the end of the semester, students will create a public-facing project using primary and secondary historical sources.

Components: Lecture
Attributes: Cultures and Societies, Science, Technology and Society, University Course, Given When Needed
Req. Designation: Technology

Extreme Science: Marginal Environments in the History of Science

In this class, students will learn about the history of how science has been practiced in "extreme" environments at the limits of the geographic and environmental imagination since the seventeenth century. Topics may include: the microscopic world and the development of scientific instruments; empire, colonialism, and the sciences of oceanic and terrestrial exploration; geopolitics and international scientific cooperation; the "space race" and the "races" for the North and South Poles; and "extreme environments" in culture, art, and literature. By the end of the course, students will have a basic understanding of the connections between science, the environment, and the larger socio-cultural imagination, and will be encouraged to think like historians in their everyday lives.

Components: Lecture
Attributes: Cultures and Societies, Science, Technology and Society, University Course, Given When Needed
Req. Designation: Technology

Special Topic: History of Social Activism after WWII

The course explores social movements in United States after World War II. The movements will focus on issues of race and ethnicity, poverty, civil rights, civil liberties and gender discrimination. The social movements explored will cover the main organizations and key individuals. Special attention will be paid to the religious liberal tradition and grass roots activism.

Components: Lecture
Attributes: Liberal Arts-Soc Foundation Curriculum Course, Cultures and Societies, Given When Needed

Neuroscience and Society

The word 'neuroscience' is of recent origin. Yet we can trace neuroscientific ideas back to Rene Descartes. Since Descartes, social understanding of madness, the relationship between mind and brain, and the nature of sensation and perception has changed frequently. Beginning in the Age of Mechanical Man and ending in the Age of Prozac, our course focuses mainly on ways contemporary society has influenced neuroscientific thought and, in turn, the ways neuroscience has influenced society.

Components: Lecture
Course Equivalents: PY 459
Attributes: One communication unit, Science, Technology and Society, Given When Needed
HIST 490 (1 - 10)
Course ID: 008550
Date: 2015-02-03
Department Consent Required

Independent Study

Designed primarily for an advanced student who wishes to pursue special interests in history for one or more semesters, this series allows students to design and conduct independent study projects under faculty guidance.

Prerequisite: consent of the instructor.

Components: Independent Study

Attributes: Offered Each Term

HIST 498 (1 - 3)
Course ID: 008557
Date: 2015-01-23

Undergraduate TA

A student assists a faculty member in teaching a course. The student engages in substantial pedagogical work beyond mastery of the course material. Such activities may include mentoring students in course work, leading class discussions, designing and presenting course modules, etc. The primary objective is for the students to work with a faculty member to learn and practice pedagogical approaches in the discipline.

Components: Independent Study

Attributes: Given When Needed

HIST 499 (0)
Course ID: 008558
Date: 2015-02-09

Minor Portfolio

In this course, students complete their Liberal Arts Minor Portfolios under the direction of their minor advisor. The course is graded on a Pass-No Credit Basis.

Components: Independent Study

Attributes: Offered Each Term

HIST 527 (3)
Course ID: 012953
Date: 2019-09-02

History of Women and Gender in America

This course will cover the same subject area and topics as HIST 327. Additional materials at the graduate level will be expected of those who register under this catalog number.

Components: Lecture

Course Equivalents: HIST 327

Attributes: Cultures and Societies, Individual and Group Behavior, Given When Needed
Interdisciplinary Approaches to Systems Thinking

Course ID: 008386

Nature, society, and individuals are complex systems. Problems require a variety of perspectives to understand and propose solutions. This course will expose students to disciplinary, interdisciplinary, and systems thinking, including conceptual and problem solving models, to facilitate the dissection of, understanding of, and problem solving of complex issues in their personal, academic, societal, and professional lives. In addition to learning and discussing interdisciplinary and system thinking topics, students will write a series of papers exploring the same issue from different disciplines and then write a final paper that integrates these perspectives. Course sections will vary thematically and use of conceptual and problems solving models, but will emphasize small group and whole class discussion, critical reading, writing, and analysis, extensive written and oral communication, and collaborative work.

- **Components:** Discussion, Lecture
- **Attributes:** Offered Fall Term
- **Requirement Group:** Prerequisite: HP 100 and Honors Program students only

Introduction to Professional and Research Ethics

Course ID: 008387

This course aims to introduce Honors Program students to various ways of thinking about the ethical issues and moral dilemmas that they will encounter in their future careers, and to organize their thinking about what they should value and what principles they should act upon in order to act ethically. The first section of the course will focus on foundational issues in philosophical ethics, and the second section will focus on applications of these ethical theories to real-world professional and research settings.

- **Components:** Discussion, Lecture
- **Attributes:** One communication unit, Individual and Group Behavior, Science, Technology and Society, University Course, Offered Spring Term
- **Requirement Group:** Prerequisite: HP 100 and Honors Program students only

Introduction to Programming I

Course ID: 011194

This lab section will teach the computer competencies necessary for work at Clarkson and eventual research at the University.

- **Components:** Laboratory
- **Attributes:** Offered Fall Term
- **Requirement Group:** Prerequisite: HP 100 and Honors Program students only

Introduction to Programming II

Course ID: 011210

[Cross-listed with ES 100] This lab section will teach the computer competencies necessary for work at Clarkson and eventual research at the University.

- **Components:** Laboratory
- **Course Equivalents:** ES 100
- **Attributes:** Offered Spring Term
- **Requirement Group:** Prerequisite: HP 100 and Honors Program students only

Introduction to Community Engagement

Course ID: 008389

This course will employ methodologies from multiple fields and from diverse perspectives to help students develop and understanding of the social impacts of engagement through community-based service partnerships.

- **Components:** Seminar
- **Attributes:** One communication unit, Contemporary and Global Issues, Individual and Group Behavior, University Course, Offered Fall Term
- **Requirement Group:** Prerequisite: HP 100 and Honors Program students only

A Matter of Perspective: Reframing, Retelling, and Revision

Course ID: 008390

In this course, we'll first explore how narratives represent points of view. We will situate the narratives we've received within their particular social and historical contexts. Then, we'll examine the ways in which writers, directors, historians, or political scientists reconfigure, revise, and reimagine narratives in order to shift dominant ways of knowing.

- **Components:** Seminar
- **Attributes:** One communication unit, Cultures and Societies, Imaginative Arts, University Course, Offered Spring Term
- **Requirement Group:** Prerequisite: HP 100 and Honors Program students only
HP 280 (1 - 10)
Course ID: 008396
2015-02-09

Honors Independent Study

Designed for Honors Program sophomores who wish to pursue special interests that are consistent with the goals of the Honors Program. This series allows students to design and conduct independent study projects under faculty guidance.
Prerequisites: Consent of the Honors Director is required.
Components: Independent Study
Attributes: Offered Each Term

HP 300 (3)
Course ID: 008397
2022-06-10

Philosophy and Epistemology of Science and Technology

This course will explore the theory and practice of doing science through theoretical summaries and discussions and practical and technical workshops. Topics will include how scientific knowledge is created, what is the nature of scientific knowledge, how does bias affect our access to scientific knowledge, and is scientific knowledge limited. We will explore practical aspects of doing science through readings, case study discussions, and role playing on responsible conduct of research.
Components: Seminar
Attributes: One communication unit, Science, Technology and Society, Offered Fall Term

HP 380 (1 - 10)
Course ID: 008400
2015-02-09

Honors Independent Study

Designed for Honors Program juniors who wish to pursue special interests that are consistent with the goals of the Honors Program. This series allows students to design and conduct independent study projects under faculty guidance. Permission of the Honors Director is required.
Components: Independent Study
Attributes: Offered Each Term

HP 390 (3 - 10)
Course ID: 008401
2022-01-26

Honors Capstone Proposal Seminar

The main goal of this course is to guide honors program students through the capstone project proposal process leading to an approved capstone project proposal. Students will be exposed to the expected components of a capstone project through workshops on the elements of a capstone project proposal introduction, literature review, methodology/approach, expected results, and logistics sections. After each workshop, students draft these individual sections and garner feedback from the course instructor. After revising each section, students then will integrate individual sections into a full draft of their proposal which will be reviewed for feedback by their capstone project advisors, peer-reviewed by their classmates, and reviewed by the course instructor. This will result in a final draft of their capstone project proposal which will be sent out for independent evaluation, a required component, for feedback, with the ultimate goal of having an approved capstone project proposal. Other activities in the course include workshops on formal and informal
Components: Research
Attributes: Offered Each Term

HP 391 (1 - 0)
Course ID: 009667
2022-05-06

Honors Undergraduate Thesis

Components: Research
Attributes: Offered Each Term

HP 400 (3)
Course ID: 008402
2022-06-10

Solving for System Failures

This course explores failures in order to demonstrate analytical and practical skills in systems thinking. The first unit will explore how we define failure. The second unit will explore what we can learn from examining major system failures. Students will use transdisciplinary case studies to investigate how and why notable contemporary or historical failures occurred. The final unit will use a design approach and employ our own disciplinary and transdisciplinary expertise to propose possible solutions.
Components: Lecture
Attributes: One communication unit, Individual and Group Behavior, Offered Spring Term
Requirement Group: Prerequisite: HP 100 and Honors Program students only

HP 480 (1 - 10)
Course ID: 008404
2022-01-20

Honors Independent Study

Designed for Honors Program seniors who wish to pursue special interests that are consistent with the goals of the Honors Program. This series allows students to design and conduct independent study projects under faculty guidance. Permission of the Honors Director is required.
Components: Independent Study
Attributes: Offered Each Term
<table>
<thead>
<tr>
<th>Course ID: 008405</th>
<th>2022-01-26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honors Capstone Report Seminar</td>
<td></td>
</tr>
<tr>
<td>This course will guide honors program students through the first draft of their capstone project final report; in most cases, this first draft will be revised and approved as a capstone project final report in the following spring semester. However, students graduating a semester early may finalize their document during the course. In this course, students will be exposed to the overall organization of an expected capstone project final report through a variety of workshops and will use their capstone project proposal to update their introduction, literature review, and methodology/approaches sections. Students then will write up the additional expected sections of results/outcomes and implications and conclusion or equivalent sections depending on the type of project they are pursuing. This first draft of their capstone project report is based on capstone project progress at that time of the course and will garner input from the student's capstone project advisor, peers, and course instructor. Other activities in the course may include</td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Research</td>
</tr>
<tr>
<td>Attributes:</td>
<td>Offered Each Term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course ID: 009668</th>
<th>2017-01-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honors Undergraduate Thesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HS 1(1 - 4)
Course ID: 011631
2022-03-18
Health Science Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
Components: Independent Study
Attributes: Transfer Credit Only

HS 200(2)
Course ID: 012089
2022-03-18
Health Coaches I: Introduction to Community Healthcare
In a new collaboration with Canton-Potsdam Hospital, HS 200 is the first in a 2-semester sequence that trains students to become Health Coaches in the Potsdam community. Students will attend a weekly 2-hour seminar class in which they learn about key issues in current healthcare policy, management, and delivery. Each week, different healthcare practitioners will discuss a variety of topics, including healthcare delivery challenges in the community, ethical concerns regarding insurance, and heart disease. The end of the course focuses on patient care and skill building. The course will culminate in a group presentation of a case study. By the conclusion of this course, students will be equipped to begin health coaching with continued guidance.
Application required. Contact the instructor for more information.
Components: Lecture
Attributes: Offered Fall Term

HS 210(2)
Course ID: 012768
2022-03-18
Health Coaches II: Community Healthcare Practicum
HS210 is the second in a 2-semester sequence that trains students to become Community Health Coaches in the Potsdam area. This course is offered in collaboration with the Canton Potsdam Hospital, part of the St. Lawrence Health System. During this practicum, each student will be assigned a patient to work with and will visit the patient in their home and maintain phone contact. The Health Coach will help the patient manage their health and navigate the healthcare system. The Health Coach will also meet regularly with a Canton-Potsdam Hospital healthcare team to discuss their coaching approach and gain knowledge on how to best manage the particular situation of their patient. All HS210 students must have access to personal transportation.
Components: Practicum
Attributes: Given When Needed
Requirement Group: Prerequisites: HS200 and approval of instructor(s). Requirement: Access to transportation

HS 220(1)
Course ID: 012905
2022-03-18
Medicine & Healthcare Profession Seminar
Organized by the Career Center with assistance of the Pre-Health Advising Coordinator and in consultation with the Clarkson Health Professions Committee Chair, this course meets semi-weekly, and uses the seminar format to bring in human health professionals from a diversity of fields to discuss their professions, including what their professions encompass, the academic and experiential track they followed to become medical professionals, their perspective on the future directions of their fields, and opportunities for Clarkson students to pursue these fields. It will also bring representatives of different professional schools to discuss admission, expenses, and career opportunities.
Components: Seminar
Attributes: Offered Spring Term

HS 405(1)
Course ID: 012904
2022-03-18
Experiential Learning in Medicine & Healthcare
This is an independent study course under the mentorship of a member of the Health Professions committee. The student is required to complete at least 50 hours of work in a health profession setting. The work must include some form of interaction with health professionals and with patients or analogous health-service recipients. Examples include healthcare internships or volunteer positions at a hospital or clinic, completions of HS 210 Health Coaches II, serving as an EMT or emergency first-responder, serving as an athletic trainer. Conducting research with medical applications that does not involve working with patients/health-service recipients will not meet the requirements for this course. Upon completing the experience, the student will prepare a short (around 3 page) self-reflective essay on what the student did and learned during the experience, and how the experience has affected the student’s professional goals and preparation.
Components: Independent Study
Attributes: Offered Fall and Spring
HSS 120(1) Introducing the Liberal Arts

Course ID: 010998 **2020-06-05**

This course welcomes new Liberal Arts majors to Clarkson with a combination of activities designed to orient them to the disciplines represented in the department (Literature, Philosophy, Film, History, Political Science, Anthropology, Sociology and American Studies), with a particular emphasis on their differing perspectives and ways of thinking critically and solving problems. Students will gain hands-on experience in research methods, and the course will also explore the wide variety of career options open to those who graduate with a Liberal Arts degree. Finally, students will have the opportunity to get to know Clarkson, the North Country, the Liberal Arts faculty and each other better during the course of the semester.

Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: Freshman or Sophomore standing in a Humanities and Social Science major

HSS 210(3) Professional and Technical Writing

Course ID: 012990 **2019-10-29**

HSS 210 is an introduction to technical and professional writing. This course provides students with practical information about communicating in different kinds of workplace environments and professional/technical discourse communities. Throughout the semester students will produce and analyze common technical writing genres, including emails, letters, resumes, memos, reports, proposals, technical descriptions, technical definitions, technical manuals, and proposals. Students will work toward understanding how to analyze and react to rhetorical situations each genre and writing situation presents, including issues of audience, organization, visual design, style, and the material production of documents.

Components: Lecture
Attributes: Two communication units, Given When Needed

HSS 220(3) Writing Across the Disciplines

Course ID: 013041 **2020-04-28**

The overall goal of this online course is to enable students to be successful writers and scholars in the academy and to help students produce genres of writing used in their professions. Students will learn how to research and analyze in their chosen academic disciplines and how to use writing as a tool for discovery, thinking, and problem-solving. They will identify the conventions of their discourse communities and use these conventions in their own writing. While we will address the differences and similarities between writing in varying academic disciplines, most of the work in this course will be devoted to the study of students' own disciplinary groups and chosen fields. Where possible, students will work in smaller disciplinary cohorts to foster collaborative research and writing skills. Through flexible and rigorous research, students will be able to locate and define various genres of writing in their disciplines and gain the skills to become confident and competent writers.

Components: Lecture
Attributes: Two communication units, Given When Needed

HSS 310(1 - 6) Undergraduate Research

This is an opportunity to work one-on-one with a faculty member on an area of shared interest. It provides a chance to be involved in cutting-edge original research, practice research methods central to the relevant discipline, and become part of the research community in that field. The student will undertake research directed by the faculty member and related to the faculty member's research agenda, and will document the research through a formal research paper. Undergraduate research may lead to a presentation at Clarkson's RAPS conference, other academic conferences, and/or joint publication.

Requirement: Permission of the instructor
Components: Research
Attributes: Given When Needed
Humanities/Social Science Internship

Students gain experience in applying humanities and social science concepts and methods to issues, problems, or projects in professional contexts that are external to the Department of Humanities and Social Sciences. Internships typically occur during the fall or spring semester, but summer employment and co-op positions also can provide students with an internship experience depending on the type of work done. Students will work closely with a Faculty Supervisor to develop the academic component of the internship, which may take the form of outside readings, journal-writing as well as a major paper, project or exhibit related to or stemming from the work being done in the internship itself.

Components:
- Independent Study

Attributes:
- Offered Each Term

Requirement Group:
- Prerequisite: Consent of the Internship Director in the Department of Humanities and Social Sciences.
Major Research Seminar
This senior seminar is the capstone course for all students majoring in Humanities and Social Sciences. Taught every semester by a different member of the HSS faculty, the seminar focuses on broad-based interdisciplinary themes, including, for example, war and peace, poverty and social justice, cross-cultural issues, and the environment. Students will engage in readings and class discussions in preparation for writing their senior research papers. Significant portions of the seminar will be devoted to producing these research papers.

Components: Seminar

Attributes: Two communication units, Offered Each Term

Requirement Group: Prerequisites: Must be in History, Humanities, Interdisciplinary Social Sciences, Political Science or
Interdisciplinary Connections of History and Multicultural Literature

Framed around universal concepts of humanity (change, diversity, intolerance, ethics, creativity, freedom, and legacy), this course is designed to illustrate the interdisciplinary connections between secondary social studies and English language arts. Recognition that these key concepts span time and place, and are applicable to every period in history, will help to develop a broad understanding of the human experience, and the unity of humanity, through the study of history and multicultural literature. In addition to the historic and literature specific content of the course, other goals include development of empathy and a respect for diversity, as well as learning how to guide discussions that value different points of view.

Components: Seminar
Course Equivalents: EGL 575
Attributes: Given When Needed
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program.

MAT Project in History (Content Area)

The MAT Project is a one-term research project whose purpose is to allow students time and supervision to develop breadth and/or depth of knowledge to become a better teacher in their certification field. What the project will entail varies greatly from student to student. The course is intended to be custom-tailored to meet the specific needs of an individual intern. MAT projects are well-grounded in research and theory, but also include a strong and extensive applied aspect, directly addressing the question: What would this look like in the classroom?

Components: Seminar
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program.

Reel History

Reel History is an examination of themes and concepts related to the study of history. A range of historical topics across the New York state 7-12 social studies curriculum will be examined. Students will view and research films to analyze and evaluate the historical accuracy portrayed in film. Emphasis will be placed on determining the degree to which film can be used as a source for understanding history. Student research, presentations, and the development of curricular materials related to the use of film as a documentary evidence will be the basis of course assessments.

Components: Lecture
Attributes: Given When Needed
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program.

Independent Study in History

A graduate level course for which there is no comparable Clarkson course. This course may be used to satisfy course requirements for a graduate degree.

Components: Independent Study
Attributes: Given When Needed
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program.
HUM 1(2 - 4)
Course ID: 010950
2015-01-19
Humanities Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
Components: Independent Study
Attributes: Transfer Credit Only

HUM 490(1 - 10)
Course ID: 011225
2015-02-09
Department Consent Required
Independent Study
Designed primarily for an advanced student who wishes to pursue special interests in Humanities for one or more semesters, this series allows students to design and conduct independent study projects under faculty guidance.
Prerequisite: consent of the instructor.
Components: Independent Study
Attributes: Offered Each Term
IA 501(2)
Course ID: 012103
2018-01-16
Calculus
This course serves as a prerequisite course for MS Data Analytics students who do not have calculus background. Functions and graphs; derivative concept and formulas, including chain rule and implicit differentiation; integral concept; the Fundamental Theorem of Calculus; properties and applications of the derivative, including max-min problems and graph sketching; exponential, logarithmic, and inverse trigonometric functions.
Components: Lecture
Attributes: Given When Needed

IA 502(2)
Course ID: 012104
2018-01-16
Probability and Statistics
Prerequisite course for MS Data Analytics students who do not have calculus-based statistics and probability background. A calculus based introduction to topics in probability and statistics. Probability content includes events and sample spaces, the basic axioms of probability, discrete and continuous random variables (definitions and basic characterizations such as the means and variances) including binomial, Poisson, normal, exponential, student-t, and uniform distributions. Topics in statistics include the central limit theorem, statistical inference including confidence intervals and hypothesis testing for one and two sample data, and linear regression. Students will use statistical software to read data and interpret software generated output.
Components: Lecture
Attributes: Given When Needed

IA 503(2)
Course ID: 012105
2022-01-11
Introduction to Programming
Prerequisite course for MS Data Analytics students who do not programming background. This course introduces students to programming fundamentals and standard components, features and practices. Main programming concepts are introduced in an applied context. Practical emphasis is on sound programming practices and development methods.
Components: Lecture
Same As Offering: IA 503
Attributes: Given When Needed

IA 507(1)
Course ID: 012773
2017-01-24
Spreadsheet Analytics
The main purpose of this course is to enable students to acquire understanding and applicable knowledge of conducting exploratory analysis across different disciplinary fields using modern spreadsheet based tools and techniques. This course focuses on critical skills and tools for using the spreadsheet software packages for the purpose of conducting a variety of analytics tasks and operations to improve gathering, generation and presentation of organizational intelligence.
Components: Lecture
Attributes: Offered Spring Term

IA 510(3)
Course ID: 011987
2022-01-21
Database Modeling, Design & Implementation
This course is focused on key concepts of database modeling, design, and management, utilizing a variety of relational database management systems. Students will acquire understanding of proper data modeling approaches, grounded in underlying rationale for creating well-designed and efficient data repositories. They will be introduced to the variety of modeling and implementation approaches, and will gain understanding of unique advantages leading to the prevalence of the relational database model in today's systems. Students will learn to properly utilize basic methods and techniques for conceptually envisioning as well as designing databases which include Entity-Relationship (ER) modeling, relational modeling, normalization, and Structured Query Language (SQL).
Components: Lecture
Same As Offering: IA 510
Attributes: Offered Winter Term
IA 510(3)
Course ID: 011987
2022-01-21
Course Title: Database Modeling, Design & Implementation
Description: This course is focused on key concepts of database modeling, design, and management, utilizing a variety of relational database management systems. Students will acquire understanding of proper data modeling approaches, grounded in underlying rationale for creating well-designed and efficient data repositories. They will be introduced to the variety of modeling and implementation approaches, and will gain understanding of unique advantages leading to the prevalence of the relational database model in today's systems. Students will learn to properly utilize basic methods and techniques for conceptually envisioning as well as designing databases which include Entity-Relationship (ER) modeling, relational modeling, normalization, and Structured Query Language (SQL).
Components: Lecture
Same As Offering: IA 510
Attributes: Offered Winter Term

IA 520(3)
Course ID: 011989
2017-01-24
Course Title: Optimization Methods for Analytics
Description: Optimization is a structured approach to determining the best values for a set of decision possibilities given constraints and an objective expressed as a function of these decision variables. This course focuses on the design, development, and analysis of optimization models while using canned software to solve them. The students will solve a wide variety of optimization problems applicable to a wide variety of industries: manufacturing, distribution, health care, finance, marketing, etc. Students will develop optimization models using Microsoft Excel.
Prerequisites: An undergraduate course in probability and statistics, and an undergraduate course in introductory computer science or programming.
Components: Lecture
Attributes: Offered Fall Term

IA 530(3)
Course ID: 011990
2019-11-05
Course Title: Probability & Statistics for Analytics
Description: Probability theory is presented as a mathematical foundation for statistical inference. Axiomatic probability is introduced; standard discrete and continuous probability distributions are presented. Joint distributions and transformations are discussed. Probabilistic convergence concepts are introduced. The key objectives of this course are to formulate statistical models and find optimal solutions for statistical problems in economics, business, engineering, and science, have a global overview of the interplay between probability and statistics as well as master the art of writing statistical proofs well, consistent with the written tradition of the discipline, and have the skills to communicate statistical ideas effectively.
Components: Lecture
Same As Offering: IA 530
Attributes: Offered Winter Term

IA 530(3)
Course ID: 011990
2019-11-05
Course Title: Probability & Statistics for Analytics
Description: Probability theory is presented as a mathematical foundation for statistical inference. Axiomatic probability is introduced; standard discrete and continuous probability distributions are presented. Joint distributions and transformations are discussed. Probabilistic convergence concepts are introduced. The key objectives of this course are to formulate statistical models and find optimal solutions for statistical problems in economics, business, engineering, and science, have a global overview of the interplay between probability and statistics as well as master the art of writing statistical proofs well, consistent with the written tradition of the discipline, and have the skills to communicate statistical ideas effectively.
Components: Lecture
Same As Offering: IA 530
Attributes: Offered Winter Term

IA 605(3)
Course ID: 011991
2017-01-24
Course Title: Data Warehousing
Description: This course examines how data warehouses are used to successfully gather, structure, analyze, understand, and act on information. The components and design issues related to data warehouses and business intelligence techniques for extracting meaningful information from data warehouses are emphasized. The emphasis is on proper modeling techniques as well as the techniques for Extraction, Transformation and Loading (ETL) process. Various software tools will be used to demonstrate design, implementation, and utilization of data warehouses.
Components: Lecture
Attributes: Offered Fall Term
Course Catalog

Graduate Interdisciplinary - Data Science - Subject: Interdisciplinary Analytics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Offered Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA 626(3)</td>
<td>012107</td>
<td>2018-04-04</td>
</tr>
<tr>
<td>Big Data Processing and Cloud Services</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| This course will enable students to gain understanding of critical components and the processes of Big Data architecture. The course will take a hands on approach, enabling students to develop critical skills by creating data processing pipelines and procedures to transform and integrate structured, semi-structured and unstructured data. The course will provide students with understanding of web service based systems architecture and best practices for deployment of scalable applications for data analytics. This class will also teach students practical fundamentals of Cloud Computing and how it relates to Big Data. The class will cover both Apache Hadoop implementation as well as usage of leading industry solutions such as Elastic MapReduce. Throughout the class students will be taught how to recognize opportunities in big data analytics and how to match those opportunities with the most appropriate big data software. Students will learn the various data formats and be taught when to utilize each one. The course will take an empirical approach to teaching cloud computing technologies. Component: Lecture Attributes: Offered Fall Term Requirement Group: Prerequisites: IA 503, or IS 237, or CS 141, or equivalent

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Offered Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA 628(3)</td>
<td>012130</td>
<td>2017-01-24</td>
</tr>
<tr>
<td>Introduction to Big Data Architecture and Applications</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| The objective for this course is to provide an in-depth discussion of the big data architecture and its applications. The following topics will be covered: big data architecture from a data pipeline perspective; distributed file systems; massively scalable processing of big data, using the map and reduce model; access to big data via SQL-like interface; running search engines over big data; scripting over big data; and real-time access to big data. The course will be taught using the Hadoop ecosystem as a reference platform. The course will use a projects-driven approach where students will have ample opportunities to practice essential skills needed by a big data analyst, from cluster planning, through the development of data analytics, to the designing and building of big data applications. Component: Lecture Attributes: Offered Summer Term Requirement Group: Prerequisites: IA 503, IA 510, and IA 626 (or equivalent)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Offered Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA 630(3)</td>
<td>011992</td>
<td>2017-01-24</td>
</tr>
<tr>
<td>Modeling for Insight</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Although mathematical models have a long and compelling history of application in science and engineering, they are becoming increasingly important in the world of business. Some problems are well described by statistical (curve fitting models), but analyzing a business problem generates significant complexities that are often not well described by simply analyzing the historical data. In particular, to be able to answer questions of 'what if...?' often requires an understanding of system behaviors when we specifically to depart from previous (historical) practices. The critical contribution of these models is that they may allow the analyst to arrive at compelling insights to contribute to development of a reasoned action plan. This class will enable students to develop familiarity and facility in generating insightful models via modeling in realistic situations. Key skills to be developed include recognizing the key problem, developing a model structure for an unstructured problem, and intelligent analysis and interpretation of model results. Component: Lecture Attributes: Offered Spring Term Requirement Group: Prerequisites: IA 505, IA 510, IA 520, and IA 530 (or equivalents)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Offered Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA 640(3)</td>
<td>011993</td>
<td>2019-08-05</td>
</tr>
<tr>
<td>Information Visualization</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| The science of Information Visualization (InfoVis) seeks to understand the best way to achieve synergistic interaction of the human vision perception system and data. Data visualizations focus on two general application areas: (1) Enhancing the ability of the visual system to discover structure in the data leading to new insight and knowledge, and (2) Taking advantage of the visual display to support rapid diffusion of complex information throughout the organization achievable by the visualization applications. This class will study the techniques, systems, software, algorithms, and design principles that allow for maximal information transmission and knowledge discovery when working with complex data sets. Students will learn the key principles involved in information visualization through a project driven course, with students gaining background skills in design and application of innovative visualizations. Component: Lecture Same As Offering: IA 640 Attributes: Offered Spring Term
Graduate Interdisciplinary - Data Science - Subject: Interdisciplinary Analytics

IA 640(3) Course ID: 011993 2019-08-05

Information Visualization
The science of Information Visualization (InfoVis) seeks to understand the best way to achieve synergistic interaction of the human visual perception system and data. Data visualizations focus on two general application areas: (1) Enhancing the ability of the visual system to discover structure in the data leading to new insight and knowledge, and (2) Taking advantage of the visual display to support rapid diffusion of complex information throughout the organization achievable by the visualization applications. This class will study the techniques, systems, software, algorithms, and design principles that allow for maximal information transmission and knowledge discovery when working with complex data sets. Students will learn the key principles involved in information visualization through a project driven course, with students gaining background skills in design and application of innovative visualizations.

Components: Lecture

Same As Offering: IA 640

Attributes: Offered Spring Term

IA 650(3) Course ID: 011988 2017-01-24

Data Mining
Recent advances in information technology, together with the growth of the Internet have resulted in an explosion of data collected, stored, and disseminated. Because of its massive size, it is difficult for analysts to sift through the data even though it may contain useful information. Data mining holds great promise to address this problem by providing efficient techniques to uncover useful information hidden in large data repositories. Awareness of the importance of data mining is becoming widespread. Industry is creating more job opportunities for people who have interdisciplinary data analytic skills. They key objectives of this course are to teach the fundamental concepts of data mining and provide extensive hands-on experience in apply the concepts to real-world applications.

Students will have opportunities to learn both domain and technical knowledge to face the big data challenges

Components: Lecture

Attributes: Offered Summer Term

Requirement Group: Prerequisite: IA 530 or equivalent

IA 651(3) Course ID: 012851 2020-04-23

Applied Machine Learning
The objective of this course is to provide in-depth coverage of major supervised machine learning algorithms from an applied perspective, using a case studies approach. The following topics will be covered: machine learning paradigms; process and measurement of supervised learning; support vector machines; neural networks; other selected machine learning algorithms; feature engineering; case studies selected from different domains, such as text and natural language processing, electrical engineering, business, and vision and image processing. The course will be taught using an industry accepted language, such as Python or R, and associated machine learning packages. The course will use a projects-driven approach where students will have ample opportunities to practice essential skills needed by a machine learning practitioner, from the preparation and planning of data for training and testing, through feature selection, to the deployment of machine learning based applications.

Components: Lecture

Same As Offering: IA 651

Attributes: Offered Spring Term

Requirement Group: Prerequisite: IA 530

IA 651(3) Course ID: 012851 2020-04-23

Applied Machine Learning
The objective of this course is to provide in-depth coverage of major supervised machine learning algorithms from an applied perspective, using a case studies approach. The following topics will be covered: machine learning paradigms; process and measurement of supervised learning; support vector machines; neural networks; other selected machine learning algorithms; feature engineering; case studies selected from different domains, such as text and natural language processing, electrical engineering, business, and vision and image processing. The course will be taught using an industry accepted language, such as Python or R, and associated machine learning packages. The course will use a projects-driven approach where students will have ample opportunities to practice essential skills needed by a machine learning practitioner, from the preparation and planning of data for training and testing, through feature selection, to the deployment of machine learning based applications.

Components: Lecture

Same As Offering: IA 651

Attributes: Offered Spring Term
This course is based on a semester-long sponsored project that utilizes a variety of expertise areas, methods, and skills in data analytics. Students participating in this course will be divided into inter-disciplinary teams charged with planning, designing, and implementing an analytics solution for the organization that sponsors the project. In addition to the continuous interaction with the sponsoring organization representatives, students will be required to report and consult with the faculty project supervisor on a regular basis. Depending on the nature of the capstone and its sponsorship, projects could be on-site fieldwork intensive. Final deliverables include written reports and oral presentations.

Components:
- Independent Study

Attributes:
- Offered Summer Term
Making and Communicating Innovation

(Cross Listed with COMM120) This course will provide a high level overview of prototyping digital and physical innovations and will provide instruction on communicating innovations. Making topics covered include but are not limited to 3D modeling/printing, audio and video principles/recording/editing, basic video shooting/editing. Communication topics include but are not limited to context, audience, and purpose analysis, genres in business and technical communication, pitching, writing style, and writing and revision processes. This is a hybrid course that will include in person and virtual sessions.

Components:
- Lecture

Course Equivalents:
- COMM 120

Attributes:
- Given When Needed
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 1(2 - 4)</td>
<td>008422</td>
<td>2015-06-30</td>
</tr>
<tr>
<td>Information Systems Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Independent Study</td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Transfer Credit Only</td>
<td></td>
</tr>
<tr>
<td>IS 2(2 - 4)</td>
<td>008423</td>
<td>2015-06-30</td>
</tr>
<tr>
<td>Information System Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Independent Study</td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Transfer Credit Only</td>
<td></td>
</tr>
<tr>
<td>IS 110(3)</td>
<td>008425</td>
<td>2022-02-10</td>
</tr>
<tr>
<td>Introduction to Business Intelligence and Data Analytics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Offered Fall and Spring</td>
<td></td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisite: Freshman or Sophomore standing.</td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
</tr>
<tr>
<td>IS 200(1)</td>
<td>008424</td>
<td>2015-06-30</td>
</tr>
<tr>
<td>ERP Fundamentals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Offered Each Term</td>
<td></td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Restriction: Students may not receive credit for IS200 as well as IS211.</td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
</tr>
<tr>
<td>IS 237(3)</td>
<td>011760</td>
<td>2016-04-06</td>
</tr>
<tr>
<td>Introduction to Application Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Offered Spring Term</td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
</tr>
<tr>
<td>IS 301(3)</td>
<td>008427</td>
<td>2022-02-10</td>
</tr>
<tr>
<td>Applied Data Analytics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Cross listed with EM301] Proper utilization of modern analytical tools is a critical component of effective and timely creation and use of organizational intelligence in a variety of fields of human endeavor: management, social science, health care, engineering etc. This course focuses on critical skills for using software tools such as Excel, SQL, and Tableau (or their equivalents) for the purpose of conducting a variety of analytics tasks and operations to improve gathering, generation and presentation of organizational intelligence. Focus is on proper data gathering and preparation, followed by the use of key analysis grouping and summation tools as well as data presentation and visualization.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Course Equivalents:</td>
<td>EM 301</td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Offered Fall and Spring</td>
<td></td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisite: IS110. Students may not receive credit for IS200 as well as IS211.</td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
</tr>
<tr>
<td>Course ID: 008438</td>
<td>2015-06-30</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>IS 314(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Title:</td>
<td>Database Design & Management</td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td>[Cross-listed with EM 314] This course provides the student with in-depth knowledge of database analysis, design, and implementation principles. Students who successfully complete this course will be able to use the entity-relationship data model to represent business data requirements, to translate that model into a relational schema, to normalize this schema and to build and use a relational database that implements the schema, using the Standard Query Language (SQL).</td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Equivalents:</td>
<td>EM 314</td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course ID: 008436</th>
<th>2017-07-06</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 400(3)</td>
<td></td>
</tr>
<tr>
<td>Course Title:</td>
<td>Process and System Analysis and Modeling</td>
</tr>
<tr>
<td>Description:</td>
<td>Students are expected to master the fundamentals of business process analysis and application design using the traditional and agile analysis and modeling approaches. Students will learn methodologies and project management skills by completing an array of individual assignments that involve planning, design and prototyping of business application systems. A mock prototype software application based on the analysis will be developed throughout the course. Offered Fall semesters.</td>
</tr>
<tr>
<td>Components:</td>
<td></td>
</tr>
<tr>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td></td>
</tr>
<tr>
<td>Offered Fall Term</td>
<td></td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisites: IS237 or CS141 or EE261</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course ID: 008439</th>
<th>2016-11-08</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 415(3)</td>
<td></td>
</tr>
<tr>
<td>Course Title:</td>
<td>Data Warehousing for Analytics</td>
</tr>
<tr>
<td>Description:</td>
<td>[Cross-listed with EM 415] This course covers the fundamental concepts, design, management and application of data warehouses and business/enterprise intelligence systems. Specific topics covered include the logical design of a data warehouse, the data staging area and extraction-transformation-loading process, the design, implementation and utilization of multi-dimensional data analysis systems, as well as key business/enterprise intelligence concepts, processes and techniques including knowledge discovery and exploratory analysis.</td>
</tr>
<tr>
<td>Offered Fall semesters.</td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td></td>
</tr>
<tr>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Course Equivalents:</td>
<td>EM 415</td>
</tr>
<tr>
<td>Attributes:</td>
<td></td>
</tr>
<tr>
<td>Offered Spring Term</td>
<td></td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisites: IS314 or CS460/EE468</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course ID: 011274</th>
<th>2019-10-22</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 426(3)</td>
<td></td>
</tr>
<tr>
<td>Course Title:</td>
<td>Big Data Architecture</td>
</tr>
<tr>
<td>Description:</td>
<td>This course will enable students to gain understanding of critical components and the processes of big data architecture. The course will take a hands-on approach, enabling students to develop skills for creating data processing pipelines and procedures to transform and integrate structured, semi-structured and unstructured data. The course will provide students with an understanding of web service based systems architecture and best practices for deployment of scalable applications for data analytics. Offered Fall semesters.</td>
</tr>
<tr>
<td>Components:</td>
<td></td>
</tr>
<tr>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td></td>
</tr>
<tr>
<td>Offered Fall Term</td>
<td></td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisites: IS211, IS314, IS237, CS141 or EE261, or IS110</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course ID: 008441</th>
<th>2016-11-08</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 428(3)</td>
<td></td>
</tr>
<tr>
<td>Course Title:</td>
<td>Information Systems for Supply Chain Management</td>
</tr>
<tr>
<td>Description:</td>
<td>This course will be focused on information systems that enable supply chain integration. Redesign of core intra and inter-enterprise business processes will be discussed in detail. Students will be introduced to and will get hands-on experience with latest technologies such as Extended Enterprise Systems. The trend of outsourcing of business and supply chain processes to distant geographical locations and its impact on business practices and strategies will be discussed in detail. Course material will be comprises of book chapters, cases, labs, and project work to apply concepts learned in the course, and to include hands-on experience with business process driven enterprise software (e.g. SAP Advanced Planner & Optimizer).</td>
</tr>
<tr>
<td>Components:</td>
<td></td>
</tr>
<tr>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td></td>
</tr>
<tr>
<td>Offered Fall and Spring</td>
<td></td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisite: OM331.</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course ID</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>IS 437(3)</td>
<td>008442</td>
</tr>
<tr>
<td>IS 487(1 - 3)</td>
<td>008445</td>
</tr>
</tbody>
</table>
IS 501(0)
Course ID: 012515 **2017-06-21**

Mathematics of Management
Formerly MBA 1] This course focuses on mathematics useful in modeling management processes. Fundamental concepts of differential and integral calculus and their applications to management are addressed.

- **Components:** Lecture
- **Attributes:** Given When Needed
- **Req. Designation:** Technology

IS 502(0)
Course ID: 012516 **2017-06-21**

Introduction to Probability
Formerly MBA 2] This course covers marginal, joint and conditional probability; random variables, expected value and variance; selected probability distributions and their uses in management; and sampling distributions and the Central Limit Theorem.

- **Components:** Lecture
- **Req. Designation:** Technology
Information Systems (MBA Module)

In this course the role of information systems and information technology in managing modern information age enterprises is explored. The focus of the course is on (a) establishing the basic knowledge of information systems (b) strategic significance of information systems to various businesses and industries (c) role of information systems as a strategic weapon to compete in the global marketplace and (d) role of information systems in transforming modern business organizations. Advanced topics of enterprise resources planning and emergent visions and practices such as electronic commerce, web-based information systems, and corporate intranets and extranets are reviewed in a framework of strategic information planning. Real life cases of information systems are analyzed and discussed to reinforce the understanding of concepts introduced in the course.

Prerequisites: completion of all CUSB MBA foundation requirements admission to the MBA program.

Components: Lecture

Course Equivalents: IS 606, IS 606

Req. Designation: Technology
IS 606(3)
Course ID: 008455
2020-01-05
Business Information Systems
(Cross-listed with IS 605) This course explores the role of information technology and systems (IT/IS) in today’s organizations. The focus of this course is on the fundamentals of information systems and investigating the strategic importance of information systems to various businesses and industries as well as the role of information systems in transforming modern business organizations. Topics will include: Planning an IT application portfolio, system implementation, IT driven process redesign, IT governance and IT/IS as a source of competitive advantage. We will examine specific information technologies and applications such as: enterprise systems, cloud computing, social media, and business intelligence. The structure of the course will include readings, group work / discussions and case studies highlighting the IT/IS related issues faced by organizations.
Components: Lecture
Same As Offering: IS 606
Course Equivalents: IS 605
Attributes: Offered Winter Term
Req. Designation: Technology

IS 642(3)
Course ID: 013079
2021-04-21
Applications in Business Analytics
This course provides an introduction to Big Data and Analytics and examines a set of systems and applications, which specifically are supporting the Big Data World. Students will learn the basic concepts behind data retrieval and analytics, explore and discuss the development of these systems. Data analytics applications will be applied to current business problems, to illustrate how organizations can gain a competitive advantage with the implementation and usage of such applications. Students will gain the conceptual knowledge for business analytics concepts as well as practical experience with the structural dimension for data analytics. The main focus of this course will be to collect, preprocess, analyze and present structured and unstructured data, using advanced Data Analytics software.
Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology

IS 647(3)
Course ID: 012524
2018-09-17
Statistical Methods for Data Analytics
(Formerly MBA 506) [Cross Listed with HC647] This course covers the analytic process that supports data-driven decision-making in business. Emphasis is placed on problem formulation, data acquisition, selection of appropriate statistical approaches, and effective communication of analytic results. Topics covered include data visualization, data description methods, statistical inference, and model building. Examples are drawn from quality management, finance, operations, supply chain management, marketing and healthcare. Data visualization and analysis will be performed using statistical software.
Components: Lecture
Same As Offering: IS 647
Course Equivalents: HC 647
Req. Designation: Technology
Statistical Methods for Data Analytics

[Formerly MBA 506] [Cross Listed with HC647] This course covers the analytic process that supports data-driven decision-making in business. Emphasis is placed on problem formulation, data acquisition, selection of appropriate statistical approaches, and effective communication of analytic results. Topics covered include data visualization, data description methods, statistical inference, and model building. Examples are drawn from quality management, finance, operations, supply chain management, marketing and healthcare. Data visualization and analysis will be performed using statistical software.

Components:
- Lecture

Same As Offering:
- IS 647

Course Equivalents:
- HC 647

Req. Designation:
- Technology
IS 999(1 - 10)
Course ID: 012738
2016-08-29
Special Graduate Topics
A graduate level course for which there is no comparable Clarkson course. Used for transfer credit only.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Transfer Credit Only</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>
Information Technology Elective

A college level course for which there is no comparable Clarkson course. Used for transfer credit only. This course may be used to satisfy a Technology Requirement.

Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology
Software Systems
This course is an introduction to software design and implementation. After a review of basic programming concepts, students will be introduced to procedural and data abstraction, object-oriented design, recursion and dynamic data structures. Abstract data types such as lists, stacks, queues, and trees will be studied. Algorithms for searching and sorting will be explored along with methods for comparative analysis. Programming concepts will be demonstrated in a language like C++. The course will also include an introduction to the Unix operating system.
Prerequisite: programming experience.
Components: Lecture
Attributes: Offered Each Term
Req. Designation: Technology
Graduate Interdisciplinary - Subject: Information Technology

<table>
<thead>
<tr>
<th>Course ID: 010326</th>
<th>2017-01-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT 521(1 – 10)</td>
<td></td>
</tr>
<tr>
<td>Information Technology Independent Project</td>
<td></td>
</tr>
<tr>
<td>Independent project under the direction of a Clarkson professor.</td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Independent Study</td>
</tr>
<tr>
<td>Attributes:</td>
<td>Given When Needed</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>
Graduate Interdisciplinary - Computer Science - Subject: Information Technology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Offered Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT 522(1-4)</td>
<td>010996</td>
<td>2017-01-12</td>
</tr>
<tr>
<td>IT 620(1-9)</td>
<td>008484</td>
<td>2021-12-14</td>
</tr>
<tr>
<td>IT 621(1-9)</td>
<td>008485</td>
<td>2021-12-14</td>
</tr>
</tbody>
</table>

IT 522(1 - 4) - Information Technology Independent Project

- **Course ID:** 010996
- **Offered Date:** 2017-01-12
- **Independent project under the direction of a Clarkson professor.**
- **Components:** Independent Study
- **Attributes:** Given When Needed
- **Req. Designation:** Technology

IT 620(1 - 9) - Information Technology Project

- **Course ID:** 008484
- **Offered Date:** 2021-12-14
- **Independent project work in IT under the supervision of a Clarkson professor.**
- **Components:** Independent Study
- **Attributes:** Offered Each Term
- **Req. Designation:** Technology

IT 621(1 - 9) - Information Technology Project

- **Course ID:** 008485
- **Offered Date:** 2021-12-14
- **Independent project work in IT under the supervision of a Clarkson professor.**
- **Components:** Independent Study
- **Attributes:** Offered Spring Term
- **Req. Designation:** Technology
Special Graduate Topics
A graduate level course for which there is no comparable Clarkson course. This course may be used to satisfy course requirements for a graduate degree.

Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Credit Hours</th>
<th>Attributes</th>
<th>Req. Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANG 1(2 - 4)</td>
<td>008487</td>
<td>2</td>
<td>Independent Study</td>
<td>Technology</td>
</tr>
<tr>
<td>LANG Elective</td>
<td></td>
<td></td>
<td>Transfer Credit Only</td>
<td></td>
</tr>
<tr>
<td>LANG 2(2 - 4)</td>
<td>008488</td>
<td>2</td>
<td>Independent Study</td>
<td>Technology</td>
</tr>
<tr>
<td>LANG Elective</td>
<td></td>
<td></td>
<td>Transfer Credit Only</td>
<td></td>
</tr>
<tr>
<td>LANG 10(2 - 0)</td>
<td>011912</td>
<td>2</td>
<td>Lecture</td>
<td>Technology</td>
</tr>
<tr>
<td>LANG Elective</td>
<td></td>
<td></td>
<td>Transfer Credit Only</td>
<td></td>
</tr>
<tr>
<td>LANG 12(2 - 0)</td>
<td>011913</td>
<td>2</td>
<td>Lecture</td>
<td>Technology</td>
</tr>
<tr>
<td>LANG Elective</td>
<td></td>
<td></td>
<td>Transfer Credit Only</td>
<td></td>
</tr>
<tr>
<td>LANG 14(2 - 0)</td>
<td>011914</td>
<td>2</td>
<td>Lecture</td>
<td>Technology</td>
</tr>
<tr>
<td>LANG Elective</td>
<td></td>
<td></td>
<td>Transfer Credit Only</td>
<td></td>
</tr>
<tr>
<td>LANG 16(2 - 0)</td>
<td>011915</td>
<td>2</td>
<td>Lecture</td>
<td>Technology</td>
</tr>
<tr>
<td>LANG Elective</td>
<td></td>
<td></td>
<td>Transfer Credit Only</td>
<td></td>
</tr>
<tr>
<td>LANG 18(2 - 0)</td>
<td>011916</td>
<td>2</td>
<td>Lecture</td>
<td>Technology</td>
</tr>
<tr>
<td>LANG Elective</td>
<td></td>
<td></td>
<td>Transfer Credit Only</td>
<td></td>
</tr>
<tr>
<td>LANG 20(2 - 0)</td>
<td>011917</td>
<td>2</td>
<td>Lecture</td>
<td>Technology</td>
</tr>
<tr>
<td>LANG Elective</td>
<td></td>
<td></td>
<td>Transfer Credit Only</td>
<td></td>
</tr>
<tr>
<td>LANG 22(2 - 0)</td>
<td>011918</td>
<td>2</td>
<td>Lecture</td>
<td>Technology</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course ID</td>
<td>Run Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LANG 100(3)</td>
<td>011442</td>
<td>2015-01-19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introductory French Language</td>
<td>Credit for this course is awarded only in the following cases: 1) receipt of a score of 5 through 7 on the International Baccalaureate French B Higher-Level Examination or 2) satisfactory completion of a college-level Introductory French course. Components: Independent Study Attributes: Transfer Credit Only Req. Designation: Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LANG 101(3)</td>
<td>011443</td>
<td>2015-01-19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introductory German Language</td>
<td>Credit for this course is awarded only in the following cases: 1) receipt of a score of 5 through 7 on the International Baccalaureate German B Higher-Level Examination or 2) satisfactory completion of a college-level Introductory German course. Components: Independent Study Attributes: Transfer Credit Only Req. Designation: Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LANG 102(3)</td>
<td>011444</td>
<td>2015-01-19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introductory Italian Language</td>
<td>Credit for this course is awarded only in the following cases: 1) receipt of a score of 5 through 7 on the International Baccalaureate Italian B Higher-Level Examination or 2) satisfactory completion of a college-level Introductory Italian course. Components: Independent Study Attributes: Transfer Credit Only Req. Designation: Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LANG 103(3)</td>
<td>011445</td>
<td>2021-06-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introductory Spanish Language</td>
<td>Credit for this course is awarded only in the following cases: 1) receipt of a score of 5 through 7 on the International Baccalaureate Spanish B Higher-Level Examination or 2) satisfactory completion of a college-level Introductory Spanish course. Components: Independent Study Req. Designation: Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
School of Arts and Sciences - Humanities & Social Sciences - Subject: Language

LANG 104(3) Course ID:012123 2015-08-23
Introductory English Language
Credit for this course is awarded only in the following case: Receipt of a score of 5 through 7 on the
International Baccalaureate English B Higher-Level Examination.
Components: Lecture
Attributes: Transfer Credit Only
Req. Designation: Technology

LANG 110(3) Course ID:011446 2020-07-15
Chinese Language and Culture
An Introductory Language course that covers both Chinese language and culture. No previous knowledge of
Chinese language is required. Not open to native speakers of Chinese.
Components: Lecture
Attributes: Cultures and Societies
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID:</th>
<th>011447</th>
<th>2015-01-19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japanese Language and Culture</td>
<td>LANG 111(3)</td>
<td></td>
</tr>
</tbody>
</table>

Credit for this course is awarded only in the following cases: 1) receipt of a score of 5 or 6 on the AP Japanese Language & Culture Examination or 2) satisfactory completion of a comparable college-level course that covers both Japanese language and culture.

Components: Independent Study

Attributes: Cultures and Societies, Transfer Credit Only

Req. Designation: Technology
LANG 112(3)
Course ID: 012128 **2015-10-27**

Spanish Language and Culture
An Introductory Language course that covers both Spanish language and culture. No previous knowledge of Spanish language is required. Not open to native speakers of Spanish.

Components: Lecture
Attributes: Cultures and Societies, Given When Needed
Req. Designation: Technology

LANG 113(3)
Course ID: 013160 **2022-03-18**

French Language and Culture
An Introductory Language course that covers both French language and culture. No previous knowledge of French language is required. Not open to native speakers of French.

Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology
LANG 150(3) Intermediate French Language

Credit for this course is awarded only in the following cases: 1) receipt of a 4 or 5 on the AP French Language Exam, 2) receipt of a score of 5 through 7 on the International Baccalaureate French A1 or A2 Higher-Level Examination, or 3) satisfactory completion of a college-level Intermediate French course.

Components: Independent Study
Attributes: Cultures and Societies, Transfer Credit Only
Req. Designation: Technology

LANG 151(3) Intermediate German Language

Credit for this course is awarded only in the following cases: 1) receipt of a 4 or 5 on the AP German Language Exam, 2) receipt of a score of 5 through 7 on the International Baccalaureate German A1 or A2 Higher-Level Examination, or 3) satisfactory completion of a college-level Intermediate German course.

Components: Independent Study
Attributes: Cultures and Societies, Transfer Credit Only
Req. Designation: Technology

LANG 152(3) Intermediate Italian Language

Credit for this course is awarded only in the following cases: 1) receipt of a 4 or 5 on the AP Italian Language & Culture Exam, 2) receipt of a score of 5 through 7 on the International Baccalaureate Italian A1 or A2 Higher-Level Examination, or 3) satisfactory completion of a college-level Intermediate Italian course.

Components: Independent Study
Attributes: Cultures and Societies, Transfer Credit Only
Req. Designation: Technology

LANG 153(3) Intermediate Spanish Language

Credit for this course is awarded only in the following cases: 1) receipt of a 4 or 5 on the AP Spanish Language Exam, 2) receipt of a score of 5 through 7 on the International Baccalaureate Spanish A1 or A2 Higher-Level Examination, or 3) satisfactory completion of a college-level Intermediate Spanish course.

Components: Independent Study
Attributes: Cultures and Societies, Transfer Credit Only
Req. Designation: Technology
LAT 580(3) Course ID: 012500 2021-10-08
MAT Project in Latin (Content Area)
The MAT Project is a one-term research project whose purpose is to allow students time and supervision to develop breadth and/or depth of knowledge to become a better teacher in their certification field. What the project will entail varies greatly from student to student. The course is intended to be custom-tailored to meet the specific needs of an individual intern. MAT projects are well-grounded in research and theory, but also include a strong and extensive applied aspect, directly addressing the question: What would this look like in the classroom?
Components: Seminar
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program
Req. Designation: Technology

LAT 988(3) Course ID: 012504 2017-07-01
Independent Study in Latin
A graduate level course for which there is no comparable Clarkson course. This course may be used to satisfy course requirements for a graduate degree.
Components: Independent Study
Attributes: Given When Needed
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program
Req. Designation: Technology

LAT 989(3) Course ID: 012505 2017-07-01
Independent Study in Latin
A graduate level course for which there is no comparable Clarkson course. This course may be used to satisfy course requirements for a graduate degree.
Components: Independent Study
Attributes: Given When Needed
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program
Req. Designation: Technology
LIB 201(3) Course ID:012988 2019-10-23

Digital Citizenship & Information as Power
How has our access to and consumption of information changed over time? How will it change in the future? How can we be responsible citizens and media consumers in today's information landscape? This discussion-based course will consider the history and analysis of information creation and use, with an emphasis on the news media and scholarly publishing. Students will learn to analyze the source, purpose, and quality of information and consider the ethical implications of information collection and use. Topics will include the history of the news media and propaganda, information production and ethics, evaluation of information, the movement toward a participatory culture, social media and the news, fake news and "alternative facts," media consumption, and the 1st Amendment and media regulation. Students will also be given an in-depth introduction to the college level research process, focused on a topic of their own choosing. Students will leave the course comfortable with using library resources and able to excel at

Components: Lecture
Attributes: Offered Each Term
Req. Designation: Technology

LIB 202(3) Course ID:013102 2021-04-13

Digital Citizenship & Information as Power: True Crime
Do you find yourself drawn to the latest true crime documentary, book, or podcast? Are you intrigued by stories of infamous bad acts and their impact on society? Throughout history people have been captivated by stories of true crime in all formats. This discussion-based course will consider the history and analysis of information creation and use with an emphasis on true crime media and scholarly publishing in all aspects of criminology. Topics will include a history of true crime media, information production and ethics, evaluation of true crime information resources, the 1st Amendment and media regulation, and the movement toward a participatory culture (web sleuthing, etc.). Students will be given and in-depth introduction to the college level research process, focused on a true crime aspect of their choosing. Students will leave the course comfortable with using library resources and able to excel at college level research. All majors are encouraged to enroll, and there are no prerequisites.

Components: Lecture
Req. Designation: Technology
School of Arts and Sciences - Humanities & Social Sciences - Subject: Literature

LIT 1(2 - 4)
Course ID:008559
2015-01-19

LIT Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

LIT 2(2 - 4)
Course ID:008560
2015-01-19

LIT Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
This course may be used to satisfy a Humanities or Social Science Foundation Curriculum Requirement, depending on the specific designator.
Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

LIT 101(3)
Course ID:011181
2015-01-19

Literature & Writing
Credit for this course is awarded only in the following cases: 1) receipt of a score of 4 or 5 on the AP English Literature & Composition Exam; 2) receipt of a score of 5 through 7 on a designated International Baccalaureate Higher Level Examination; or 3) satisfactory completion of an approved college-level course. The University Registrar in Student Administrative Services maintains the current lists of the designated IB Exams and approved college-level courses.
Components: Lecture
Attributes: One communication unit, Imaginative Arts, Transfer Credit Only
Req. Designation: Technology
Liberal Arts - Humanities & Social Sciences - Subject: Literature

LIT 102(3)
Course ID: 011452
2015-01-19

French Literature
Credit for this course is awarded only in the following cases: 1) receipt of a score of 4 or 5 on the AP French Literature Examination or 2) satisfactory completion of a third-year college French Literature course.

Components: Independent Study
Attributes: Cultures and Societies, Imaginative Arts, University Course, Transfer Credit Only
Req. Designation: Technology

LIT 103(3)
Course ID: 011453
2015-01-19

The Works of Vergil
Credit for this course is awarded only in the following cases: 1) receipt of a score of 4 or 5 on the AP Latin: Vergil Examination or 2) satisfactory completion of a third-year college Latin Literature course that focuses on the works of Vergil.

Components: Independent Study
Attributes: Cultures and Societies, Imaginative Arts, University Course, Transfer Credit Only
Req. Designation: Technology

LIT 104(3)
Course ID: 011454
2015-01-19

Latin Literature
Credit for this course is awarded only in the following cases: 1) receipt of a score of 4 or 5 on the AP Latin: Literature Examination or 2) satisfactory completion of a third-year college Latin Literature course.

Components: Independent Study
Attributes: Cultures and Societies, Imaginative Arts, University Course, Transfer Credit Only
Req. Designation: Technology

LIT 105(3)
Course ID: 011455
2015-01-19

Spanish Literature
Credit for this course is awarded only in the following cases: 1) receipt of a score of 4 or 5 on the AP Spanish Literature Examination or 2) satisfactory completion of a third-year college Spanish Literature course.

Components: Independent Study
Attributes: Cultures and Societies, Imaginative Arts, University Course, Transfer Credit Only
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIT 106(3)</td>
<td>012124</td>
<td>2015-08-23</td>
</tr>
<tr>
<td>Chinese Literature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit for this course is awarded only in the following case -- Receipt of a score of 5 through 7 on the International Baccalaureate Chinese A: Literature Higher-Level Examination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Transfer Credit Only</td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
</tr>
</tbody>
</table>

| LIT 220(3) | 008566 | 2022-02-11|
| American Gods | | |
| This course focuses on the gods of American literature: Emerson, Hawthorne, Douglass, Melville, Whitman, Dickinson, Twain, and Poe. These authors and the themes they wrote about run so deep in the American psyche that they seem immortal. Foremost among those themes are spirituality and American individualism, the intertwined themes of Transcendentalist literature and its legacy. We will focus primarily on the mid-nineteenth century period of the American Renaissance, the efflorescence of American literature that produced the greatest number of authors in the American pantheon. |
Components:	Lecture
Attributes:	One communication unit, Imaginative Arts, Offered Fall Term
Req. Designation:	Technology

| LIT 221(3) | 008567 | 2022-02-11|
| Great American Authors | | |
| [Formerly LF231] This course surveys great American authors of the "long" twentieth-century. Readings include such writers as Crane, London, Pound, Fitzgerald, Hemingway, Faulkner, Ellison, and Cisneros. |
Components:	Lecture
Attributes:	Two communication units, Imaginative Arts, Offered Odd Springs
Req. Designation:	Technology

| LIT 222(3) | 012120 | 2022-02-11|
| Philosophy for Life | | |
| [Cross-Listed as PHIL 222] In this course, we will learn to think philosophically (which is to say: critically, rigorously, and reflectively) about complex and difficult questions. We will study practical life philosophies from both the Eastern and Western traditions, from the Tao Te Ching to Marcus Aurelius, and from Plato to the Dalai Lama. We will reflect on the ontological, epistemological, rhetorical, and ethical perspectives of each of these philosophers and schools of thought. We will note striking similarities and important distinctions between them. Ultimately, we will reflect on our own life philosophies as well-each of us refining our personal life philosophy through reading, reflection, and discussion of these classic texts from the wisdom literature tradition. |
Components:	Lecture
Course Equivalents:	PHIL 222
Attributes:	One communication unit, Contemporary and Global Issues, Individual and Group Behavior, University Course, Offered Even Springs
Req. Designation:	Technology

| LIT 225(3) | 008578 | 2022-02-11|
| American Short Story | | |
| [Formerly LF351] Seeing short fiction as a distinct art form, this course will introduce students to selected masters of the short story. It will include works of short fiction by established authors as well as contemporary ones, and it will include stories by ethnic and racial minorities. It will introduce students to the key elements of fiction, such as character, theme, point of view, and symbolism, as a way to help students evaluate and interpret literature. Occasionally, filmed versions of short stories will be used for comparison. |
Components:	Lecture
Attributes:	One communication unit, Imaginative Arts, Offered Odd Springs
Req. Designation:	Technology

| LIT 226(3) | 008579 | 2022-02-11|
| Modern Fiction | | |
| This course focuses on fiction of the 20th and 21st centuries. We will explore literary challenges to previous ways of writing and understanding the world. Typical topics include modernism and postmodernism, science fiction, magic realism, and the graphic novel. |
Components:	Lecture
Attributes:	One communication unit, Imaginative Arts, Offered Odd Springs
Req. Designation:	Technology
LIT 227(3) Course ID:012894 2022-02-11
Tales from the Tropics
This course will examine short stories from Southeast Asian. Students will read and engage with texts by writers from Burma, Cambodia, Indonesia, Laos, Malaysia, Negara Brunei Darussalam, Singapore, Thailand, the Philippines, and Vietnam. We will explore topics such as race, family, tradition, modernity, marginality, displacement, intergenerational conflict, religion, and resistance. We will also pay close attention to the intended audience, implied author, and historical and cultural contexts of the texts.
Components: Lecture
Attributes: One communication unit, Cultures and Societies, Imaginative Arts, University Course, Offered Odd Springs
Req. Designation: Technology

LIT 229(3) Course ID:011863 2015-01-23
American Weird Fiction
This course will introduce students to that curious type of fiction known as "weird fiction" (also sometimes called slipstream fiction), which overlaps with a number of other genres such as science-fiction, fantasy, and horror. Weird stories often lack an explanation for the strange events they depict, and so the genre offers writers and readers a new perspective on the sometimes odd world in which we find ourselves. The course will introduce students to the most important American authors of weird fiction from the 20th and 21st Centuries, included H.P. Lovecraft, Joyce Carol Oates, Caitlin R. Kiernan, Thomas Ligotti, and Laird Barron.
Components: Lecture
Attributes: One communication unit, Imaginative Arts, Given When Needed
Req. Designation: Technology

LIT 230(3) Course ID:011932 2015-03-03
Monsters in the House
To label something monstrous may be to identify a primal source of fear or to construct a social barrier, deliberately marginalizing people who do not fit into the mainstream. This course explores portrayals of the monstrous across centuries, considering how they reflect and shape social norms. Texts may include, for example, fairy tales, Disney movies, horror films, and dystopian novels.
Components: Lecture
Attributes: One communication unit, Imaginative Arts, Offered Even Springs
Req. Designation: Technology

LIT 235(3) Course ID:012013 2022-02-11
Science Fiction
Introduction to the genre of science fiction and, more broadly, speculative fiction as well as a survey of representative literary texts, including readings from such writers as Philip K. Dick, Margaret Atwood, Octavia Butler, and Orson Scott Card. Works of speculative fiction often serve as an allegory for, or social commentary of, existing cultural views and social structures. The genre's focus on imagining other worlds and alternative realities make it particularly well-suited for viewing our own biases, prejudices, and social assumptions through the mirror of alien cultures.
Components: Lecture
Attributes: One communication unit, Imaginative Arts, Offered Even Springs
Req. Designation: Technology

LIT 240(3) Course ID:012072 2015-03-27
Gender and Popular Culture
This interdisciplinary multi-media course explores the ways conceptions of gender are constructed and challenged by popular culture, including literature, film, TV, and advertising. It considers the complex ways in which social perceptions of gender intersect with constructions of race, class, and sexuality to affect relations of power. It looks at pop culture not simply as entertainment but as something that contributes to collective identities and influences our ways of seeing ourselves and others, often unconsciously. And it explores means of 'talking back,' challenging dominant portrayals of gender to open up more liberating possibilities for imagining selves.
Components: Lecture
Attributes: One communication unit, Contemporary and Global Issues, Imaginative Arts, University Course, Given When Needed
Req. Designation: Technology
War Stories I
(Cross-listed with HIST241) The oldest and most enduring stories describe war and its consequences. Reading these stories helps us see how different societies valued leadership, honor, loyalty, courage, and death on the battlefield. Not all war literature, however, glorifies heroic warriors and their exploits. Some war stories, even in the distant past, question martial codes imposed on men. Others examine what is worth dying for, and still others lament the inevitable wastage and brutality of war, of the costs to individuals, civilizations, and the environment. Most of them are ambivalent. Text will range from the ancient world to the Renaissance and from Asia to Europe.

Components: Lecture
Course Equivalents: HIST 241
Attributes: One communication unit, Cultures and Societies, Imaginative Arts, University Course, Given When Needed

Nobel Prize Winners in Literature
"Nobel Prize Winners in Literature" course offers a grand tour of world literature through the writings of Nobel Prize winners. It features different authors from a range of countries, languages, and traditions, and includes works of prose, poetry, and drama. Students will also study literary techniques and the cultural background and significance of each work. Possible authors include Alice Munro, Orhan Pamuk, Dario Fo, Seamus Heaney, Toni Morison, Derek Walcott, WB. Yeats, and Rabindranath Tagore.

This is a Clarkson Common Experience University (UNIV) course. This course fulfills the learning outcomes of both the Imaginative Arts (IA) and Cultures and Societies (CSO) Knowledge Areas. This course also fulfills the requirements for a one-unit communication-intensive (C1) credit and will require at least 10-20 pages of graded writing.

Components: Lecture
Attributes: One communication unit, Cultures and Societies, Imaginative Arts, University Course, Offered Odd Falls

World Literature
An introduction to representative works of world literature, other than British and American, including fiction, poetry, drama and film.

Components: Lecture
Attributes: One communication unit, Cultures and Societies, Imaginative Arts, University Course, Offered Even Falls

African Literature
A study of African literary works from the 19th century, to the present. In this course, students will read memoirs, songs, stories, novels, poems, and plays written by authors from the continent of Africa, considering thematic and stylistic trends and transformations over time.

Components: Lecture
Attributes: One communication unit, Cultures and Societies, Imaginative Arts, University Course, Given When Needed

Greek Mythology
(Cross-listed with HIST253) This course will explore the beginnings of Greek culture through its myths, recorded primarily in Homer, Hesiod, the Greek dramatists of the 5th century BCE, and by later writers of the classical period, such as Apollonius of Rhodes, the Roman poet Ovid, and mythographers such as Apollodorus. As important as this rich textual record is the physical evidence of ancient Greek society. Since the late nineteenth century, archaeological excavations of sites associated with the ancient myths have steadily increased our understanding of their meaning and significance, as well as their relationship to ancient Greek religion and ritual. Finally, visual representations of the figures from myth and legend, found in vase paintings and sculptures, are essential to our full comprehension of the role of myth in the lived lives of Greeks.

Components: Lecture
Course Equivalents: HIST 253
Attributes: Two communication units, Cultures and Societies, Imaginative Arts, University Course, Given When Needed

Req. Designation: Technology
LIT 255(3) Course ID:011779 2022-02-11

Close Encounters of the X Kind
This course will examine Anglophone plays and other plays in English translation. The selected texts revolve around close' encounters with the unknown or the foreign, and the impacts of such encounters on all parties involved. The course will expose students to different cultures and theatrical traditions, with playwrights hailing from, among others, Kenya, South Africa, Indonesia, India, the Caribbean, and Ireland. Possible readings might include Wole Soyinka’s Death and the King’s Horseman, Athol Fugard’s Boesman and Lena, Arifin C. Noer’s Moths, Girish Karnad’s Tughlaq, Derek Walcott’s Dream on Monkey Mountain, and Brian Friel’s Translations.

Components:
- Lecture

Attributes:
- One communication unit, Cultures and Societies, Imaginative Arts, University Course, Offered Even Springs

Req. Designation: Technology

LIT 262(3) Course ID:012895 2022-02-11

Women Acting Out
This course will examine dramatic texts by women playwrights. The selected texts revolve around issues pertinent to gender and women’s issues such as family, love, employment, empowerment, and abuse/violence. Students will read and engage with plays from different cultures and theatrical traditions, and with playwrights hailing from Argentina, England, India, Indonesia, and the United States. Possible readings include Caryl Churchill’s Top Girls, Griselda Gambaro’s Antigona Furiosa, Maria Irene Fornés’ Conduit of Life, Mahasweta Devi’s Bayen, Ntozake Shange’s for colored girls, Sarah Daniels’s The Gut Girls, Susan Glaspell’s Trifles, Spiderwoman Theater’s Sun, Moon, and Feather, and Tsitsi Dangarembga’s She No Longer Weeps.

Components:
- Lecture

Attributes:
- One communication unit, Cultures and Societies, Imaginative Arts, University Course, Offered Even Falls

Req. Designation: Technology

LIT 265(3) Course ID:008583 2022-02-11

Creative Writing
[Formerly LF365] This course is designed to introduce students to the main genres of imaginative writing and the basic techniques of those genres. Students will work primarily within the genres of fiction and poetry, though the course will also include brief sections on drama and memoir. Coursework will consist of reading examples and producing exercise in fiction, poetry, and (optionally), drama or memoir. The goal of the course is to make students familiar with the techniques of literary practice and to provide hands-on experience using those techniques.

Components:
- Lecture

Attributes:
- Two communication units, Imaginative Arts, Offered Even Springs

Req. Designation: Technology

LIT 270(3) Course ID:012933 2022-02-11

Comics of Conscience
Comics of Conscience will examine graphic novels or book-length comics which raise important social and political issues. It will explore how graphic novels are built and told—we will learn to use a conceptual vocabulary so we can discuss how the graphic novel achieves its objective of obtaining the reader’s attention and engagement. We will learn how to read them, how to talk about how they get made and how they work, how to understand—and how to enjoy—some of the kinds of comics and graphic novels. Emphasis in our studies will examine the co-mixing of genres within telling a visual story: we will look at journalism comics, memoir comics, realistic fiction comics, and fantasy comics. The overall objective is to learn how to read graphic novels—e.g., how to understand the way the verbal and the non-verbal/graphic work together—and how to write about them.

Components:
- Lecture

Attributes:
- One communication unit, Cultures and Societies, Imaginative Arts, University Course, Offered Odd Springs

Req. Designation: Technology
LIT 275(3)
Demons and Witches

"Demons and Witches among Us" will help you to develop skills in reading and analyzing fiction, as well as introduce you to the fascinating world of horror fiction. We will explore the genre of ghost story or horror literature in contemporary Asian literature, including short stories, novels, and comic books. How do Asian writers utilize elements of conventional horror, and to what effect? Can horror literature be used to address important issues such as abuse of power by authoritarian regimes, conflicts between the traditional and the modern, gender discrimination, urban alienation, and environmental destruction? We will examine supernatural motifs, including ghosts, zombies, witches, demons, and psychopaths, in fiction by writers from India, China, Japan, Cambodia, Malaysia, Singapore, and Indonesia. We will investigate how horror holds power over us the reader and what is the place of horror in society. We will also discuss the various elements of fiction: character analysis, plot, use of symbols, theme, tone, and style.

Components: Lecture
Attributes: One communication unit, Cultures and Societies, Imaginative Arts, University Course, Offered Even Springs
Req. Designation: Technology

LIT 280(3)
Disaster Lit

Disaster Lit forces us to confront our own mortality and to ask ourselves how we would respond if facing a similar crisis, threat, or catastrophe. The genre also offers social commentary by extrapolating current trends to disastrous conclusions, and showing how our political and social institutions might respond—or fail to respond—during extraordinary situations. We will consider both fiction and nonfiction depictions of catastrophes and disasters, and natural as well as political or socioeconomic disasters. Possible readings include: Albert Camus’s The Plague, Robert Harris’s historical thriller Dictator, Walter Miller’s post-apocalyptic novel A Canticle for Leibowitz, and H.G. Wells’s alien invasion novel War of the Worlds.

Components: Lecture
Attributes: One communication unit, Imaginative Arts, Given When Needed
Req. Designation: Technology

LIT 328(3)
African-American Literature

[Formerly LF335] This course will survey African-American novelists, dramatists, and poets of the twentieth century in their social and political context and in their own sense of their literary tradition. It will begin, however, by looking back, (to the slave narrative of Frederick Douglass for instance), before moving into the four stages, broadly speaking, of African-American literature: The Harlem Renaissance: 1915-1935 (e.g., Zora Neale Hurston, Langston Hughes, Alain Locke); The Age of Protest: 1935-1955 (e.g., Richard Wright, James Baldwin, Gwendolyn Brooks); African-American Militant Literature: 1955-1970 (e.g., Amiri Baraka, Ishmael Reed, Nikki Giovanni); and Literature by African-American Women: 1970-1991 (e.g., Alice Walker, Toni Morrison, Toni Cade Bambara, Maya Angelou). Because in the 1950s and 1960s there is a 'rediscovery of Africa', the survey will also include such influential African writers as Chinua Achebe. The course will be conducted as an exploration, mainly in class discussions, but also in formal written analysis.

Components: Lecture
Attributes: One communication unit, Cultures and Societies, Imaginative Arts, University Course, Offered Odd Falls
Req. Designation: Technology

LIT 335(3)
Violence and Reconciliation

[Cross-listed with POL 335] While scholars have labeled the 20th century 'the century of genocide,' the past two decades have catalyzed global changes in the ways we think about peace-building and reconciliation. But reconciliation after mass conflict remains a difficult process. Can you forgive someone who has done irreparable harm to you or your loved ones? Can you reconcile—literally, return to a previous state of harmony—with someone if you never shared a harmonious relationship with that person? Is reconciling with a whole community the same as reconciling with an individual? This course examines the challenges to reconciliation after political trauma and assesses the strengths and weaknesses of major reconciliation mechanisms. Through the lens of two case studies, South Africa and Northern Ireland, and the disciplines of film, fiction, and political theory, students will compare the consequences of criminal trials, truth commissions, and informal efforts at communal healing. As a final project, the class will participate in a

Components: Lecture
Course Equivalents: POL 335
Attributes: One communication unit, Contemporary and Global Issues, Imaginative Arts, University Course, Offered Odd Springs
Req. Designation: Technology
School of Arts and Sciences - Humanities & Social Sciences - Subject: Literature

LIT 355(3) Course ID:012891 2022-02-11
Power, Exploitation, and Freedom: Postcolonial Literature
Colonialism is the process of one country taking political, economic, and cultural control of another country. From the 15th-20th centuries, European countries colonized swathes of Asia, Africa, and South and Central America. They exploited the economic resources of those countries, subjugated their populations, and labeled indigenous cultures "inferior." In the mid-20th century, independence movements led to the decolonization of many countries and gave rise to an important body of literature. Postcolonial literature explores the effects of colonialism and challenges the misrepresentation of colonized countries by colonizing powers. It helps readers understand the cultures of colonized countries, their fight for independence, and their evolution after decolonization. This course examines postcolonial literature from a wide range of countries and cultures, including India, Nigeria, South Africa, and the Caribbean.

Components: Lecture
Attributes: One communication unit, Imaginative Arts, Offered Odd Falls
Req. Designation: Technology

LIT 380(3) Course ID:008603 2022-02-11
Shakespeare's Game of Thrones: Blood, Lust, and Power
(Formerly LF480) While Shakespeare's plays are unquestionably part of our literary heritage, there were also written by a practical man of the theater who was fully engaged in the changing culture of late Elizabethan and early Jacobean England. During the semester, students will read Shakespeare's plays for their literary values and their theatrical values, while placing them specifically in their historical context. Class discussion will involve literary analysis, questions or effective staging and stage history, and the most pressing social and political issues of Renaissance England. Students will read, see, and hear a representative selection of plays.

Components: Lecture
Attributes: Two communication units, Imaginative Arts, Offered Spring Term
Req. Designation: Technology

LIT 490(1 - 10) Course ID:008604 2015-02-09 Department Consent Required
Independent Study
(Formerly LF490) Designed primarily for an advanced student who wishes to pursue special interests in literature for one or more semesters, this series allows students to design and conduct independent study projects under faculty guidance.
Prerequisite: consent of the instructor.

Components: Independent Study
Attributes: Offered Each Term
Req. Designation: Technology

LIT 499(0) Course ID:008613 2015-02-09
Minor Portfolio
(Formerly LF499) In this course, students complete their Liberal Arts Minor Portfolios under the direction of their minor advisor. The course is graded on a Pass-No Credit basis.

Components: Independent Study
Attributes: Offered Each Term
Req. Designation: Technology
<table>
<thead>
<tr>
<th></th>
<th>Course ID</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LW</td>
<td>008716</td>
<td>1(2 - 4)</td>
<td>Law Elective</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A college level course for which there is no comparable Clarkson course. Used for transfer credit only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Components: Discussion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Attributes: Transfer Credit Only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Req. Designation: Technology</td>
</tr>
<tr>
<td>LW</td>
<td>008717</td>
<td>2(2 - 4)</td>
<td>Law Elective</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A college level course for which there is no comparable Clarkson course. Used for transfer credit only. This course may be used to satisfy a Business Foundation Curriculum Requirement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Components: Independent Study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Attributes: Transfer Credit Only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Req. Designation: Technology</td>
</tr>
<tr>
<td>LW</td>
<td>008718</td>
<td>270(3)</td>
<td>Law and Society I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A course designed to provide a basic understanding of (1) the nature, functions and limitations of law and legal systems; (2) the basic relationship among justice, ethics, legal systems and social structure; and (3) the relationship among society, law and business activity. Further, it is designed to enlighten with respect to rules, principles, standards and doctrines of law fundamental to a free enterprise system. The course covers the substantive areas of constitutional law, torts, contracts, and property and estate law.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Components: Lecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Requirement Group: Prerequisite: at least sophomore standing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Req. Designation: Technology</td>
</tr>
</tbody>
</table>
LW 352(3)
Course ID: 012825
2022-02-10

Reading for the Law: Legal Issues Through Non-Fiction Literature

Understanding "black letter law" is but one window into legal understanding. In order to contextualize the law, we must understand the social and political issues which have given rise to, and are affected by, the statutes and judicial decisions that shape our legal system.

Components: Lecture

Attributes: One communication unit, Contemporary and Global Issues, Given When Needed

Requirement Group: Prerequisites: LW270

Req. Designation: Technology
Business - School of Business - Subject: Law

LW 466(3)
Course ID: 008719
2015-07-06

Course Title: The Law of the Workplace
Description: This course is designed to review areas of law affecting the workplace both from the perspective of the employer as well as the employee. The students will study the environment of the workplace from a legal perspective. Topics will include the National Labor Relations Act and the jurisdiction of the National Labor Relations Board, the rights and obligations of management and labor under the Act. The course will also review the laws which govern the public employer in the form of federal, state and local governments. Finally, the course will review other areas of law which affect the workplace such as the doctrine of 'employment at will,' Worker's Compensation and Disability Law, Social Security Law, the law governing discriminatory practices, the Americans with Disabilities Act, the law of the Occupational Safety and Health Agency and developing topics such as drug testing in the workplace and pay equity issues.
Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: LW270 or consent of the instructor.
Req. Designation: Technology

LW 471(3)
Course ID: 008720
2022-02-10

Course Title: Law and Society II
Description: A continuation of LW 270, including the substantive areas of agency law, business organizations (including the law of partnerships, corporations and the limited liability company), negotiable instruments, sales and secured transactions.
Components: Lecture
Attributes: Offered When Needed
Requirement Group: Prerequisite: LW270.
Req. Designation: Technology

LW 487(1 - 3)
Course ID: 012149
2016-04-05

Course Title: Special Project in Law
Description: An investigation of a problem or in-depth topic undertaken by the student under the guidance of a faculty member.
Prerequisites: Permission from the instructor.
Components: Independent Study
Attributes: Offered When Needed
Req. Designation: Technology

LW 490(1 - 3)
Course ID: 008721
2016-04-05

Course Title: Internship
Description: An unpaid internship that is related to the student’s professional goals.
Prerequisite: consent of the instructor.
Components: Independent Study
Attributes: Offered When Needed
Req. Designation: Technology

LW 499(0)
Course ID: 011209
2015-07-08

Course Title: Law Studies Minor Portfolio
Description: A student completing the Law Studies Minor will compile a portfolio that manifests his or her learning experience in the minor. In this course, students complete their Law Studies Minor portfolio under the direction of their minor advisor. The course is graded on a Pass-No Credit basis.
Components: Independent Study
Attributes: Offered When Needed
Req. Designation: Technology
MA 1(2 - 4) - Course ID: 008723 - 2017-09-28
Mathematics Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only. This course may not be used to satisfy the requirements of the Mathematics or Applied Mathematics and Statistics major. Check with major department to determine whether credits count toward graduation.

Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

MA 2(2 - 4) - Course ID: 008724 - 2017-09-28
Mathematics Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only. This course may be used to satisfy the requirements of the Mathematics or Applied Mathematics and Statistics major.

Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

MA 30(3) - Course ID: 011281 - 2015-01-21
Introductory Mathematics Summer Program
This course is intended primarily as a preparation for students who will be starting their Clarkson careers in MA 180, Introduction to College Mathematics. Course topics include: a brief review of elementary algebra, linear, quadratic, exponential, logarithmic, and trigonometric functions. The course emphasizes an applied approach to all topics through real-life examples. You should check with your major department to determine whether this course can be used to satisfy your degree requirements in specific majors.

Components: Lecture
Attributes: Offered Summer Term
Req. Designation: Technology

MA 31(2.5) - Course ID: 008725 - 2020-05-17
Pre-Calculus Mathematics
This course is a comprehensive review of the high school level mathematics whose mastery is necessary for success in calculus. Topics include: Elementary algebra, geometry and trigonometry; coordinate geometry; linear, quadratic, trigonometric, exponential and logarithmic functions. Check with major department to determine whether credits count toward graduation.

Components: Lecture
Attributes: Offered Fall and Summer
Req. Designation: Technology

MA 41(2) - Course ID: 008726 - 2015-09-15
Co-Calculus Mathematics
This course provides support for students in Calculus I by reviewing topics from algebra, functions, geometry and trigonometry as they are being used in calculus. Enrollment is by invitation of the Mathematics Department. Check with major department to determine whether credits count toward graduation.

Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Corequisite: MA 131
Req. Designation: Technology

MA 42(0) - Course ID: 010149 - 2015-12-15
Co-Calculus II
This course provides help sessions for students in Calculus II by reviewing carefully selected examples as the corresponding topics are being studied in calculus. Review of background topics from Calculus I will also be included as needed. Enrollment is by invitation of the Mathematics Department. Given Pass/No Credit only.

Components: Discussion
Attributes: Offered Spring Term
Req. Designation: Technology
School of Arts and Sciences - Mathematics - Subject: Mathematics

MA 120(4)
Course ID:012091
2021-09-22

Introduction to STEM Mathematics
Prepares students for Calculus and higher mathematics in the science, technology, and engineering majors. Topics include algebraic concepts, lines and quadratic equations; functions; exponential and logarithmic functions and equations, trigonometry and trigonometric functions, identities and equations; systems of equations and inequalities. This course will focus on illustrating these mathematical topics from pre-calculus within the context of applications taken from the sciences and engineering.

Grading for this course is done using Mastery Based Assessment.

This course is normally taken for 4 credits. However, students joining after normal add period may be directed by the Math Department Chair to take this course for fewer than 4 credits. Under these conditions

Components:
- Discussion, Lecture

Attributes:
- Offered Fall Term

Requirement Group:
- Restriction: This course is not available for students who already have credit for any one of the following: MA 131, MA 132, or MA 181. Students may not receive credit for both MA 120 and MA 180.

Req. Designation:
- Technology

MA 131(3)
Course ID:008732
2015-09-15

Calculus I
Functions and graphs; derivative concept and formulas, including chain rule and implicit differentiation; integral concept; the Fundamental Theorem of Calculus; properties and applications of the derivative, including max-min problems and graph sketching; exponential, logarithmic, and inverse trigonometric functions.

Prerequisites: high school algebra and trigonometry.

Components:
- Discussion, Lecture

Attributes:
- Offered Each Term

Requirement Group: Corequisite: MA 41

Req. Designation: Technology

MA 132(3)
Course ID:008733
2015-02-12

Calculus II
A continuation of MA 131. Properties and applications of the integral, including areas, volumes, arc length and differential equations; integration techniques, including parts, partial fractions, trigonometric substitution, and numerical integration; indeterminate forms; improper integrals; infinite series and Taylor series; introduction to polar coordinates, complex numbers, and parametric equations.

Components:
- Discussion, Lecture

Attributes:
- Offered Fall, Spring, and Summer

Requirement Group: Prerequisite: MA131

Req. Designation: Technology

MA 180(4)
Course ID:010506
2016-11-04

Introductory College Mathematics
Review of basic algebra and functions, differences, an introduction to discrete calculus, rates of growth, introduction to the derivative. This course is not available for students who already have credit for any one of MA131, MA132, or MA181.

Components:
- Discussion, Lecture

Attributes:
- Offered Fall Term

Requirement Group: Restriction: Not open to students who have taken, or are taking MA120, MA181, MA131, or MA132

Req. Designation: Technology

MA 181(3)
Course ID:010507
2022-02-11

Basic Calculus
The fundamentals of differential calculus with applications to business, life and social sciences, optimization, the fundamental theorem of calculus, introduction to the concept of the integral.

Components:
- Discussion, Lecture

Attributes:
- Offered Fall and Spring

Requirement Group: Prerequisites: MA180 or MA120

Req. Designation: Technology
MA 200(3)
Introduction to Mathematical Modeling and Software
Introduction to the use of mathematics in solving real-life problems. Basics of using mathematical software (such as MATLAB and Maple) to apply calculus and other methods. Group projects. Communication skills including ethical considerations, presentation and mathematical exposition. Introduction to mathematical professions.
Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisite: MA131.
Req. Designation: Technology

MA 211(3)
Discrete Mathematics and Proof
A transitional course between the technique-oriented lower-level courses and the concept-oriented upper-level courses in both mathematics and computer science. Topics include logic, quantifiers, proof techniques (including mathematical induction), integers, sets, functions, equivalence relations, and basic combinatorics. A major emphasis of the course is learning to write mathematical proofs. This course is intended for students majoring in Mathematics, Computer Science, and related fields.
Components: Lecture
Attributes: Two communication units, Offered Each Term
Requirement Group: Prerequisites: MA132
Req. Designation: Technology
Differential Equations without Linear Algebra

A college level Ordinary Differential Equation course for which there is no comparable Clarkson course. Solutions and applications of first-order differential equations and linear differential equations with constant coefficients. Laplace transform methods, systems of differential equations. Other topics may include modeling, engineering applications or numerical methods.

Used for transfer credit only.

Components:
- Lecture

Attributes:
- Transfer Credit Only

Req. Designation:
- Technology
MA 230(3) 2016-10-18
Course ID: 010518

3-D Space and Projective Geometry
An introduction to the mathematics of 3 dimensional space, including vector functions, elementary vector calculus and partial derivatives, introductory projective geometry especially as applied to projections of 3-D images on two dimensional media, translations, rotations and an introduction to their matrix representations. A student may not receive credit for both MA230 and MA231. MA231 satisfies any requirement for MA230.

- **Components:** Discussion, Lecture
- **Attributes:** Offered Spring Term
- **Requirement Group:** Prerequisite: MA131
- **Req. Designation:** Technology

MA 231(3) 2015-02-12
Course ID: 008742

Calculus III
Vectors and vector-valued functions; functions of several variables; partial differentiation, including the chain rule, gradients, and maxima and minima; multiple integration, including polar, cylindrical, and spherical coordinates; vector calculus, including Green’s, Divergence, and Stokes’s Theorems. A student may not receive credit for both MA230 and MA231. MA231 satisfies any requirement for MA230.

- **Components:** Discussion, Lecture
- **Attributes:** Offered Fall, Spring, and Summer
- **Requirement Group:** Prerequisites: MA132
- **Req. Designation:** Technology

MA 232(3) 2015-02-12
Course ID: 008743

Elementary Differential Equations
Solutions and applications of first-order differential equations and linear differential equations with constant coefficients. Laplace transform methods. Introduction to matrix algebra, systems of algebraic equations, eigenvalues and eigenvectors, with application to systems of differential equations. Other topics may include modeling, engineering applications or numerical methods.

- **Components:** Discussion, Lecture
- **Attributes:** Offered Fall, Spring, and Summer
- **Requirement Group:** Prerequisites: MA132
- **Req. Designation:** Technology

MA 239(3) 2017-01-17
Course ID: 010191

Elementary Linear Algebra
Introduction to matrices and matrix operations, Linear systems of equations, Elementary treatment of eigenvalues, parameter estimation by least squares, Introduction to linear programming, MATLAB will be used throughout (Instruction in MATLAB is included.)

- **Components:** Lecture
- **Requirement Group:** Prerequisites: MA 131 or MA181 Not open to Mathematics or Applied Math and Stats majors; not open to students who have taken or are taking MA 232 or MA 339
- **Req. Designation:** Technology

MA 277(3) 2018-02-26
Course ID: 012864

Elementary Numerical Methods
An introductory course on numerical methods as applied in scientific computing. Topics include application of Taylor polynomials and representations of functions, numerical calculus, solving linear systems, and interpolation. Optional topics may include numerical solution of differential and difference equations and solutions to nonlinear equations. This course is intended for students outside of engineering/math/physics that seek to expand their skill set in applying computational tools. Students may not receive credit for both MA277 and MA377.

- **Components:** Lecture
- **Attributes:** Offered Even Falls
- **Requirement Group:** Prerequisites: MA239, and MA230 or permission of the instructor Not open to students who have credit for MA377
- **Req. Designation:** Technology

MA 300(1) 2016-12-06
Course ID: 008748

Instructor Consent Required

Seminar in Actuarial Mathematics
Seminar for students with interest in an actuarial career. Especially recommended for those preparing for the actuarial exams.

- **Requisite:** Permission of the Instructor
- **Components:** Seminar
- **Attributes:** Given When Needed
- **Req. Designation:** Technology
Mathematics Elective

An upper-division mathematics course for which there is no comparable Clarkson course. Used for transfer credit only. This course may be used to satisfy the requirements of the Mathematics or Applied Mathematics and Statistics major or the Mathematics minor.

Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

MA 311(3)

Course ID: 008755
Date: 2015-01-29

Abstract Algebra

A study of mathematical systems, including an introduction to the theory of groups, rings, ideals and fields. Polynomials over a field; matrix polynomials.

Components: Lecture
Attributes: One communication unit, Offered Odd Falls
Requirement Group: Prerequisites: MA211
Req. Designation: Technology

MA 313(3)

Course ID: 008757
Date: 2015-03-03

Abstract Linear Algebra

Components: Lecture
Attributes: One communication unit, Offered Even Falls
Requirement Group: Prerequisites: MA211 and MA339.
Req. Designation: Technology

MA 314(3)

Course ID: 008758
Date: 2015-03-05

Number Theory and Its Applications

Divisibility; the fundamental theorem of arithmetic; linear diophantine equations; fundamentals of congruences; prime numbers and factoring; the theorems of Fermat and Wilson; quadratic residues. Additional topics may include arithmetic functions, the Mobius inversion formula; geometric number theory; partitions; continued fractions; primality testing and factoring; applications to crystallography and cryptography.

Components: Lecture
Attributes: One communication unit, Offered Odd Springs
Requirement Group: Prerequisites: MA211
Req. Designation: Technology

MA 315(3)

Course ID: 013154
Date: 2022-03-17

Introduction to Complex Networks

This course will introduce the student to the new, burgeoning field of Complex Networks, their analysis and applications to everyday-life. Elementary concepts from Graph Theory, Statistical Physics and Discrete Math techniques will be taught as demanded by the material. Covered topics will include: Basic concepts from Graph Theory, Global vs. local algorithms of analysis, Erdos-Renyi Random Graph, Small-World model of Watts & Strogatz, Scale-free networks, Barabasi-Albert and Krapivsky-Redner models, Recursive scale-free models and their applications; The percolation problem and its applications to epidemic spreading, vaccination strategies, etc. and Kleinberg navigation.

Components: Lecture
Course Equivalents: PH 315
Attributes: Offered Fall Term
Requirement Group: Prerequisite: MA132
Req. Designation: Technology

MA 321(3)

Course ID: 008760
Date: 2015-02-19

Advanced Calculus I

A rigorous course in analysis on the real line and calculus of functions of one variable.

Components: Lecture
Attributes: One communication unit, Offered Fall Term
Requirement Group: Prerequisites: MA231 and MA211
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Title</th>
<th>Semester</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>008761</td>
<td>Advanced Calculus II</td>
<td>2015-03-03</td>
<td>Continuation of MA321 and extension to functions of several variables.</td>
</tr>
<tr>
<td>008762</td>
<td>Advanced Engineering Mathematics</td>
<td>2017-01-17</td>
<td>Introduction to linear algebra. Review of ordinary differential equations and Laplace transforms; ordinary boundary value problems. Fourier analysis; overview of partial differential equations. Introduction to probability and statistics. Modeling and applications to engineering problems will be emphasized throughout. This course is intended principally for Mechanical and Aeronautical Engineering majors; not open to Mathematics majors.</td>
</tr>
<tr>
<td>008763</td>
<td>Fourier Series and Boundary Value Problems</td>
<td>2015-01-20</td>
<td>Review of ordinary boundary value problems. Fourier series and integral. Derivation of heat, wave and potential equations with boundary and initial conditions. Solution by separation of variables. Additional topics may include multidimensional problems, Bessel functions, Laplace transforms, numerical methods.</td>
</tr>
<tr>
<td>008768</td>
<td>Applied Linear Algebra</td>
<td>2015-02-12</td>
<td>This course is an introduction to matrices and linear algebra with applications in engineering and science. Algebra of matrices and systems of linear algebraic equations. Rank, inverse, eigenvalues, eigenvectors, vector spaces, subspaces, basis, independence, orthogonal projection, determinant. Other topics may include: systems of differential equations, numerical methods, linear programming.</td>
</tr>
</tbody>
</table>
Automata Theory and Formal Languages

This course gives an introduction to formal languages and their relation to automata. Topics include deterministic and non-deterministic finite automata, regular expressions and languages, closure properties and decision procedures for context-free languages, recursive and recursively enumerable sets, Turing machines, and decidability. Some aspects of computational complexity may also be explored.

Components: Lecture
Course Equivalents: CS 345, CS 541
Requirement Group: Prerequisites: CS 142, EE262, or EE361, and MA211
Req. Designation: Technology
Complex Analysis with Applications

Course ID: 008774
2014-12-05
Complex numbers and functions, conformal mapping and applications, derivative, Cauchy-Riemann equations, real and complex line integrals, Fundamental Theorem, Cauchy and Poisson formulas, Taylor series, analytic continuation, special functions, Laurent series, residues. Applications to partial differential equations.

Components: Lecture
Requirement Group: Prerequisites: MA231
Req. Designation: Technology

Mathematical Modeling

Course ID: 008775
2015-08-14
Introduction to the use of mathematics in solving real-life problems. Topics include: formulation and refinement of models, different types of models, application of results to prediction and design. Mathematical methods beyond the prerequisite courses will be presented as needed.

Components: Lecture
Attributes: Two communication units, Offered Spring Term
Requirement Group: Prerequisites: MA231, MA232 and PH132
Corequisites: MA330, or MA381, or STAT383
Req. Designation: Technology

Mathematical Biology Seminar

Course ID: 011578
2021-04-12
[Cross-listed with BY 368] The objective of this course is to present recent advances in research that combines biological and mathematical analysis, and to describe opportunities for interdisciplinary summer research in biology and mathematics. Students will receive one credit for attending seminars (6 per semester), reading a journal article prior to each presentation, writing a short review of each seminar, and participating in discussions. This course can be taken for credit more than once.

Components: Seminar
Course Equivalents: BY 368
Req. Designation: Technology

Numerical Methods

Course ID: 008776
2015-02-19
Floating-point numbers and sources of error, direct solution of linear systems, nonlinear equations, interpolation, numerical integration and numerical solution of initial value problems in ordinary differential equations.

Components: Laboratory, Lecture
Attributes: Two communication units, Offered Fall Term
Requirement Group: Prerequisites: MA230 or MA231
Req. Designation: Technology

Probability

Course ID: 008777
2016-08-15
[Cross-listed with STAT 381] Sample spaces; axioms of probability; basic theorems; random variables (discrete and continuous); combinatorial methods; Bayes’ Theorem and conditional probability; expected values and variances; distribution functions, including: binomial and multinomial, Poisson, normal and bivariate normal distributions, and others such as geometric, hypergeometric, negative binomial, exponential, gamma and beta; joint distributions; covariance and correlation; central limit theorem; geometric probability; method of transformations; introduction to stochastic processes.

Components: Lecture
Requirement Group: Prerequisite: MA231 or MA230 (MA211 Recommended)
Req. Designation: Technology

Undergraduate Seminar

Course ID: 008781
2015-01-28
This seminar will emphasize recreational mathematics and problem solving on the advanced undergraduate level. It is particularly recommended for those who are interested in preparing for the Putnam Undergraduate Mathematics Competition or the Mathematical Contest in Modeling.

Components: Seminar
Attributes: Given When Needed
Req. Designation: Technology
MA 401 (1 - 10)
Course ID: 008782
2017-01-13
Directed Study in Mathematics
Prerequisite: consent of the instructor.
Components: Research
Attributes: Given When Needed
Req. Designation: Technology

MA 405 (1 - 10)
Course ID: 008786
2017-01-13
Directed Study in Applied Mathematics
Prerequisite: consent of the instructor.
Components: Research
Attributes: Given When Needed
Req. Designation: Technology

MA 407 (1 - 10)
Course ID: 008788
2015-01-28
Instructor Consent Required
Directed Study in Numerical Analysis
A directed study in Numerical Analysis, intended to give a student the opportunity to further explore an area of interest to them under the supervision of a faculty member.
Components: Independent Study
Req. Designation: Technology

MA 409 (1 - 10)
Course ID: 008790
2014-12-04
Directed Study in Probability and Statistics
(Cross-listed with STAT 409) A directed study in Probability and Statistics, intended to give a student the opportunity to further explore an area of interest to them under the supervision of a faculty member.
Components: Independent Study
Course Equivalents: STAT 409
Req. Designation: Technology

MA 431 (1 - 3)
Course ID: 008804
2015-02-19
Mathematics Course Assistance
Assisting a faculty member in a mathematics course or project. Credit can be used as free electives to meet baccalaureate degree requirements, up to a maximum of 6 hours for MA431. This course is offered on a Pass/No-Credit basis only. (May be taken more than once for credit.)
Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology

MA 442 (3)
Course ID: 011629
2019-04-24
Computational Complexity
The complexity of a computational problem is the amount of computer resources it requires. Computational complexity theory studies the complexity of computational problems as well as relationships between different types of resources. This course will cover both classical and research-related topics in computational complexity, such as: complexity measures and complexity classes for sequential machines and Boolean circuits, reductions and completeness, hierarchy theorems, relativization, circuit complexity, and proof complexity.
Components: Lecture
Course Equivalents: CS 442
Attributes: Given When Needed
Requirement Group: Prerequisites: CS345 or equivalent MA345.
Req. Designation: Technology
MA 447(3) **Computer Algorithms**

- **Course ID:** 008809
- **Year:** 2019-04-03

This course will study and contrast a variety of computational algorithms and develop tools for algorithm analysis. Methods and topics such as dynamic programming, greedy algorithms, graph algorithms, circuits, parallel algorithms, matrix and polynomial algorithms, string matching, and geometrical algorithms will be explored. The theory of NP-completeness and methods of managing NP-complete problems will also be covered.

Components: Lecture
Course Equivalents: CS 447
Requirement Group: Prerequisites: CS344 and MA211
Req. Designation: Technology

MA 449(3) **Computational Learning**

- **Course ID:** 011626
- **Year:** 2015-08-15

Computational learning studies algorithmic problems for inferring patterns and relations from data. This course describes the mathematical foundations of learning and explores the important connections and applications to areas such as artificial intelligence, cryptography, statistics, and bioinformatics. A list of relevant topics may include perceptron and online learning, graphical models and probabilistic inference, decision tree induction and boosting, analysis of Boolean functions, sample complexity bounds, cryptographic and complexity hardness, and reinforcement learning. Basic ideas from computer science and mathematics are employed to describe the main ideas and major developments in computational learning.

Components: Lecture
Course Equivalents: CS 449
Attributes: Given When Needed
Requirement Group: Prerequisites: CS344 and CS345, or consent of the instructor.
Req. Designation: Technology
MA 451(2)
Course ID: 011187
2017-01-17

Introduction to Mathematical Research
Introduction to the methods and tools needed to prepare mathematical research papers and presentations. Course instruction includes an introduction to research journals, including databases and search tools; mathematical writing; mathematical authoring and presentation software; professionalism, diversity, and ethics in the mathematical professions. Elements of the student grade will be drawn from performance in this class, from peer-evaluations, and from self-assessment through surveys.

Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Only open to Math or Applied Math and Statistics majors with at least junior standing, or by permission of the instructor.
Req. Designation: Technology

MA 453(1 - 3)
Course ID: 011186
2018-01-17

Introduction to Mathematical Instruction
Introduction to mathematical pedagogy. Students majoring in Math or Applied Math and Statistics register for 2 credits, consisting of: classroom presentation techniques; preparation of handouts; evaluation techniques; mathematical authoring and presentation software; professionalism, diversity, and ethics in the mathematical professions. Elements of the student grade will be drawn from performance in this class, from peer-evaluations, and from self-assessment. Students are required to complete a semester-long non-paid teaching experience in conjunction with this course (for example, serving as a teaching assistant or a group tutor). Students enrolled in the pre-teaching minor register for one additional credit and complete additional assignments covering a broader range of topics in education; this additional credit may be taken in the same semester or in a later semester.

Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisite: Only open to Math or Applied Math and Statistics majors with at least junior standing or by permission of the instructor.
Req. Designation: Technology
School of Arts and Sciences - Computer Science - Subject: Mathematics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Credit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 456(3)</td>
<td>008814</td>
<td>3</td>
<td>Cryptography [Cross-listed with CS 456] Cryptography is the discipline which studies the making of 'secret' codes. This course will examine some of the methods of cryptography together with many surprising applications. The language of modern cryptography is primarily number theory, and various tools of number theory will be developed as needed. No background in number theory or cryptography will be necessary, but some mathematical sophistication and familiarity with proofs will be assumed. Topics will include: one-way functions, public-key cryptosystems, digital signatures, probabilistic encryption, primality testing, interactive proof systems, and methods of secret sharing.</td>
</tr>
</tbody>
</table>

Components: Lecture

Course Equivalents: CS 456

Attributes: Given When Needed

Requirement Group: Prerequisites: CS142, EE262, or EE361, and MA211. (CS344 Recommended)

Req. Designation: Technology
Undergraduate Research

Students engage in mathematical research with a faculty member. The topic will be determined by student interest and faculty research programs. This course may be repeated for credit.

Components: Research
Attributes: Given When Needed
Req. Designation: Technology

Professional Experience

This course records success in completing the requirements other than conventional course work for all mathematics majors. The student must present evidence demonstrating skill in communications and understanding the profession. The requirement can be satisfied in a number of ways including internships or co-ops with appropriate professional content, participation in REU programs, a mathematical honors thesis, teaching assistance in mathematics, active participation in professional societies including attendance at regional or national conferences and presentation of work at such. Directed study or research courses that lead to such presentations would also satisfy the requirement. Check with the Math department for specific requirements.

Components: Independent Study
Attributes: Offered Each Term
Req. Designation: Technology

Abstract Linear Algebra

A proof-oriented introduction to linear algebra. Vector spaces, linear transformations, determinants, eigenvalues, canonical forms, and inner-product spaces. Notions of null spaces, spectral decomposition theorem, positive definiteness, and also Penrose pseudo-inverse and singular value decomposition will be included. Students will be expected to independently investigate some aspects of the course material.

Prerequisite: Linear Algebra

Components: Lecture

Sets and Topology

Prerequisite: linear algebra.

Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

Classical Complex Analysis

Complex series and power series. Analytic functions and basic mapping properties. Cauchy's theorem and its consequences. Residue theorem and applications.

Prerequisite: advanced calculus.

Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

Classical Real Analysis

Prerequisite: advanced calculus.

Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology
School of Arts and Sciences - Mathematics - Subject: Mathematics

MA 525(3) Functional Analysis
This course introduces the students to the fundamental aspects of applied functional analysis. This field builds upon the concepts of real and complex analysis, developing the general theories of Banach spaces, bounded linear operators, and linear functionals. The primary focus of the course will be applications of functional analysis to other fields of mathematics, including such topics as dual spaces, weak topologies and weak convergence, approximation theory, and the applications of operator theory to the solutions of partial differential equations. Recommended prerequisites: courses in Real Analysis and Complex Analysis or consent of the instructor.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Given When Needed</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

MA 526(3) Convex Optimization and Analysis
Convex sets, functions, and optimization problems. Basics of convex analysis. Least-squares, linear and quadratic programs, semidefinite programming, minimax and extremal volume problems. Optimality conditions, Lagrange multipliers and KKT conditions, duality theory, primal and dual decomposition theorems of alternative interior point methods. Possible applications to come from signal processing, physics, control theory, mechanical engineering, image processing, manifold learning. Other topics may include epigraphs, subdifferentials and cone convexity, and multiobjective optimization.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Given When Needed</td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisites: MA578; MA513 or MA573; and MA522</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

MA 531(3) Initial and Boundary Value Problems and Partial Differential Equations
Solution techniques for ordinary differential equations. Series solutions. Boundary value problems and special functions. Classification of partial differential equations. Linear problems shall include heat equation, wave equation, and Laplace's equation. Separation of variables and boundary value problems will be presented. Nonlinear equations shall be discussed, including reaction diffusion and reaction diffusion advection. Method of characteristics will be presented and shocks and singularities shall be included, and so will Burger's equation be included.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Given When Needed</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

MA 533(3) Ordinary Differential Equations
Please check with the math department for a course description

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

MA 550(3) Nonlinear Partial Differential Equations
This course introduces the analysis of Partial Differential Equations, (PDE's). Topics include linear PDE's such as transport, Laplace, heat and wave equations. Necessary functional analysis such as L^p spaces, Hilbert spaces, linear operator theory, dual spaces and weak convergence and the theory of Sobolev spaces will be included. Methods will include classical maximum principles, Galerkin truncation methods for global existence of weak solutions, and finite time blow up. The application of Sobolev spaces for existence theory of elliptic and parabolic PDE, and certain nonlinear reaction diffusion equations, such as models for population dynamics may be covered as time allows. Prerequisites: Basic PDE, Advanced Calculus. Real and/or functional analysis is recommended but not required.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Given When Needed</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

MA 562(3) Complex Analysis with Applications
Complex numbers and functions, conformal mapping and applications, derivative, Cauchy-Riemann equations, real and complex line integrals, Fundamental Theorem, Cauchy and Poisson formulas, Taylor series, analytic continuation, special functions, Laurent series, residues. Applications to partial differential equations. Prerequisite: MA231.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Given When Needed</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>
Applied Dynamical Systems

This course will emphasize applied dynamical systems, nonlinear science, and chaos theory. The dynamical systems approach emphasizes the study of long-term evolution through geometrical and topological considerations. We will emphasize applications from mechanics, engineering, physics, biology, medicine and chemistry.

- **Components:** Lecture
- **Attributes:** Given When Needed
- **Req. Designation:** Technology

Numerical Solution of Differential Equations

Numerical solution of initial and boundary value problems in ordinary differential equations, finite difference methods for elliptic, parabolic, and hyperbolic partial differential equations. Additional topics may include introduction to finite element and spectral methods.

- **Prerequisites:** MA377 or consent of the instructor and the ability to program.
- **Components:** Lecture
- **Attributes:** Given When Needed
- **Req. Designation:** Technology

Finite-Element Methods

This course is designed for those with a mathematical as well as a modeling and applications point of view. The basic theory and implementation will be discussed in the context of continuum problems in linear elasticity, potential flow and plate modeling. Additional topics may include weak formulations and the principle of virtual work, discretization and interpolation-function selection, assembly and solution of the system equations, error estimates and accuracy assessment. This course is cross-listed with CE 538, ME 515.

- **Prerequisites:** MA232, MA339 or MA330, ES222, ES330, and consent of the instructor may be used to replace some prerequisites.
- **Components:** Lecture
- **Course Equivalents:** CE 538, ME 515
- **Req. Designation:** Technology

Matrix Theory and Computations

This course presents topics in matrix theory that are useful in applications to engineering, science and other branches of mathematics. Review of linear algebra, including vector and matrix norms and canonical forms, numerical methods for linear systems (direct and iterative methods), eigenvalue problems, singular value decomposition, orthogonal projections, matrix decompositions, generalized inverses. Additional topics may include applications to least squares and optimization.

- **Components:** Lecture
- **Attributes:** Given When Needed
- **Req. Designation:** Technology

Numerical Analysis

Review of linear algebra and systems, solution of nonlinear equations and systems, interpolation, approximation of functions, orthogonal polynomials, numerical differentiation and integration. Additional topics may include eigenvalue problems, iterative methods for linear systems and topics from optimization.

- **Prerequisites:** linear algebra.
- **Components:** Lecture
- **Attributes:** Given When Needed
- **Req. Designation:** Technology
MA 579(3)
Course ID: 010460 **Year:** 2015-01-28
Title: Introduction to Applied Optimization

The motivation for this course is that optimization problems arise routinely in most applications -- from designing an airline schedule to minimize cost to designing a remediation strategy for a contaminated ground water site. In this course we will focus on numerical techniques to solve applied optimization problems of various formulations. Topics will include solutions to linear and nonlinear equations, nonlinear programming, unconstrained and constrained optimization, black-box formulations and a glance at sampling methods, an if time allows, extra topics may include multi-objective optimization, mixed integer programming methods, and evolutionary algorithms. This course will include a computing component with MATLAB and possibly some off-the-shelf optimization packages. The objectives are (a) to become familiar with a range of optimal design formulations and techniques appropriate for those formulations, (b) to motivate the need for efficient numerical methods for optimization problems, (c) to study these methods through implementation and analysis,

Components:
- Lecture

Attributes:
- Given When Needed

Req. Designation:
- Technology

MA 581(3)
Course ID: 008847 **Year:** 2016-08-15
Title: Probability

(Cross-listed with STAT 581) Sample spaces; axioms of probability; basic theorems; random variables (discrete and continuous); combinatorial methods; Bayes' Theorem and conditional probability; expected values and variances; distribution functions, including: binomial and multinomial, Poisson, normal and bivariate normal distributions, and others such as geometric, hypergeometric, negative binomial, exponential, gamma and beta; joint distributions; covariance and correlation; central limit theorem; geometric probability; method of transformations; introduction to stochastic processes.

Components:
- Lecture

Course Equivalents:
- MA 381, STAT 381, STAT 581

Req. Designation:
- Technology

MA 585(3)
Course ID: 008850 **Year:** 2022-05-05
Title: Bayesian Data Analysis

(Cross-Listed STAT585) This course will introduce both the principles and practice of Bayesian methods for data analysis. This is a hands-on course that will use MATLAB, R or other suitable software at instructor discretion. Students will learn to write their own Bayesian computer programs to solve problems relevant to engineering, biology, chemistry, physics, earth science, ecology, economics, signal processing and machine learning. Topics that will be included are parameter estimation, model selection, time series and error analysis. Prerequisites: MA383 or equivalent and familiarity with matrices; or consent of the instructor.

Components:
- Lecture

Course Equivalents:
- STAT 585

Attributes:
- Given When Needed

Req. Designation:
- Technology

MA 601(1 - 10)
Course ID: 008851 **Year:** 2015-01-28
Title: Topics in Mathematics

Prerequisites: consent of the instructor.

Components:
- Independent Study

Attributes:
- Given When Needed

Req. Designation:
- Technology

MA 701(1 - 10)
Course ID: 008883 **Year:** 2015-01-28
Title: Directed Study in Mathematics

Prerequisites: consent of the instructor.

Components:
- Independent Study

Attributes:
- Given When Needed

Req. Designation:
- Technology

MA 705(1 - 10)
Course ID: 008887 **Year:** 2015-01-28
Title: Directed Study in Applied Mathematics

Prerequisites: consent of the instructor.

Components:
- Independent Study

Attributes:
- Given When Needed

Req. Designation:
- Technology
School of Arts and Sciences - Mathematics - Subject: Mathematics

MA 707(1 - 10) Course ID:008889 2015-01-28 Instructor Consent Required
Directed Study in Numerical Analysis
A directed study in Numerical Analysis, intended to give a student the opportunity to further explore an area of interest to them under the supervision of a faculty member.
Components: Independent Study
Attributes: Given When Needed
Req. Designation: Technology

MA 710(0) Course ID:013039 2020-04-07
Department of Mathematics Colloquium
The colloquium is the sequence of talks given to the Department of Mathematics by local and visiting researchers in mathematics, statistics, and other fields of interest. This course serves to expose graduate students in mathematics to a broader range of research topics. All graduate students are expected to attend the colloquium as a part of the education toward their degree. The course does not carry a credit load, but serves to document grad student participation and avoid scheduling overlap.
Components: Seminar
Attributes: Offered Each Term
Req. Designation: Technology

MA 719(1 - 10) Course ID:008894 2015-01-28 Instructor Consent Required
Directed Study in Nonlinear Processes
A directed study in Nonlinear Processes, intended to give a student the opportunity to further explore an area of interest to them under the supervision of a faculty member.
Components: Independent Study
Attributes: Given When Needed
Req. Designation: Technology

MA 725(1 - 10) Course ID:008898 2015-01-28
Seminar in Applied Mathematics
Prerequisites: consent of the instructor.
Components: Seminar
Attributes: Given When Needed
Req. Designation: Technology

MA 739(1 - 10) Course ID:008904 2017-01-23
Seminar in Nonlinear Processes
(Cross-Listed with EE739)Prerequisites: consent of the instructor.
Components: Seminar
Course Equivalents: EE 739
Attributes: Given When Needed
Req. Designation: Technology

MA 810(1 - 0) Course ID:008905 2017-01-12
Thesis Dissertation or Special Projects
Components: Thesis Research
Attributes: Given When Needed
Req. Designation: Technology

MA 999(1 - 10) Course ID:011100 2015-01-19
Special Graduate Topics
A graduate level course for which there is no comparable Clarkson course. This course may be used to satisfy course requirements for a graduate degree.
Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology
Engineering - Mechanical & Aerospace Eng - Subject: Mechanical Engineering

ME 1(2 - 4)
Course ID: 008906
2015-01-19
Mechanical & Aeronautical Engineering Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
Components: Lecture
Attributes: Transfer Credit Only
Req. Designation: Technology

ME 2(2 - 4)
Course ID: 008907
2015-01-19
Mechanical & Aeronautical Engineering Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
This course may be used as a Professional Elective.
Components: Lecture
Attributes: Transfer Credit Only
Req. Designation: Technology

ME 201(1)
Course ID: 010194
2022-03-18
Measurement & Instrumentation
[Cross-listed with AE 201] This course provides an introduction to measurement and instrumentation in mechanical and aerospace engineering. Fundamental components of mechanical measurement systems are studied through laboratory experiments. Tests include electromechanical instruments, circuits, actuators, controls, and data acquisition systems. First order uncertainty analysis is performed and empirical results are compared with engineering principles from material science, statics, strength of materials, rigid body dynamics and electrical science.
Components: Lecture
Course Equivalents: AE 201
Attributes: Two communication units, Offered Spring Term
Requirement Group: Corequisites: ES220, ES222, ES223
Req. Designation: Technology

ME 212(3)
Course ID: 008908
2020-06-12
Introduction to Engineering Design
This course lays the foundation for the design curriculum of the MAE Department. Students are introduced to how to solve complex, open-ended engineering problems. Core topics covered are: the design process; engineering ethics and professional responsibilities; design for safety; mathematical and computer modeling; and written, oral and graphical communication. These topics are presented within the framework of at least two open-ended design projects which students must propose and accomplish through the completion of the preliminary design phase including a design report and presentation slides for each project.
Components: Lecture
Course Equivalents: AE 212, CE 212
Attributes: Offered Spring Term
Requirement Group: Prerequisites: ES100 or equivalent, PH131, or permission of the instructor.
Req. Designation: Technology

ME 301(1)
Course ID: 010196
2022-04-13
Experimental Methods
This is a hands-on experimental methods course with applications in mechanical engineering. Mechanical measurement techniques focus on temperature, strain, force, pressure, fluid flow, friction and vibration. Course topics include workplace safety, test procedures, calibration, measurement uncertainty, error propagation, design of experiments, data acquisition, sampling, data analysis, and technical report writing.
Components: Lecture
Course Equivalents: AE 301
Attributes: Two communication units, Offered Fall Term
Requirement Group: Prerequisites: ME201 or AE201
Req. Designation: Technology

ME 310(3)
Course ID: 008911
2016-11-02
Thermodynamic System Engineering
The preliminary design of thermodynamic systems made up of components such as turbines, pumps, compressors, boilers, evaporators, and condensers will be investigated. The major emphasis will be on the design of systems operating at steady-state, but start-up and transient operation will also be studied. Design work will consider actual, rather than ideal, thermodynamic systems, and account for the applicable combustion and psychrometric aspects of the system. Both individual and team work may be required. Open-ended problems on topics discussed will be assigned. Oral and written reports will be required. Some laboratory work may be required.
Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: ES340 or CH260
Req. Designation: Technology
ME 324 (3) Course ID: 008912 2016-06-01

Dynamical Systems
[Cross-listed with EE 324] Dynamic systems classification, mathematical modeling of mechanical, electrical and mixed dynamic systems, state space representation, equilibrium points and linearization, solution of linear input/output and state equations, Laplace transforms, transfer functions and block diagrams, first and second order systems, stability, frequency response and simulation techniques.

Components: Lecture
Course Equivalents: EE 324
Attributes: Offered Each Term
Requirement Group: Prerequisites: MA232.
Req. Designation: Technology

ME 326 (3) Course ID: 008913 2022-03-18

Intermediate Fluid Mechanics
A continuation of ES 330. Topics include: deformation and stress in fluids; basic conservation laws; kinematics of fluid flow; theory of potential flow; introduction to compressible flows; isentropic flows and shock waves; compressible flows with friction and heat transfer; Navier-Stokes equation and theory of viscous flow; low Reynolds number flows with applications to hydrodynamic lubrication; laminar boundary layer theory and von Karman momentum integral method; introduction to computational fluid dynamics; applications of fluid mechanics to engineering problems including turbomachinery. Introduction to design concepts.

Components: Laboratory, Lecture
Course Equivalents: AE 425
Attributes: Offered Each Term
Requirement Group: Prerequisites: ES330 and MA 232, and either ES340 or CH271
Req. Designation: Technology

ME 341 (3) Course ID: 008914 2015-02-12

Mechanics of Machine Elements
The course reviews and extends the study of strength of materials and engineering materials behavior concepts with applications to mechanical design/behavior of classical machine elements. Additional coverage of multi-axial static failure theories, fatigue of materials and components and fracture mechanics is also provided. A self-directed study of a machine component is undertaken.

Components: Lecture
Attributes: Offered Fall, Spring, and Summer
Requirement Group: Prerequisites: ES222.
Req. Designation: Technology

ME 342 (3) Course ID: 012852 2018-04-04

Introduction to Numerical Methods with Application
The goal of this course is to introduce the techniques needed for the numerical solution of ordinary and partial differential equations. These techniques will include the formulation of physical problems for numerical simulations, discretization and solution methods, and use of commercial software for solving engineering problems governed by differential equations. Specific topics covered are numerical differentiation, integration, interpolation, and associated errors, the solution of systems of non-linear algebraic equations, and the solution of initial and boundary value problems using finite difference and finite element methods.

Components: Laboratory, Lecture
Course Equivalents: AE 342
Attributes: Offered Each Term
Requirement Group: Prerequisites: ES 100, or HP102 and HP103, or EM120 and EM121, or CS141, and MA 232 Corequisites: ES 222.
Req. Designation: Technology

ME 365 (3) Course ID: 008918 2015-02-09 Instructor Consent Required

Independent Projects I
[Cross-listed with AE 365] An opportunity for the student to become involved singly, or with a group, working on a special project under the guidance of a faculty member. Topics are often suggested by the faculty but suggestions from the students are encouraged. By permission of advisor only.

Components: Independent Study
Course Equivalents: AE 365
Attributes: Offered Each Term
Req. Designation: Technology
Engineering - Mechanical & Aerospace Eng - Subject: Mechanical Engineering

ME 366(3) 2014-11-18
Independent Projects II
- [Cross-listed with AE 366] Continuation of ME 365.
- **Components:** Independent Study
- **Course Equivalents:** AE 366
- **Req. Designation:** Technology

ME 380(3) 2014-11-19
Special Topic: Biomechanics
- [Cross-listed with ES 380] This course will examine the application of engineering principles to biologic systems. The structure and function of biologic tissue will be examined in the context of engineering mechanics. Emphasis will be placed on the biomechanics of human movement, including the basic principles of orthopedic biomechanics. Students will develop the skills necessary to explore biomechanics in the contemporary scientific literature and will write a term paper on a biomechanics topic of their choice.
- **Components:** Discussion, Lecture
- **Course Equivalents:** ES 380
- **Requirement Group:** Prerequisites: PH131 and MA132
- **Req. Designation:** Technology

ME 385(3) 2022-04-05
Design of Electromechanical Systems
- This course will cover analog electronic design for purposes of controlling electromechanical systems, including electromechanical sensors and actuators, analog electronic design of filters, state space and classical controllers, and transistor-based servoamplifiers and high voltage amplifiers. The course has a significant laboratory component in which students are expected to design and fabricate circuits to control electromechanical systems. Implementation of digital controllers is also covered. Text Description: The Art of Electronics, Horowitz and Hill, Cambridge University Press, Second Edition, Mechatronics; An Integrated Approach, Clarence de Silva, CRC Press.
- **Components:** Lecture
- **Requirement Group:** Prerequisites: ES250, MA232, and ES223
- **Req. Designation:** Technology

ME 390(3) 2022-03-23
Advanced Manufacturing Processes
- Brief introduction to the traditional manufacturing processes such as bulk deformation, extrusion, forging/forming, cold & hot working, and joining/welding. Emphasis will be on advanced near net shape forming/processes of engineering materials known as Additive Manufacturing/3D Materials Processing, including 3D processing for Polymers as well as metals.
- **Components:** Lecture
- **Course Equivalents:** ME 503
- **Attributes:** Offered Spring Term
- **Requirement Group:** Prerequisites: ES260
- **Req. Designation:** Technology

ME 401(1) 2014-11-20
Advanced Experimental Methods in Mechanical and Aeronautical Engineering
- [Cross-listed with AE 401] This course covers advanced experimental methods including Fourier analysis filtering, computer data acquisition. Experiments demonstrate principles of heat transfer, fluid mechanics, gas dynamics and aerodynamics. Experiments are documented using written memoranda and worksheets.
- **Components:** Lecture
- **Course Equivalents:** AE 401
- **Attributes:** Offered Spring Term
- **Requirement Group:** Prerequisites: ME/AE 201 or ME/AE301 Corequisites: ME411 or ME326
- **Req. Designation:** Technology
Geometric Dimensioning and Tolerancing
During this course, the students will be introduced to the foundational concepts of Geometric Dimensioning and Tolerancing. It will briefly review traditional coordinate dimensioning practices and then continue with the key concepts of GD&T that address the known limitations and shortcomings of coordinate dimensioning. This course will prepare students to begin thinking of design approach with regard to defining and documenting machine component's function in addition to its size and shape. This course is instructor led with many class participation examples and hands-on student exercises. After final review and student assessments, students will be exposed to 2D and 3D CAD tools and shown how to apply the lessons learned from this course, to CAD drawings.

Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisite: ME 212
Req. Designation: Technology

Introduction to Heat Transfer
Introductory treatment of steady and transient conduction, natural and forced convection and radiation heat transfer with applications to basic heat exchanger design and other multimode problems. Students will complete at least one design project. Laboratory work may be required.

Components: Lecture
Attributes: Offered Fall, Spring, and Summer
Requirement Group: Prerequisites: ES330 or CH301, ES340 or CH271, and MA232 or equivalent.
Req. Designation: Technology

Advanced Biomechanics
[Cross-listed with ME524] Solid biomechanics including structure, function, and mechanical properties of biological tissues. Emphasis will be placed on cell mechanics and signalling, mechanobiology, and remodeling. Current literature topics will be covered.

Components: Lecture
Course Equivalents: ME 524
Attributes: Offered Spring Term
Requirement Group: ME424 Prerequisites: MA232 and ES222.
Req. Designation: Technology

Optimal Engineering
[Cross-listed with AE 443] An introduction to the optimal design of mechanical systems. This course involves the application of mathematical optimization techniques, including linear and nonlinear methods, to the design of devices and systems of interest to mechanical engineers. Emphasis is placed on the formulation of problems which can be solved by these techniques. Use is made of currently available optimal design computer programs.

Components: Lecture
Course Equivalents: AE 443
Requirement Group: Prerequisites: AE/ME350 or ME341.
Req. Designation: Technology

Computer Aided Engineering
An introduction to computer-aided design of mechanical and structural systems. The course deals with the use of commercially available computer-aided design software and hardware for the design of mechanical and structural assemblies. The production of engineering drawings using a CAD system will also be discussed. Hands-on experience is emphasized. Students entering the course are assumed to have a basic understanding of general computer usage and computer graphics in particular.

Components: Lecture
Attributes: Offered Each Term
Requirement Group: Prerequisites: ES100 or EM121 and MA231
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID:</th>
<th>008937</th>
<th>2021-11-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 445(3)</td>
<td>Integrated Design I</td>
<td>This course provides a review and extension of the basic methodology and decisions surrounding design leading to the conceptual and preliminary design of mechanical systems. Topics covered included preliminary sizing, mathematical modeling, experimental evaluation, requirements and constraints, layout, fluid mechanics and thermal sciences issues, structural issues, economics, trade studies, and ethical implications of the design and decision process.</td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Offered Each Term</td>
<td></td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisites: AE/CE/ME212, ES330, and ES340 or CH271 Corequisites: ME341</td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course ID:</th>
<th>008938</th>
<th>2021-11-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 446(3)</td>
<td>Integrated Design II</td>
<td>Continuation of concepts introduced in the Integrated Design I on the basic methodology and decisions surrounding mechanical systems design including what is necessary for final detail design. The course is supplemented by lectures on various topics including conceptual design issues, detailed system considerations, trade studies, integration, structural issues, computational mechanics, testing considerations, cost, and manufacturing.</td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>One communication unit, Offered Each Term</td>
<td></td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisites: ME445</td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course ID:</th>
<th>008940</th>
<th>2014-11-19</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 450(3)</td>
<td>Control Systems</td>
<td>[Cross-listed with EE 450] Introduction to the analysis and design of continuous-time feedback control systems. Topics include: mathematical representation of physical systems with linear differential equations, Laplace transforms, transfer functions, block diagrams and signal flow graphs, feedback, sensitivity, transient specifications, steady-state tracking errors, stability, root locus plots, compensator design, simulation.</td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Course Equivalents:</td>
<td>EE 450</td>
<td></td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisites: AE/EE/ME324 or Corequisite: EE321.</td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course ID:</th>
<th>008942</th>
<th>2021-03-03</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 452(3)</td>
<td>Advanced Strength of Materials</td>
<td>A study of properties of materials, general stress-strain relationships, modern strength theories, unsymmetrical bending, curved beams, beams on elastic foundations, the equations of elasticity and plasticity (1 credit of design)</td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Course Equivalents:</td>
<td>CE 452</td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Offered Fall Term</td>
<td></td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisites: ES222</td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course ID:</th>
<th>008944</th>
<th>2014-11-18</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 455(3)</td>
<td>Mechanical Vibrations and Control</td>
<td>[Cross-listed with AE 455] Fundamentals, free vibration, harmonically excited vibration, transient vibration, multi-degree freedom systems, vibration measurements, introduction to control theory, linear feedback control, vibration control, adaptive and optimal control, numerical methods.</td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Course Equivalents:</td>
<td>AE 455</td>
<td></td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisites: ES223</td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
</tr>
</tbody>
</table>
Composite Mechanics and Design

Components: Lecture
Course Equivalents: AE 457
Attributes: Offered Spring Term
Requirement Group: Prerequisites: ES222 and ES260
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor Consent Required</th>
<th>Description</th>
<th>Components</th>
<th>Attributes</th>
<th>Requirement Group</th>
<th>Req. Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 465(3)</td>
<td>Advanced Independent Projects I</td>
<td></td>
<td>An opportunity for the advanced student to undertake an independent investigation in a mechanical engineering field of his or her own choice. Assistance will be given only when the student requests it. The project may be a comprehensive literature investigation, involve laboratory experiments, or involve analytical work by permission of adviser only.</td>
<td>Independent Study</td>
<td></td>
<td></td>
<td>Technology</td>
</tr>
<tr>
<td>ME 492(3)</td>
<td>Welding Metallurgy</td>
<td></td>
<td>Introduction to conventional and non-conventional welding processes. Weldability problems in ferrous, non-ferrous and metal-matrix composite materials will be discussed. Solidification modes and their effects on the mechanical properties of weldments will be examined. Students will perform arc welding and friction welding of alloys, and ultrasonic welding of plastics.</td>
<td>Laboratory, Lecture</td>
<td>Offered Fall Term</td>
<td>Prerequisites: ES260</td>
<td>Technology</td>
</tr>
</tbody>
</table>
ME 500(3) Course ID:012590 2016-07-01
Elasticity
[Formerly MER 500] The behavior of substances that possess the property of recovering their size and shape when forces producing deformation are removed. Review of stress and strain; study of two-dimensional problems in rectangular, polar, and curvilinear coordinates; introduction to three-dimensional problems; torsion and bending.

Prerequisites: Calculus IV, Linear Algebra and Differential Equations, and Mechanics of Materials or equivalent

Components: Lecture
Attributes: Offered Winter Term
Req. Designation: Technology

ME 501(3) Course ID:012591 2016-07-25
Transport Phenomena
[Formerly MER 501] The fundamentals of momentum, energy, and mass transfer and their analogous transport mechanisms. One-dimensional transport, transport properties, transport with internal generation, transfer coefficients, convective and turbulent transport.

Prerequisites: Linear Algebra and Differential Equations, Heat Transfer Analysis and Design or equivalents

Components: Lecture
Attributes: Offered Spring Term
Req. Designation: Technology

ME 502(3) Course ID:012592 2016-07-25
Engineering Analysis
[Formerly MER 502] Topics in applied mathematics needed to analyze and model engineering problems by constructing mathematical models for a physical situation and the reduction of the ensuing mathematical problems to numerical procedures. Matrices, linear algebra, vector and tensor calculus, partial differential equations, calculus of variations, finite element and difference techniques, Fourier series and integrals.

Prerequisites: Calculus, Linear Algebra and Differential Equations or equivalents

Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology
Advanced Manufacturing Processes

Brief introduction to the traditional manufacturing processes such as bulk deformation, extrusion, forging/forming, cold & hot working, and joining/welding. Emphasis will be on advanced near net shape forming/processes of engineering materials known as Additive Manufacturing/3D Materials Processing, including 3D processing for Polymers as well as metals.

- **Components:** Lecture
- **Course Equivalents:** ME 390
- **Attributes:** Offered Spring Term
- **Req. Designation:** Technology
ME 506 (3) Course ID: 012593 2016-07-01

Mechanical Behavior of Materials

Prerequisites: Calculus, Linear Algebra, Differential Equations, and Mechanics of Materials or equivalents

Components: Lecture
Req. Designation: Technology

ME 507 (3) Course ID: 012594 2016-07-01

Design for Manufacturing
[Formerly MER 507] This course will introduce the student to the principles of design for manufacturing. The course will begin by examining modern manufacturing operations including machining, casting, forging, welding, brazing, soldering, finishing, heat treating, assembly, plastic materials processing, powder metallurgy, and specialized manufacturing processes. This section will also include electronics manufacturing, covering both through-hole technology and surface mount devices. For each manufacturing process, capabilities and limitations will be discussed and how they relate to part design and cost. Design for manufacturing principles will be examined, including how the designer affects manufacturing cost, lean manufacturing, six sigma, value stream analysis, manufacturing rate, the cost of quality, process flexibility, process simulation, and process economics.

Components: Lecture
Req. Designation: Technology

ME 508 (3) Course ID: 012595 2016-07-01

Fracture Mechanics
[Formerly MER 508] Modern theory of fracture in design. The ability to apply fracture mechanics principles to the design and analysis of engineering structures. Subjects treated include occurrence of fracture, fracture toughness, fracture resistance, and fatigue.

Prerequisites: Mechanics of Materials or equivalent

Components: Lecture
Req. Designation: Technology

ME 509 (3) Course ID: 012596 2016-07-01

Current Approaches to Fatigue in Design
[Formerly MER 509] To provide engineering students with an understanding of fatigue mechanisms, design criteria and realistic examples to avoid and predict fatigue/durability failures in structures and components. The major emphasis of the course is fatigue of metals as applied to a variety of engineering structures and components, including both fatigue mechanisms and design applications. The course material is applicable to ground vehicles, buildings/bridges, aerospace vehicles, ships, nuclear pressure vessels, metal implants/prostheses and others. Both constant amplitude and variable amplitude fatigue life situations are considered.

Prerequisites: Calculus, Differential Equations, Strengths of Materials

Components: Lecture
Req. Designation: Technology

ME 510 (3) Course ID: 012597 2016-07-01

Advanced Dynamics
[Formerly MER 510] Analytical dynamics with engineering applications to particles and rigid bodies. Topics include three-dimensional kinematics and dynamics, Lagrangian dynamics. Prerequisites: Advanced Mechanics, Rigid Body Mechanics or equivalent

Components: Lecture
Req. Designation: Technology
Introduction to Acoustics
This course covers the basic concepts of acoustical analysis for engineers. Topics covered included wave propagation, and sound radiation, absorption, and transmission. Treatment of the material is considered from the viewpoint of harmonic oscillators, and builds upon the foundation of frequency domain analysis.

Components: Independent Study
Attributes: Offered Spring Term
Requirement Group: Prerequisites: ME455 or Instructor Permission
Req. Designation: Technology
ME 512(3)
Course ID:012598
2016-07-01
Vibrations of Discrete Systems
[Formerly MER 512] Response of single and multi-degree-of-freedom systems to harmonic, periodic and impulsive excitation. Fourier series and transforms; ideal impulse and impulse response; convolution in the time and frequency domains; matrix and modal methods; system eigenvalues and vectors; impulse testing with a spectrum analyzer.

Prerequisites: Dynamics and Kinematics or equivalent, Calculus, Differential Equations, Mat Lab helpful

Components:
Lecture

Req. Designation: Technology

ME 513(3)
Course ID:012600
2016-07-01
Processing and Selection of Engineering Materials
[Formerly MER 515] A comprehensive examination of processing technologies for engineering materials, and the effects of selected processing routes and materials to meet and satisfy design and applications criteria.

Prerequisites: Mechanics of Materials or equivalent

Components:
Lecture

Req. Designation: Technology
Engineering - Mechanical & Aerospace Eng - Subject: Mechanical Engineering

ME 515(3) Course ID:008956 2014-11-20

Finite Element Methods

(Cross-listed with CE 538, MA 572) This course is an introduction to the finite element method, from a mathematical as well as a modeling and applications point of view. The basic theory and implementation will be discussed in the context of continuum problems in linear elasticity, potential flow and plate modeling. If time permits, additional applications such as structures, electromagnetics, fluid mechanics, ground water and geotechnics will also be discussed. Topics include: weak formulations and the principle of virtual work, discretization and interpolation-function selection, assembly and solution of the system equations, error estimates and accuracy assessment. When taught in conjunction with CE 438/ME 453 the course requires additional independent work for those registered for the graduate course.

Prerequisites: MA232, MA339 or MA330, ES222, ES330, and the ability to program. Consent of the instructor may be used to replace some prerequisites.

Components: Lecture

Course Equivalents: CE 538, MA 572

Req. Designation: Technology
ME 516(3) Course ID:012601 2016-07-01

Finite Element Methods in Engineering

[Formerly MER 516] This course provides an introduction to the finite element method with an emphasis for solving structural engineering problems. It will cover a review of matrix algebra and the solution to simultaneous linear equations. It will then lead to an introduction of the stiffness method, which will include a review of the equations from elasticity. The method will then be applied to bar and beam equations, followed by 2D plane strain equations. Modeling guidelines will then be covered, along with axisymmetric analysis and isoparametric formulations; finishing up with three dimensional analysis. Prerequisites: Calculus, Differential Equations, Strength of Materials or Equivalent

Components: Lecture
Req. Designation: Technology

ME 517(3) Course ID:008958 2016-09-01

Advanced Thermal Systems

Advanced treatment of steady and transient conduction, convection and radiation heat transfer with applications to various thermal systems such as electronic circuits and HVAC.

Components: Lecture
Same As Offering: ME 517
Attributes: Given When Needed
Req. Designation: Technology
ME 517(3) Course ID:008958 2016-09-01

Advanced Thermal Systems
Advanced treatment of steady and transient conduction, convection and radiation heat transfer with applications to various thermal systems such as electronic circuits and HVAC.

Components: Lecture
Same As Offering: ME 517
Attributes: Given When Needed
Req. Designation: Technology

ME 520(3) Course ID:013127 2021-09-28

Aeroelasticity
Aeroelasticity of lifting surfaces, plates, and shells with particular emphasis on prediction of flutter, divergence, and control surface reversal. Topics will include unsteady aerodynamic effects, multiple mode interactions, prediction techniques, and reduced-order-models.

Components: Lecture
Attributes: Offered Spring Term
Req. Designation: Technology

ME 524(3) Course ID:012987 2019-10-23

Advanced Biomechanics
[Cross-listed with ME424] Solid biomechanics including structure, function, and mechanical properties of biological tissues. Emphasis will be placed on cell mechanics and signalling, mechanobiology, and remodeling. Current literature topics will be covered.

Components: Lecture
Course Equivalents: ME 424
Attributes: Offered Spring Term
Req. Designation: Technology

ME 527(3) Course ID:008960 2019-03-08

Advanced Fluid Mechanics
An introductory level graduate course in fluid mechanics. Spatial and material coordinates, kinematics of fluid motion, continuity and momentum equations, constitutive relations, simple solutions, potential flows, boundary layer theory, creeping flow, flow through porous media, particle motion, interfacial phenomena, turbulence.

Prerequisites: CH301 or ES330 or equivalent.
Components: Laboratory, Lecture
Same As Offering: ME 527
Course Equivalents: CE 527
Attributes: Offered Fall Term
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID: ME 527(3)</th>
<th>Course ID: 008960</th>
<th>2019-03-08</th>
</tr>
</thead>
</table>

Advanced Fluid Mechanics
An introductory level graduate course in fluid mechanics. Spatial and material coordinates, kinematics of fluid motion, continuity and momentum equations, constitutive relations, simple solutions, potential flows, boundary layer theory, creeping flow, flow through porous media, particle motion, interfacial phenomena, turbulence.

Prerequisites: CH301 or ES330 or equivalent.

Components: Laboratory, Lecture

Same As Offering: ME 527

Course Equivalents: CE 527

Attributes: Offered Fall Term

Req. Designation: Technology
Stochastic Processes in Engineering

Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

Computational Fluid Dynamics

The course will present advanced computational methods for solutions of transient and steady-state problems in fluid mechanics and in transport phenomena, including incompressible flows, compressible flows, heat transfer, transport of suspended particles, etc. The course will require programming in Fortran or other languages. Post processing of data will include the use of computer graphics. Special projects in application of the course material to research-oriented problems in engineering will be emphasized.

Components: Lecture
Attributes: Offered Spring Term
Req. Designation: Technology

Additive Manufacturing: Materials and Applications

This course offers a broad introduction to history, current status and future trends of Additive Manufacturing process, while also comparing with other conventional manufacturing techniques. Various aspects of successful AM production process will be discussed, from raw materials to machines and techniques. While 3D printing of metallic materials will be emphasized, brief introductions to Ceramic and Polymer AM will also be provided.

Components: Lecture
Attributes: Offered Even Springs
Req. Designation: Technology

Introduction to Acoustics and Voiced Speech Applications

This course provides an introduction to acoustics. The topic is developed using a framework based on vibrations. Topics covered include transverse vibrations, the acoustic wave equation, sound sources, and reflection and transmission. Application to voiced speech production is emphasized in the second half of the course, providing an overview of the anatomy and physiology and mechanics of voiced speech production. Sound production and transmission within the vocal tract is subsequently explored.

Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology

Fluid Mechanics of Aerosol Dispersion

Prerequisites: Consent of the instructor
Components: Laboratory, Lecture
Attributes: Given When Needed
Req. Designation: Technology
Experimental Aerosol Mechanics and Instrumentation

Prerequisites: consent of the instructor.

Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

Advanced Optimal Design

The optimal design of mechanical systems is studied. The optimization methods discussed in the course include: unconstrained optimization in several variables (e.g. gradient search, random search), constrained optimization in several variables (e.g. linear programming, nonlinear programming, Lagrange multipliers, geometric programming) and problems structured for multistage decision (e.g. dynamic programming). Emphasis is placed on the formulation of problems which can be solved by these techniques. A project involving the application of the methods introduced is required.

Prerequisites: ES222.

Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology

Advanced CAD (Computer Aided Design)

This course deals with the use of commercially available CAD hardware and software for product development and design. Lectures cover the underlying theories upon which such software is based, the ways in which these theories are implemented and software limitations. Hands-on experience is emphasized. Students entering the course are assumed to have some knowledge of general computer usage and computer graphics.

Components: Lecture
Attributes: Offered Spring Term
Req. Designation: Technology
Theory of Elasticity

(Cross-listed with CE 551) A study of the mathematical theory of elasticity and its application to engineering problems; development of general stress-strain relationships, equations of equilibrium and compatibility; plane stress and plane strain; stress functions; applications to beam bending and torsion.

Prerequisites: ES222 or equivalent, ME554 or consent of the instructor.

Components:
Lecture

Course Equivalents:
CE 551

Attributes:
Offered Spring Term

Req. Designation:
Technology
<table>
<thead>
<tr>
<th>Course ID:</th>
<th>010536</th>
<th>2021-03-03</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 552(3)</td>
<td>Course ID: 010536</td>
<td>2021-03-03</td>
</tr>
<tr>
<td>Advanced Strength of Materials</td>
<td>Discussion and theory concerning properties of materials, general stress-strain relationships, modern strength theories, unsymmetrical bending, curved beams, beams on elastic foundations, the equations of elasticity and plasticity (1 credit of design)</td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Course Equivalents:</td>
<td>CE 552</td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Offered Fall Term</td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
</tr>
</tbody>
</table>
Continuum Mechanics

[Cross-listed with CE 554] The course involves the analysis of stress and deformation at a point, and the derivation of the fundamental equations by applying the basic laws of conservation of mass, energy and momentum and those of thermodynamics. Vector and cartesian tensors are reviewed. Relationships are then developed between stress, strain and strain rate and constitutive laws affecting stress-strain relationships. These are used to formulate the basic equations governing the behavior of any continuum with applications to solids and fluids.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Equivalents:</td>
<td>CE 554</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course ID</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>ME 555(3)</td>
<td>008974</td>
</tr>
<tr>
<td>Advanced Mechanical Vibrations</td>
<td></td>
</tr>
<tr>
<td>A review of discrete multiple degree-of-freedom systems is presented. The equations of motion of continuous systems such as strings, rods, beams and torsion bars are studied using both classical and approximate solution methods. Hamilton's principle and nonlinear vibrating systems are also covered.</td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
</tr>
<tr>
<td>Attributes:</td>
<td>Given When Needed</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Run Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 556(3)</td>
<td>013016</td>
<td>2020-01-17</td>
</tr>
<tr>
<td>Advanced Finite Element Methods in Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This course builds on basic concepts of spring and bar type elements, two-dimensional truss analysis, beam bending, plane stress & plane strain analysis, axisymmetric stress analysis, and isoparametric formulation of the finite element method. This course will examine topics in three-dimensional stress analysis, plate bending, heat transfer, fluid flow, electrostatics, thermal stress analysis, structural dynamics, and time-dependent stress analysis. Topics like the direct approach, the principle of minimum potential energy, and Galerkin's residual method will continue to be applied as required in developing required governing equations. This course will examine practical applications including the ability to use and apply the ABAQUS software package. This course will expand on the topics presented in a Fundamentals of Finite Element Methods course and requires knowledge in Mechanical Behavior of Materials, Linear Algebra and Differential Equations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Offered Spring When Needed</td>
<td></td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisite: ME516</td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
</tr>
</tbody>
</table>
ME 557(3)
Course ID: 008975
2015-01-20
Advanced Mechanics of Composite Materials
Prerequisites: ES222 and ES260.
Components: Lecture
Attributes: Offered Spring Term
Req. Designation: Technology
Space Robotics
This course establishes principles underpinning space robotics with a thorough and modern approach; chapters
build from general physical foundations through an extensive treatment of control systems, perception
challenges, and conservation principles in dynamics. After introducing the principles and governing dynamic
equations of space robotic systems, the latter part of the course focuses on real-life applications related
to space systems including space mechanics and the dynamics of space vehicles. It introduces supervised and
unsupervised machine learning (ML) algorithms including implementations of ML techniques for perception
challenges that can be applied to a wide range of space vehicles and robotic systems. Applications of
dynamics and control theory to real spacecraft systems are also covered. After completing this course, the
students will be able to apply basic robotic and machine learning techniques in space robotic systems.

Components: Lecture
Course Equivalents: AE 459
Attributes: Offered Spring Term
Req. Designation: Technology
ME 560(3) Course ID:012604 2016-07-01
Linear Control Systems
[Cross-listed as EE 657] [Formerly MER 522] This course addresses practical control system design primarily from a classical perspective. Beginning with transfer function modeling of dynamic systems, the course moves through transient, root locus, and frequency response analysis to end with frequency domain techniques for controller design.

Prerequisites: System Modeling and Analysis (Circuits and Systems or Dynamics of Physical Systems), Mat Lab/Simulink helpful

Components: Lecture
Course Equivalents: EE 657
Req. Designation: Technology

ME 561(3) Course ID:012605 2018-11-06
Engineering Optimization
[Formerly MER 525] This course in engineering optimization studies techniques with applications in various aspects of engineering design and other disciplines including: concepts of design variables, constraints, objective functions, penalty functions, and Lagrange multipliers. Techniques for solving constrained and unconstrained optimization problems: classical approaches steepest descent, conjugate gradient, modified Newton, controlled random searches, etc. Applications and examples in the design of engineering components and systems will be presented.

Prerequisites: Calculus, Differential Equations, Mat Lab helpful

Components: Lecture
Same As Offering: ME 561
Req. Designation: Technology

ME 562(3) Course ID:012606 2016-07-01
Composites
[Formerly MER 532] This course provides a comprehensive introduction to composite materials and motivation for their use in modern applications. Topics include selection and availability of composite materials, manufacturing processes, usable theoretical concepts, testing and characterization of composites, and strength theories.

Prerequisites: Materials Science, Strength of Materials, or equivalent

Components: Lecture
Req. Designation: Technology

ME 563(3) Course ID:012607 2016-07-01
Dynamics of a Viscous Fluid
[Formerly MER 534] Analysis of Laminar and turbulent flow fields. Approximate solutions of the Navier-Stokes equations according to boundary layer theory. Prerequisites: Fluid Mechanics, Thermodynamics or equivalent, Calculus, Differential Equations

Components: Lecture
Req. Designation: Technology

ME 564(3) Course ID:012608 2016-07-01
Compressible Fluid Flow
[Formerly MER 536] Analysis of internal and external compressible flow fields. Supersonic airfoil analysis according to shock-expansion theory.

Prerequisites: Fluid Mechanics, Thermodynamics or equivalent, Calculus, Differential Equations

Components: Lecture
Req. Designation: Technology
ME 565(3) Course ID: 012609 2016-07-01
Combustion Fundamentals
(Formerly MER 537) The study of the chemical and physical processes in combustion. Analysis of thermochemistry and fuel oxidation, premixed and diffusion flame phenomena, combustion of condensed phases, detonation, combustion in practical systems, and combustion generated air pollution. Prerequisites: Thermodynamics or equivalent
Components: Lecture
Req. Designation: Technology

ME 567(3) Course ID: 012611 2016-07-01
Thermodynamic Analysis
(Formerly MER 540) Consideration of various particulate and continuum bases for structuring thermodynamic principles and their application to the solution of current and prospective engineering problems.
Prerequisites: Basic Thermodynamics, Heat Transfer or equivalent
Components: Lecture
Req. Designation: Technology

ME 568(3) Course ID: 012612 2016-07-01
Thermal Energy Processes
(Formerly MER 541) This course focuses on the analysis of thermal processes relevant to the renewable energy priorities of today’s green economy. The underlying engineering principles of thermal processes, which make the best use of sustainable energy sources through proper acquisition, storage and conversion, will be considered. The course incorporates the fundamentals of thermodynamics and heat exchange necessary to understand the components and cycles that enable these thermal energy processes.
Prerequisites: Fluid Mechanics, Thermodynamics, Heat Transfer
Components: Lecture
Req. Designation: Technology
ME 570(3) Course ID:013054 2020-09-18
Orbital Mechanics
(Cross-Listed AE470) This course provides an overview of the fundamentals of orbital mechanics. Beginning from kinematics and rigid body dynamics, students are introduced to topics in orbital and attitude dynamics and control. In orbital dynamics and control, core topics covered include: the two-body problem, orbital motion, Kepler’s Laws, orbital elements, orbital perturbations, orbital maneuvers, interplanetary trajectories, and the restricted three-body problem. In attitude dynamics and control, core topics covered include: attitude stabilization, torques on a spacecraft, torque-free motion, spin and dual-spin stabilization, gravity-gradient stabilization, and active attitude control.

Components: Lecture
Course Equivalents: AE 470
Attributes: Offered Spring Term
Req. Designation: Technology

Engineering - Mechanical & Aerospace Eng - Subject: Mechanical Engineering
Engineering - CRC Engineering Programs - Subject: Mechanical Engineering

ME 571(3)
Convection Heat Transfer
[Formerly MER 552] Analysis of laminar and turbulent heat transfer processes. Approximate solutions of the energy equation according to boundary layer theory.

Prerequisites: Fluid Mechanics, Heat Transfer

Components:
- Lecture

Req. Designation: Technology

ME 572(3)
Dynamics of Inviscid Fluids
[Formerly MER 553] Analysis of the kinematics and dynamics of inviscid fluids. Vector and Cartesian tensor notation. Potential flow theory involving sources, sinks, vortices, Rankine bodies, Joukowski airflows, jets, and channel flow. Complex potential analysis with various conformal mapping and transformations techniques.

Components:
- Lecture

Req. Designation: Technology

ME 573(3)
Flow and Heat Transfer in Multiphase Systems
[Formerly MER 554] Analytical and empirical methods for evaluation of flow characteristics, particularly in liquid vapor systems and boiling and condensing of heat transfer.

Prerequisites: Fluid Mechanics, Heat Transfer

Components:
- Lecture

Req. Designation: Technology

ME 574(3)
Numerical Heat Transfer and Fluids Flow (CFD)
[Formerly MER 555] Fluids Mechanics, Heat Transfer, and Numerical Methods concurrently applied to solve problems of applied engineering. Topics include: derivation, classification, and discretization of the General Transport equations pertaining to unsteady multi-dimensional physics. Computational theory and solution methods include: explicit, implicit, Crank-Nicolson, upwinding, as well as higher order approaches. Scheme stabilities and numerical results are addressed using the von Neumann stability assessment and examination of corresponding Modified equations. The coupling of pressure and velocity for incompressible flow is considered using the SIMPLE algorithm.

Components:
- Lecture

Req. Designation: Technology

ME 575(3)
Nuclear Engineering & Technology
[Cross-listed with EE 687] [Formerly MER 560] The purpose of this course is provide students of various engineering disciplines a functional knowledge of nuclear engineering principles and those most important to the design of nuclear power generation systems. The course will focus both on the nuclear reactor core as well as plant systems. The intent is that students will gain a physical understanding of nuclear engineering principles as they relate to their own filed of interest. Class participation will be highly encouraged and focused through the discussion of current events in the nuclear industry as well as proposed future nuclear technologies.

Components:
- Lecture

Course Equivalents: EE 687

Req. Designation: Technology

ME 577(3)
Engineering Statistics
[Cross-listed with EE 602, CS 506] [Formerly MER 572] Modern engineering practice makes extensive use of statistical methods for the efficient collection and analysis of engineering data, and to support data-based decision making. This course will introduce the statistical tools that are of greatest importance for practicing engineers. Core topics to be covered will include probability and distribution theory, the construction and interpretation of statistical intervals, statistical hypothesis testing, regression analysis and empirical modeling, statistical experimental design, and statistical quality/process control. Additional specialized topics may also be covered, depending upon the interests of the class; possible topics include system reliability analysis, measurement system analysis, process capability analysis (and "six-sigma"), accelerated life testing, and acceptance sampling.

Components:
- Lecture

Course Equivalents: CS 506, EE 602

Req. Designation: Technology
Course ID: 012972
Course Name: ME 578(3)
Course Title: Statistical Methods for Reliability and Life Data Analysis
Cross-listed with: EE603 and BOE623

Reliability analysis is concerned with understanding the failure modes that affect an engineered product, estimating the expected life of the product under service conditions, and predicting the failure rate of the product as a function of time in service. The primary response variable in reliability analysis is time to failure, which may be measured in controlled laboratory experiments, or observed empirically from post-introduction studies of products "in the field". The analysis of data for which the primary variable of interest is time to failure requires specialized statistical concepts and tools; this course will cover some of the most useful approaches.

Components:
- Lecture

Same As Offering: ME 578

Course Equivalents: EE 603, EE 603, BOE 623

Attributes:
- Offered Winter Term

Requirement Group: Prerequisites: EE602, ME577, or CS506 or instructor consent.

Req. Designation: Technology

Course ID: 012972
Course Name: ME 578(3)
Course Title: Statistical Methods for Reliability and Life Data Analysis
Cross-listed with: EE603 and BOE623

Reliability analysis is concerned with understanding the failure modes that affect an engineered product, estimating the expected life of the product under service conditions, and predicting the failure rate of the product as a function of time in service. The primary response variable in reliability analysis is time to failure, which may be measured in controlled laboratory experiments, or observed empirically from post-introduction studies of products "in the field". The analysis of data for which the primary variable of interest is time to failure requires specialized statistical concepts and tools; this course will cover some of the most useful approaches.

Components:
- Lecture

Same As Offering: ME 578

Course Equivalents: EE 603, EE 603, BOE 623

Attributes:
- Offered Winter Term

Req. Designation: Technology
ME 580(3) Course ID:012022 2014-12-05
Advanced Modeling and Simulation of Dynamic Systems
This course will incorporate techniques of bond graph theory in the energy-based lumped parameter modeling of
electrical, mechanical, hydraulic, magnetic, and thermal energy domains. Bond graph theory offers a unified
approach to modeling dynamic energy systems and provides the tools necessary for the analysis of complex
systems involving a variety of energy domains. Rather than attempt to cover all of the available analysis
techniques, this course will serve to provide an underlying foundation on which to develop a thorough
understanding of the interactions of energetic systems. Emphasis of the course will focus on multi-domain
interaction.
Components: Lecture
Req. Designation: Technology
Fuel Cell Science and Hydrogen Engineering

Course ID: 012624 2016-07-01

[Cross-listed with EE 640] [Formerly MER 580] Introduce the student to the science and engineering of fuel cell technology. Emphasis will be on developing an understanding of different types of fuel cells, their applications, and the engineering of complete fuel cell systems. Elements of that class will include: electrochemistry; polymer materials science for proton exchange membrane (PEM) based systems; ceramics for solid oxide fuel cells; liquid-electrolytes for phosphoric acid and alkaline fuel cells; and other methods of generating power directly from a fuel and an oxidant. The system requirements of the fuel cell stack will be introduced to provide a complete picture of the technology. Other elements addressed during the course will include thermochemistry; electrochemistry; fuel processing or reforming; electrical & power management; and polymer science and systems engineering. Developing an understanding of the proton exchange membrane fuel cell will be the primary objective. After completing this course, the student is expected to have an

- Lecture
- Course Equivalents: EE 640
- Req. Designation: Technology

Photovoltaic Engineering

Course ID: 012625 2016-07-01

[Cross-listed with EE 643] [Formerly MER 580A] The course focuses on the physical principles, technology, and design of efficient semiconductor photovoltaics. Course goals equip students with the concepts and analytical skills to understand efficiency limitations, to assess the viability of various solar and thermophotovoltaic technologies, and to introduce the physics required for understanding photovoltaic energy conversion. The course will focus on three primary aspects of photovoltaic energy conversion, (i) the transfer and conversion of solar (i.e. thermal) radiation to electronic energy, (ii) the theory and design of the semiconductor photovoltaic cell and (iii) photovoltaic systems and applications.

- Lecture
- Course Equivalents: EE 643
- Req. Designation: Technology

Turbine Engineering

Course ID: 012626 2016-07-01

[Cross-listed with EE 683] [Formerly MER 580B] Course on fundamentals of design, analysis, and technology of turbo machinery − jet engines, gas turbines, steam turbines, water turbines, and wind turbines. The course will provide an understanding of all aspects of system development: thermodynamic cycles, design-point and off-design performance; function and design of components (inlets, compressors, combustors, turbines, outlets), operational limits, and environmental concerns; structural analysis, lifting, and materials; rotor dynamics and blade aeromechanics; clearance analysis, sealing, and packing; heat transfer, blade and component cooling; starting and control; power and thrust generation; testing and instrumentation. The student is expected to develop a broad understanding of the state-of-the-art, challenges, and future of turbine systems.

- Lecture
- Course Equivalents: EE 683
- Req. Designation: Technology

Welding

Course ID: 012628 2016-07-01

[Formerly MER 580D] Welding metallurgy is a technologically important field that covers a wide range of scientific disciplines. This course uses welding metallurgy as a vehicle to introduce basic and broadly applicable concepts in solid state physics, chemistry, materials science, fluid mechanics, and solid mechanics. Topics covered include welding processes, heat and fluid flow, chemical reactions, residual stresses, solidification phenomena, phase transformations, and welding defects. Special emphasis will be placed on applied engineering problems and on the behavior of structural engineering materials. Real life examples will be used to illustrate the fundamental concepts of the course. Homework assignments and a final project are required.

- Lecture
- Prerequisites: Materials Science, Strength of Materials or equivalent.
- Req. Designation: Technology
Solar Energy Engineering
(Cross-listed with EE 685)
Formerly MER 580E
This course is designed to enable the student to effectively grasp the complex and quickly changing solar industry. The course will cover such topics as the economy of solar, photovoltaic devices, systems and applications. In order to cover this broad range of technical topics, the course will utilize multiple instructors. Each instructor has significant expertise and depth in the given field and the student will be able to draw from their experience. Students completing this course will develop knowledge of the solar industry, looking at the past, present and future of this technology area. Students will gain key technical background in every aspect of the industry and will be able to assess new technologies as they are developed. Understanding of the economics of solar and its future will also be obtained.

Components: Lecture
Course Equivalents: EE 685
Req. Designation: Technology

Wind Energy Engineering
(Cross-listed with EE 684)
Formerly MER 580F
The course focuses on 'Wind Farm Project Design and Development' and 'Wind Turbine Technology.' Part I: Teams will demonstrate understanding of complete wind farm design/development process inclusive of site selection, wind resource evaluating target land area, turbine choice, location, energy projection, cost and transmission. Part 2: Focuses on technical understanding of Wind Turbine attributes such as structural, blade system, Uacelle system, electrical system, performance, and future opportunities.

Components: Lecture
Course Equivalents: EE 684
Req. Designation: Technology

Synchronous Electrical Generators
(Cross Listed EE686)
Formerly MER 580G
This course covers fundamentals of design and analysis of power generators, such as those used in thermal power plants and wind turbines. The course will address the basic operating principles of the synchronous machine and consider configurations such as would field, permanent magnet, and doubly fed generators. Key topics will include understanding and analysis of the magnetics within the machine, losses and efficiency, thermal performance, mechanical behavior, operation on the power system, and key IEEE and IEC standards. Further topics will include the duty imposed on the machine during service, as well as the duty it imposes on the turbine. The student is expected to develop a broad functional understanding of the current engineering technology, challenges, and future of generator technology. Cross Listed EE686

Components: Lecture
Course Equivalents: EE 686
Req. Designation: Technology
Advanced Welding Metallurgy

Introduction to various aspects of welding processes. Weldability problems in ferrous, non-ferrous and metal-matrix composite materials will be discussed in detail. Solidification modes and their effects on the mechanical properties of austenitic and duplex stainless steel weldments will be examined.

Prerequisites: consent of the instructor.

Components:
- Laboratory, Lecture

Attributes:
- Given When Needed

Req. Designation:
- Technology

Selected Topics in Materials Engineering

An advanced graduate course in the field of materials engineering. Topics to be covered will be selected to conform to the mutual interests and needs of students and faculty.

Prerequisites: consent of the instructor.

Components:
- Lecture

Attributes:
- Given When Needed

Req. Designation:
- Technology

Selected Topics in Manufacturing

An advanced graduate course in the field of manufacturing. Topics to be covered will be selected to conform to the mutual interests and needs of students and faculty.

Prerequisites: consent of the instructor.

Components:
- Independent Study

Attributes:
- Offered Each Term

Req. Designation:
- Technology

Principles of Physical Metallurgy

Topics include: structure of metals, diffraction techniques (X-Ray, SEM-TEM), dislocation phenomena, diffusion in solids, precipitation hardening, nucleation and growth, solidification and phase transformation in solids.

Prerequisites: consent of the instructor.

Components:
- Lecture

Attributes:
- Offered Spring Term

Req. Designation:
- Technology
This non-credit Seminar project provides a capstone experience for Mechanical Engineering graduate students not completing a thesis or independent study (i.e., all course work). The candidate and faculty advisor agree on project scope and evaluation process. The candidate performs required analytical and/or experimental studies to complete a Graduate Project Paper and Presentation.

Components: Seminar

Attributes: Given When Needed

Req. Designation: Technology
Engineering - Mechanical & Aerospace Eng - Subject: Mechanical Engineering

ME 610 (1 - 2)
Course ID: 008982 2015-02-09

Mechanical Engineering Seminar
Students, staff and visiting lecturers present research results and topics of current interest.

Components: Seminar
Attributes: Offered Each Term
Req. Designation: Technology

ME 614 (1 - 15)
Course ID: 008983 2015-02-09

Thesis, Dissertation Credits
Analytical or experimental studies in mechanical and aeronautical engineering under the direction of a faculty adviser. Credit for this work is given when the requirements for the degree are completed including the presentation of a thesis or dissertation as appropriate to the degree program.

Components: Thesis Research
Attributes: Offered Each Term
Req. Designation: Technology

ME 616 (1 - 7)
Course ID: 008984 2015-02-09

Special Project Credits
Engineering project credits associated with a Masters of Engineering degree under the direction of a faculty advisor.

Components: Project Team
Attributes: Offered Each Term
Req. Designation: Technology

ME 618 (3)
Course ID: 008986 2015-02-09

Selected Topics in Heat Transfer
An upper level graduate course in the field of heat transfer. Areas of coverage will be selected to conform to the mutual interests and needs of students and faculty.
Prerequisites: consent of the instructor.

Components: Lecture
Attributes: Offered Each Term
Req. Designation: Technology

ME 621 (3)
Course ID: 011998 2015-02-19

Computational Mechanics of Materials
The objective of this class is to teach the nonlinear finite element analysis for modeling various advanced solid mechanics problems. Both geometric and material nonlinearities will be covered. A wide range of constitutive models, hyper-/hypo-elasticity, viscoelasticity, classical plasticity, crystal plasticity and piezoelectricity will be introduced. Variational formulation will be developed under both the Lagrangian and Eulerian description. Explicit and implicit integration schemes will be covered, and the stability will be discussed. Students will then learn to implement finite element models that can capture geometric and material nonlinearities that represent a wide range of material behavior. The course is expected to make a student comfortable using Abaqus package for advanced problems including developing their own constitutive models and linking these models to the Abaqus package.

Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: ME554 or CE554, and ME515 or MA572, or by instructor consent
Req. Designation: Technology

ME 628 (3)
Course ID: 008988 2015-02-09

Selected Topics in Fluid Mechanics
An advanced graduate course in fluid mechanics. Topics of special interest will be chosen to coincide with current needs. Description of the course content in any particular term will be announced in advance.

Components: Independent Study
Attributes: Offered Each Term
Req. Designation: Technology

ME 632 (3)
Course ID: 013131 2021-10-11

Elastic and Inelastic Stress Analysis
Presents certain key aspects of inelastic solid mechanics centered around viscoelasticity, creep, viscoplasticity, and plasticity. It is divided into three parts consisting of the fundamentals of elasticity, useful constitutive laws, and applications to simple structural members, providing extended treatment of basic problems in static structural mechanics, including elastic and inelastic effects.

Components: Lecture
Course Equivalents: CE 632
Attributes: Offered Even Springs
Req. Designation: Technology
ME 633(3) Course ID: 008972 2015-01-28

Plasticity

This course provides an introduction to the subject of plasticity. The physical background of inelastic deformation in metals and geological materials is discussed. Continuum constitutive theory is presented including yield criteria, flow rules, and plastic hardening. Extension to the rate-dependent (viscoplastic) material is discussed. Uniqueness and extremum theorems are derived and discussed and field equations for general, two-dimensional and axisymmetric problems are presented. Selected problems from metal and soil/rock plasticity are presented and solved using various techniques, including slip-line theory, limit analysis and exact methods. Other topics such as localization and diffuse instability in plastic deformation and application of FEM in plasticity are presented as time allows.

Prerequisite: CE554 or ME554; recommended CE551 or ME551.

Components: Lecture

Course Equivalents: CE 633

Attributes: Given When Needed

Req. Designation: Technology

ME 637(3) Course ID: 008992 2015-01-20

Particle Transport, Deposition and Removal II

Components: Laboratory, Lecture

Attributes: Offered Spring Term

Requirement Group: Prerequisite: ME537

Req. Designation: Technology

ME 639(3) Course ID: 008993 2021-12-14

Advanced Turbulence

Components: Laboratory, Lecture

Attributes: Given When Needed

Req. Designation: Technology

ME 654(3) Course ID: 008994 2015-01-28

Elastic Waves in Solids

The course concerns with stress propagation problems in elastic solids and waveguides. Following the derivation of governing elasto-dynamics equations, formal mathematical issues, such as uniqueness, reciprocal identity, and completeness theorem, are addressed. The most commonly used solution techniques (e.g. Green's functions, integral transforms, normal mode expansions, and series analysis) with examples are provided. Problems considered include propagation in half spaces (reflections and transmissions), approximate rod and plate theories, and classes of composite materials (e.g. laminated bars, and plates). Well-known experimental techniques are also covered. Assignments consist of mathematical derivations, computer simulations and presentations.

Prerequisites: ME551/CE551 and ME554/CE554 or consent of the instructor.

Components: Lecture

Attributes: Given When Needed

Req. Designation: Technology
ME 657(1 - 3) Course ID: 008997 2015-02-09

Selected Topics in Solid Mechanics
An advanced graduate course in solid mechanics. Topics of special interest will be selected to conform to the mutual interests and needs of students and faculty.

Prerequisite: consent of the instructor.

Components: Independent Study
Attributes: Offered Each Term
Req. Designation: Technology
ME 690(3) Course ID:012632 2016-07-01
Independent Study
[Formerly MER 590] Advance graduate course in the field of engineering sciences. Topics of special interest will be selected for current needs. A description of the course content in any particular term will be announced in advance.
Components: Independent Study
Req. Designation: Technology

ME 691(3) Course ID:013166 2022-01-01
Independent Study
Advance graduate course in the field of engineering sciences. Topics of special interest will be selected for current needs. A description of the course in any particular term will be announced in advance.
Components: Independent Study
Attributes: Given When Needed
Req. Designation: Technology

ME 692(3) Course ID:012634 2022-01-01
Independent Study
Advance graduate course in the field of engineering sciences. Topics of special interest will be selected for current needs. A description of the course content in any particular term will be announced in advance.
Components: Independent Study
Attributes: Given When Needed
Req. Designation: Technology

ME 696(3) Course ID:012929 2019-02-14
Structural Dynamics
Prerequisites: Knowledgeable background in Dynamics, Linear/Matric Algebra, Ordinary and Partial Differential Equations. MATLAB Experience useful
Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID:</th>
<th>011131</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components:</td>
<td>Independent Study</td>
</tr>
<tr>
<td>Attributes:</td>
<td>Transfer Credit Only</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>
Business - School of Business - Subject: Marketing

MK 1(2 - 4) Course ID: 009085 2015-07-16
Marketing Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
Components: Lecture
Attributes: Transfer Credit Only
Req. Designation: Technology

MK 2(2 - 4) Course ID: 009086 2015-07-16
Marketing Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
Components: Lecture
Attributes: Transfer Credit Only
Req. Designation: Technology

MK 306(3) Course ID: 009087 2017-03-10
Professional Sales
This course focuses on understanding the sales process mainly at the business-to-business level. Students will learn both theoretical and applied models of sales, with a focus on practical application in the types of companies that Clarkson graduates work at. Topics covered include identification of customer needs, customer relationship management, identification of differentiating factors across products and services, fundamentals of relationship management, managing customer expectations, working with international customers (managing cultural and legal differences), working across internal functional boundaries to sell and support products and services, pricing, negotiation basics, closing a contract, customer satisfaction, and after-sales support and services.
Components: Lecture
Attributes: Given When Needed
Requirement Group: Prerequisite: At least Sophomore standing.
Req. Designation: Technology

MK 320(3) Course ID: 009088 2022-04-05
Principles of Marketing
(May be used to satisfy a CUSB MBA or MS foundation requirement). Familiarizes students with various marketing terms, concepts, principles, institutions and practices. Topics covered include: buyer behavior, market research, product planning, pricing, distribution, personal selling and advertising. The changing nature of marketing and the trends in domestic and international marketing are also examined. Experiential exercises are an intrinsic and important part of this course.
Components: Lecture
Attributes: Offered Fall, Spring, and Summer
Requirement Group: Corequisite: Sophomore Standing
Req. Designation: Technology

MK 321(3) Course ID: 009089 2015-07-06
Consumer Behavior
[Cross-listed with PY 321] Extensive coverage of selected consumer behavior theories and models. Special emphasis given to the most recent research along with marketing mix applications. Topics include classic and operant conditioning, motivation and attribution theories and the elaboration likelihood model. Students are required to complete a term project.
Components: Lecture
Course Equivalents: PY 321
Requirement Group: Prerequisite: MK320.
Req. Designation: Technology

MK 332(3) Course ID: 009093 2015-07-06
Marketing Research
Introductory coverage of various concepts and tools relevant to market information acquisition, analysis, and interpretation. Primary focus is on decision making in marketing research. Students are required to complete a term project.
Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: MK320 and MA/STAT282 or MA/STAT383.
Req. Designation: Technology
Business - School of Business - Subject: Marketing

New Product Development and Marketing Portfolio
The New Product Development and Marketing Portfolio is the mechanism by which students enrolled in the New Product Development and Marketing Minor maintain a repository of their work within the minor and in related areas of study and work during their time at Clarkson. This portfolio should include at least evidence from four (4) new product development and/or marketing projects that were completed by the student during their Clarkson experience. The portfolio can by multimedia and include both coursework and work from extracurricular activities, entrepreneurial initiatives, or Internship/co-op work experiences.

Components: Independent Study

Requirement Group: Prerequisites: Senior Standing

Req. Designation: Technology

Creativity, Innovation & New Product Development
This course provides an introduction and broad overview of the strategic decision making process for managing three critical components for firm growth: creativity, innovation and new product development. The fostering of creativity, the stimulation and management of innovation and the strategic new product development process are discussed within the context of interdisciplinary management. This course concentrates on the front end of new product development focusing on understanding, fostering and managing the creative processes, grasping the importance of innovation in satisfying market needs, and the development of new products up to and including the design stage of new product development. The course provides students with the ability to understand, appreciate and manage new products and the new product development process. Marketing research methods, current topics and critical examination of traditional management strategies applicable to creativity, innovation and new product development and management will be explored through lecture, case studies.

Components: Lecture

Attributes: Offered Fall Term

Requirement Group: Prerequisite: MK320.

Req. Designation: Technology

Special Project in Marketing
An investigation of a problem or in-depth topic undertaken by the student under the guidance of a faculty member.

Prerequisites: Permission of the instructor

Components: Research

Attributes: Given When Needed

Req. Designation: Technology

Marketing Management (MBA Module)
(Cross-listed with MK 610) The problems, decisions and decision-making processes of marketing managers as they seek to increase the effectiveness of performing marketing activities. The objectives are: to update the discussion of marketing principles and practices in the light of recent national and international events; to deepen the discussion of business environmental factors of increased importance, such as energy, inflation, changing consumer life style, government regulation, consumerism and environmentalism; and to aid students in experiencing real-life business situations through the discussion of marketing cases.

Prerequisites: completion of all CUSB MBA foundation requirements and admission to the MBA program.

Components: Discussion, Lecture

Course Equivalents: MK 610, MK 610

Attributes: Offered Spring Term

** Req. Designation:** Technology
Business - CRC Business - Subject: Marketing

MK 610(3)
Course ID: 009107
2018-08-22

Marketing Management

[Cross-listed with MK 609] This course provides graduate students with a fundamental command of marketing concepts, processes, and management, as well as creating an understanding of the critical strategic role marketing plays in the management of organizations. The objectives are two-fold. The first objective is to provide the student with an introduction to the fundamental concepts of marketing and their role in effective marketing management. Thus students will explore central topics including product, price, place, and promotion decisions, examine the roles of consumer behavior and market research, and investigate how organizations blend these inter-related components to create and sustain value. The second objective is to allow students to apply that knowledge in the context of strategic marketing management. Here, strategic elements associated with marketing are integrated into strategic marketing framework to understand and develop marketing strategy and to illustrate how marketing can assist the firm in arriving at a competitive

Components: Lecture
Same As Offering: MK 610
Course Equivalents: MK 609
Attributes: Offered Fall Term
Req. Designation: Technology

MK 626(3)
Course ID: 012553
2016-07-01

Marketing Research Techniques

[Formerly MBA 626] Marketing research is primarily conducted to reduce the amount of uncertainty managers would otherwise face in their decision-making. This course is designed to develop students’ knowledge of marketing research by both exposing them to many major important issues involved with marketing research and requiring them to complete a marketing research report from start to finish. Topics discussed include research designs, data collection methods, survey development, measurement, sampling methods and sample size determination, descriptive statistics, parameter estimation, independent samples t-test analysis, correlation analysis, chi-square analysis, code sheet development, non-sampling errors, and ethics in marketing research.

Components: Lecture
Req. Designation: Technology

MK 629(3)
Course ID: 012555
2016-07-02

Consumer Behavior

[Formerly MBA 628] This course is designed to enhance students’ understanding of consumers. Topics explored involve the many, many influences that may shape an individual’s behaviors in the marketplace, including the impact of these influences on managerial decision-making situations. Observational research methods are also covered.

Components: Lecture
Req. Designation: Technology
MK 630(3) Course ID:013018 2019-11-01
Marketing and Social Media Analytics
The course will provide you with an introduction to marketing and social media analytics. We will study how to conceptualize and apply decision modeling to derive marketing insights from empirical data in areas such as pricing, segmentation, customer lifetime analysis, targeting and positioning, and branding. This will be a hands-on course based on the analytic approach, in which you will acquire skills to translate conceptual understanding into specific marketing plans in various decision contexts.
Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: IA 530 or equivalent.
Req. Designation: Technology

MK 640(3) Course ID:011776 2016-08-27
Marketing Management for Innovation
This course introduces students to the fundamentals of marketing management including consumer behavior, market research, professional selling, and marketing strategy all with a focus on managing the innovation process. The course is designed for graduate students who have undergraduate training in a technical field, most likely engineering and need exposure to the theory and practice of marketing and thus, integrates the concept and practice of innovation throughout the topics covered.
Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology
International Marketing Management

[Formerly MBA 665] This course examines development of international marketing strategies, from determining objectives and evaluating international market opportunities through coordinating strategies in world markets. Particular emphasis is placed on application of marketing principles in the multinational environment.

Components: Lecture
Attributes: Offered Spring Term
Req. Designation: Technology
Business - School of Business - Subject: Marketing

MK 687(1 - 3)
Course ID: 009110
2015-07-06

Independent Project in Marketing
Practical application of marketing theory in an independent research project conducted under the guidance of a Marketing faculty member.
Components: Independent Study
Attributes: Offered Each Term
Req. Designation: Technology

MK 689(3)
Course ID: 010241
2015-07-06

New Product Marketing
Accepted analytical models are used to analyze current data obtained from major companies regarding new products which have been test marketed. The objective is to introduce students to a new and crucial aspect of product management: the ability to use computers and analytical tools in brand decisions.
Components: Lecture
Attributes: Given When Needed
Requirement Group: Prerequisite: MK609 (Marketing Management)
Req. Designation: Technology

MK 696(3)
Course ID: 009118
2015-07-06

Marketing Methods
Intended to equip the student with a thorough knowledge of an arsenal of research methods, including the assumptions, methodology, and limitations of these methods. Enhances students’ ability to conceptualize and operationalize a research question. Some statistical content is included as an introduction to data analysis. Applications of these methods are discussed within the context of research problems faced by both academic researchers and practitioners (e.g., managers, engineers, economists, marketing researchers, information system designers). A research project will be an integral part of the course.
Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology
Multidisciplinary Course (Open Source Software Projects)

Student teams will engage in projects in the following areas: administer, create, modify, test, or document Open Source Software (OSS); analyze business and policy issues involving OSS; and create and run outreach/tutorial programs that introduce interested persons to OSS or enhance the skill of persons already using OSS. Project status will be reported during regularly scheduled weekly meetings. Students will document projects on the Clarkson Open Source Institute (COSI) web site and will construct individual, web-based portfolios of their work. Students are expected to have some experience or course preparation in their project areas. Given Pass/No Credit.

Components:	Research
Attributes:	Given When Needed
Req. Designation:	Technology

Internet Teaching Laboratory Projects Course

In conjunction with Clarkson's Internet Teaching Laboratory, students will participate in projects related to computer networking such as implementing network software, configuring networking hardware, simulating large-scale networks, evaluating and testing computer security, administering the Internet Teaching Laboratory, deploying networked solutions for community members or developing network tutorials for other students. Students will construct web-based portfolios and give oral presentations of their work. Given Pass/No Credit. By permission of instructor.

Components:	Research
Attributes:	Offered Each Term
Req. Designation:	Technology
Inst for a Sustainable Environ - Provost - Subject: Multidisciplinary

MP 210(1 - 3)
Course ID: 013001
2020-10-15

Food-to-Energy: A K-12/University Partnership to develop a Resource Recovery Program

Clarkson students will work with Clarkson University and a local school district to encourage food waste diversion from the solid waste stream and to explore beneficial uses of food waste for nutrient and energy recovery. Students will develop lesson plans to be implemented in K-12 classes as well as work with student teams to promote best food waste practices.

Components: Lecture

Attributes: Offered Spring Term

Req. Designation: Technology
Other - Computer Science - Subject: Multidisciplinary

MP 251 (0 - 3) Course ID: 010115 2017-01-13 Instructor Consent Required
Open Source Software Projects
A continuation of MP 151
Components: Research
Attributes: Given When Needed
Req. Designation: Technology

MP 252 (0 - 3) Course ID: 010339 2017-01-13 Instructor Consent Required
Internet Teaching Laboratory Projects Course
In conjunction with Clarkson's Internet Teaching Laboratory, students will participate in projects related to computer networking such as implementing network software, configuring networking hardware, simulating large-scale networks, evaluating and testing computer security, administering the Internet Teaching Laboratory, deploying networked solutions for community members or developing network tutorials for other students. Students will construct web-based portfolios and give oral presentations of their work. Given Pass/No Credit. By permission of instructor.
Components: Research
Attributes: Offered Each Term
Req. Designation: Technology
Inst for a Sustainable Environ - Provost - Subject: Multidisciplinary

Food to Energy: A K-12/University Partnership to develop a Resource Recovery Program
Clarkson students will work with Clarkson University and a local school district to encourage food waste diversion from the solid waste stream and to explore beneficial uses of food waste for nutrient and energy recovery. Students will develop lesson plans to be implemented in K-12 classes as well as work with student teams to promote best food waste practices.

Components: Lecture
Attributes: Offered Spring Term
Req. Designation: Technology
Open Source Software Projects

Course ID: 010116
Year: 2017-01-13
Instructor Consent Required

A continuation of MP 251.

Components: Research
Attributes: Given When Needed
Req. Designation: Technology

Internet Teaching Laboratory Projects Course

Course ID: 010340
Year: 2017-01-13
Instructor Consent Required

In conjunction with Clarkson's Internet Teaching Laboratory, students will participate in projects related to computer networking such as implementing network software, configuring networking hardware, simulating large-scale networks, evaluating and testing computer security, administering the Internet Teaching Laboratory, deploying networked solutions for community members or developing network tutorials for other students. Students will construct web-based portfolios and give oral presentations of their work. Given Pass/No Credit. By permission of instructor.

Components: Research
Attributes: Offered Each Term
Req. Designation: Technology
Multidisciplinary Course (Environmental Remediation Design)
Science and engineering concepts are synthesized to generate safe, economics and effective solutions to real-world environmental restoration projects. Emphasis is placed on multidisciplinary teamwork and communication.

Components: Lecture
Attributes: Offered Spring Term
Req. Designation: Technology
Multidisciplinary

MP 414 (0 - 3)

Course ID: 009174 **Course Title:** Multidisciplinary Course (Applied Robotics) **Offered Each Term**

Clarkson students work together with local high school students to participate in a nation-wide robotics competition and get a hands-on, inside look at the engineering profession. During the fall semester, students plan for the upcoming spring competition by participating in a series of seminars that focus on various aspects of mobile robot design and construction. Competition rules are announced at the start of the spring semester, and during an intense six-week period, students work to brainstorm, design, construct, and test their robot entry. With only six weeks of build time, all jobs are critical path. Teams from across the nation then compete in a tournament complete with referees, cheerleaders and time clocks. The competition changes each year, so returning team members always have a new challenge.

- **Components:** Project Team
- **Attributes:** Offered Each Term
- **Req. Designation:** Technology
MP 418(3) Project-Based Learning Program

Clarkson students will work with students from two local school districts to increase their understanding of science, math, engineering and technology. Clarkson students in this project will develop and then teach a holistic, project-based learning approach to problem solving. Both the Clarkson and K-12 students will gain an appreciation for the relevance and usefulness of science and engineering within a larger social, political and economic context. Year long projects will be oriented towards understanding and solving environmentally related problems that affect their school or community.

Prerequisite: consent of the instructor.

- **Components:** Lecture
- **Attributes:** Offered Each Term
- **Req. Designation:** Technology

Instructor Consent Required
Multidisciplinary Course - Sustainable Housing Solution

A team of Clarkson students from multiple majors will collaborate to design, optimize, and build a prototype of a housing solution. Principles of sustainable design, alternatives assessment, resource management, multidisciplinary teamwork, and communication will be emphasized.

Components: Lecture
Course Equivalents: MP 525
Attributes: One communication unit, Offered Spring Term
Req. Designation: Technology
Open Source Software Projects
Course ID: 010117
2017-01-13
Instructor Consent Required

Open Source Software Projects
A continuation of MP 441

Components: Research
Attributes: Given When Needed
Req. Designation: Technology

Internet Teaching Laboratory Projects Course
Course ID: 010341
2017-01-13
Instructor Consent Required

Internet Teaching Laboratory Projects Course
In conjunction with Clarkson's Internet Teaching Laboratory, students will participate in projects related to computer networking such as implementing network software, configuring networking hardware, simulating large-scale networks, evaluating and testing computer security, administering the Internet Teaching Laboratory, deploying networked solutions for community members or developing network tutorials for other students. Students will construct web-based portfolios and give oral presentations of their work. Given Pass/No Credit. By permission of instructor.

Components: Research
Attributes: Offered Each Term
Req. Designation: Technology
Business - Engineering & Management - Subject: Multidisciplinary

<table>
<thead>
<tr>
<th>Course ID</th>
<th>012845</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>MP 456(3)</td>
</tr>
<tr>
<td>Description</td>
<td>Special Topics in E&M: Lean Six Sigma for Healthcare</td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
</tr>
<tr>
<td>Attributes:</td>
<td>Offered Spring Term</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

Students will have a first-hand experience in solving a real-world problem by applying lean six sigma tools. To this aim, students will be assigned to a process improvement research project and will closely collaborate with stakeholders of a Healthcare organization in the North Country. Students will gather and analyze data, and provide process insights and recommendations for redesigning a process. To this aim, students will have to commute on a regular basis to the Healthcare organization facilities that can be located in Canton, Potsdam, or in the Adirondacks. The goal is to bring a tangible improvement that ultimately results in an effective and efficient operational process that consistently satisfies customers/patients.

Requirement: Instructor permission
Other - Civil & Environmental Eng - Subject: Multidisciplinary

MP 518(3)

Course ID: 009193

2015-02-09

Instructor Consent Required

Project-Based Learning Program
See MP 318 for course description.

Prerequisite: consent of the instructor.

Components: Lecture

Attributes: Offered Each Term

Req. Designation: Technology
Multidisciplinary Course - Sustainable Housing Solution

A team of Clarkson students from multiple majors will collaborate to design, optimize, and build a prototype of a housing solution. Principles of sustainable design, alternatives assessment, resource management, multidisciplinary teamwork, and communication will be emphasized.

Components: Lecture
Course Equivalents: MP 425
Attributes: One communication unit, Offered Spring Term
Req. Designation: Technology
Open Source Software Projects
Student teams will engage in projects in the following areas: administer, create, modify, test, or document
Open Source Software (OSS); analyze business and policy issues involving OSS; and create and run
outreach/tutorial programs that introduce interested persons to OSS or enhance the skill of persons already
using OSS. Project status will be reported during regularly scheduled weekly meetings. Students will document
projects on the Clarkson Open Source Institute (COSI) web site and will construct individual, web-based
portfolios of their work. Students are expected to have some experience or course preparation in their
project areas. Given Pass/No Credit.

Components: Project Team
Attributes: Given When Needed
Req. Designation: Technology

Internet Teaching Laboratory Projects Course
In conjunction with Clarkson's Internet Teaching Laboratory, students will participate in projects related to
computer networking such as implementing network software, configuring networking hardware, simulating
large-scale networks, evaluating and testing computer security, administering the Internet Teaching
Laboratory, deploying networked solutions for community members or developing network tutorials for other
students. Students will construct web-based portfolios and give oral presentations of their work. Given
Pass/No Credit. By permission of instructor.

Components: Project Team
Attributes: Offered Each Term
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
<th>Description</th>
<th>Components</th>
<th>Attributes</th>
<th>Req. Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>009194</td>
<td>MS 111(1) Leadership and Personal Development</td>
<td>Introduces cadets to the personal challenges and competencies that are critical for effective leadership. Cadets learn how the personal development of life skills such as critical thinking, goal setting, time management, physical fitness, and stress management relate to leadership, officership, and the Army profession. The focus is on developing basic knowledge and comprehension of Army leadership dimensions while gaining a big picture understanding of the ROTC program, its purpose in the Army, and its advantages for the student. Class meets weekly for one hour with a co-requisite laboratory and one weekend field training exercise. Physical fitness training is also required.</td>
<td>Laboratory, Lecture</td>
<td>Offered Fall Term</td>
<td>Technology</td>
</tr>
<tr>
<td>009195</td>
<td>MS 112(1) Introduction to Tactical Leadership</td>
<td>Overviews leadership fundamentals such as setting direction, problem-solving, listening, presenting briefs, providing feedback, and using effective writing skills. Cadets explore dimensions of leadership values, attributes, skills, and actions in the context of practical, hands-on, and interactive exercises. Continued emphasis is placed on recruitment and retention of cadets. Cadre role models and the building of stronger relationships among the cadets through comment experience and practical interaction are critical aspects of the MS112 experience. Class meets weekly for one hour with a co-requisite laboratory and one weekend field training exercise. MS111 recommended but not required as prerequisite; Physical fitness training is also required. No military obligation for non-contracted students.</td>
<td>Laboratory, Lecture</td>
<td>Offered Spring Term</td>
<td>Technology</td>
</tr>
<tr>
<td>009196</td>
<td>MS 221(2) Innovative Team Leadership</td>
<td>Explores the dimensions of creative and innovative tactical leadership strategies and styles by examining team dynamics and two historical leadership theories that form the basis of the Army leadership framework (trait and behavior theories). Cadets practice aspects of personal motivation and team building in the context of planning, executing, and assessing team exercises and participating in leadership labs. Focus is on continued development of the knowledge of leadership values and attributes through an understanding of Army rank, structure, and duties and basic aspects of land navigation and squad tactics. Case studies provide tangible context for learning the Soldier's Creed and Warrior Ethos as they apply in the contemporary operating environment (COE). Class meets weekly for two hours with co-requisite laboratory and one weekend field training exercise. Physical fitness training is also required. MS111 and MS112 recommended but not required as prerequisites. No military obligation for non-contracted students.</td>
<td>Laboratory, Lecture</td>
<td>Offered Fall Term</td>
<td>Technology</td>
</tr>
<tr>
<td>009197</td>
<td>MS 222(2) Foundations of Tactical Leadership</td>
<td>Examines the challenges of leading tactical teams in the complex contemporary operating environment (COE). The course highlights dimensions of terrain analysis, patrolling, and operations orders. Further study of the theoretical basis of the Army leadership framework explores the dynamics of adaptive leadership in the context of military operations. MS222 provides a smooth transition into MS331. Cadets develop greater self awareness as they assess their own leadership styles and practice communication and team building skills. COE case studies give insight into the importance and practice of teamwork and tactics in real-world scenarios. Class meets weekly for two hours with co-requisite laboratory and one weekend field training exercise. Physical training is also required. MS111, MS112, MS221 recommended but not required as prerequisites. No military obligation for non-contracted students.</td>
<td>Laboratory, Lecture</td>
<td>Offered Spring Term</td>
<td>Technology</td>
</tr>
</tbody>
</table>
MS 331(3) - Adaptive Tactical Leadership
Course ID: 009199
2015-02-19

Adaptive Tactical Leadership
Challenges cadets to study, practice, and evaluate adaptive leadership skills as they are presented with challenging scenarios related to squad tactical operations. Cadets receive systematic and specific feedback on their leadership attributes and actions. Based on such feedback, as well as their own self-evaluations, cadets continue to develop their leadership and critical thinking abilities. The focus is developing cadets tactical leadership abilities to enable them to succeed at ROTC’s summer Leadership Development and Assessment Course (LDAC). Class meets weekly for three hours with co-requisite laboratory and one weekend field training exercise. Physical fitness is also required.

Prerequisite: MS Basic Course or equivalent.

Components: Laboratory, Lecture

Attributes: One communication unit, Offered Fall Term

Req. Designation: Technology

MS 332(3) - Leadership in Changing Environments
Course ID: 009200
2015-01-20

Leadership in Changing Environments
Uses increasingly intense situational leadership challenges to build cadet awareness and skills in leading tactical operations up to platoon level. Cadets review aspects of combat, stability, and support operations. They also conduct military briefings and develop proficiency in garrison operation orders. The focus is on exploring, evaluating, and developing skills in decision-making, persuading, and motivating team members in the contemporary operating environment (COE). MS332 cadets are evaluated on what they know and do as leaders as they prepare to attend the ROTC summer Leader Development Assessment Course (LDAC). Class meets weekly three hours with co-requisite laboratory and one weekend field training exercise. Physical fitness training is also required.

Prerequisite: MS Basic Course or equivalent.

Components: Laboratory, Lecture

Attributes: One communication unit, Offered Spring Term

Req. Designation: Technology

MS 441(3) - Developing Adaptive Leaders
Course ID: 009201
2015-02-19

Developing Adaptive Leaders
Develops cadet proficiency in planning, executing, and assessing complex operations, functioning as a member of a staff, and providing performance feedback to subordinates. Cadets assess risk, make ethical decisions, and lead fellow ROTC cadets. Lessons on military justice and personnel processes prepare cadets to make the transition to Army officers. MS IV cadets analyze, evaluate, and instruct cadets for their first unit of assignment. They identify responsibilities of key staff, coordinate staff roles, and use situational opportunities to teach, train, and develop subordinates. Class meets weekly for three hours with co-requisite laboratory an done weekend field training exercise. Physical fitness training also required.

Components: Laboratory, Lecture

Attributes: One communication unit, Offered Fall Term

Req. Designation: Technology

MS 442(3) - Leadership in a Complex World
Course ID: 009202
2015-01-20

Leadership in a Complex World
Explores the dynamics of leading in the complex situations of current military operations in the contemporary operating environment (COE). Cadets examine differences in customs and courtesies, military law, principles of war, and rules of engagement in the face of international terrorism. They also explore aspects of interacting with non-government organizations, civilians on the battlefield, and host nation support. The course places significant emphasis on preparing cadets for their first unit of assignment. It uses case studies, scenarios, and What Now, Lieutenant? exercises to prepare cadets to face the complex ethical and practical demands of leading as commissioned officers in the United States Army. Class meets weekly for three hours with co-requisite laboratory and one weekend field training exercise. Physical fitness training also required.

Components: Laboratory, Lecture

Attributes: One communication unit, Offered Spring Term

Req. Designation: Technology
Advanced Characterization of Materials

Advanced Characterization of Materials [Cross-listed with MSE551] Advanced methods for characterizing materials, such as scattering methods, including laser light scattering and x-ray diffraction (powder patterns & Laue patterns); microscopy, including optical microscopy; scanning electron microscopy (including EDX), transmission electron microscopy, and atomic force microscopy; and spectroscopy, including nuclear magnetic resonance, surface plasmon resonance, and scanning confocal Raman microscopy.

Components:
- Lecture

Course Equivalents:
- MSE 551

Attributes:
- Given When Needed

Requirement Group:
- Prerequisites: CM132 (or CM104 and CM106), PH132, and ES260

Req. Designation:
- Technology
Advanced Materials Characterization

Advanced methods for characterizing materials, such as scattering methods, including laser light scattering and x-ray diffraction (powder patterns & Laue patterns); microscopy, including optical microscopy; scanning electron microscopy (including EDX), transmission electron microscopy, and atomic force microscopy; and spectroscopy, including nuclear magnetic resonance, surface plasmon resonance, and scanning confocal Raman microscopy.

The following undergraduate courses should be completed prior to taking this course: CM371 (Physical Chemistry I); PH132 (Physics II); and ES260 (Materials Science and Engineering I)

Components: Lecture

Course Equivalents: MSE 451

Req. Designation: Technology
MSE 560(3)
Course ID: 011561
2022-02-03

Advanced Materials Science and Engineering I

Atomic and molecular structure of solids (crystalline and glassy); atomic and molecular bonding; thermodynamics of materials (condensed matter); kinetics, diffusion and phase transformation; properties of bulk solids compared to thin films, and nano-sized materials; methods for forming solids and thin films (solidification, crystallization, precipitation, evaporation, physical vapor deposition, chemical vapor deposition, etc.); materials chemistry; defects (point, line, surface); mechanical, thermal, electrical, and optical properties; relationship between materials processing and materials properties.

The following undergraduate courses should be completed prior to taking this course: CM371 (Physical Chemistry I); PH132 (Physics II); and ES260 (Materials Science and Engineering I)

Components: Lecture

Attributes: Offered Spring Term

Req. Designation: Technology
MSE 575(3) Course ID:012126 2022-02-03
Sustainable Nanotechnology
[Cross-listed with CM 575, and ES 575] The goal of this course is to provide graduate students and advanced undergraduates with a modern view of current and emerging research in nanotechnology. Topics will include: fundamental nanoscale properties and applications, green manufacturing and assembly in functional devices, interaction of nanomaterials with biological systems, the physical and chemical phenomena at nano-bio interfaces, fate, transport and transformation of engineered nanomaterials, environmental and health impact, nanometrology, nanotoxicology and hazard identification of nano-based products. Development of analytical methods and characterization tools for assessing nanoscale properties and materials will also be discussed. Students will be exposed to interdisciplinary topics and an integrated training bridging material and environmental sciences with biology and analytical chemistry. Students will be able to demonstrate a basic awareness of risks and benefits of emerging technologies and evaluate overall environmental and societal impacts.

Course Equivalents: CM 475, CM 575, ES 575
Attributes: Offered Spring Term
Req. Designation: Technology

MSE 587(3) Course ID:012911 2022-02-03
Applications of Synchrotron and Electron Based Techniques
The purpose of the course is to familiarize all students with the x-ray and electron based experimental techniques available at Brookhaven National Lab and other similar facilities. Students will be cognizant of the applications of these cutting edge facilities, and well positioned to use them in their own research. This course is suitable for graduate students, postdocs, and advanced undergrads in physical sciences and engineering, as well as students in biological, environmental, and chemical sciences who may have the interest to learn more about the techniques they may use for their research.

Course Equivalents: PH 587, CM 487, CM 587, PH 487, ES 587
Attributes: Offered Spring Term
Req. Designation: Technology
Thesis, Dissertation

Analytic or experimental studies in materials science & engineering under the direction of a faculty adviser. Credit for this work is given when the requirements for the degree are completed including the presentation of a thesis or dissertation as appropriate to the degree program.

- **Components:** Thesis Research
- **Attributes:** Given When Needed
- **Req. Designation:** Technology

Material Science and Engineering Elective

Used for awarding transfer credits for graduate courses completed elsewhere for which no equivalent Clarkson University graduate course can be identified. (Not offered at Clarkson, for transfer credit only).

- **Components:** Lecture
- **Attributes:** Transfer Credit Only
- **Req. Designation:** Technology
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Run Date</th>
<th>Course Title</th>
<th>Description</th>
<th>Components</th>
<th>Requirement Group</th>
<th>Requirement Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT 51(0)</td>
<td>010554</td>
<td>2021-10-21</td>
<td>Introduction to Basic Shop Skills</td>
<td>This course covers simple shop procedures including measurement and layout, drills and drill presses, use of hand taps, proper use of the various ban saws, and use of the shear and brake; involves use of the composite lab and wood working equipment. MT 51 consists of three hours of lecture, and three hours of hands-on lab experience.</td>
<td>Lecture</td>
<td></td>
<td>Technology</td>
</tr>
<tr>
<td>MT 52(0)</td>
<td>010555</td>
<td>2019-02-06</td>
<td>Basic Lathe Operations</td>
<td>This course covers the basic theory and operation of the metal lathe; topics include tool grinding, turning, facing, boring, fits, tapers, etc. this course consists of three lectures of 1.5 hours each and four labs of 2 hours each. Offered Pass/No Credit.</td>
<td>Laboratory, Lecture</td>
<td>Prerequisite: MT 51</td>
<td>Technology</td>
</tr>
<tr>
<td>MT 53(0)</td>
<td>010556</td>
<td>2019-02-06</td>
<td>Basic Milling Procedures</td>
<td>Basic Milling will cover the theory and operation of the Bridgeport type mill; topics covered include set-up of the mill, fixturing, zeroing parts, cutters, and milling techniques for various materials. This course would consist of three lectures of 1.5 hours each and four labs of 2 hours each. Offered Pass/No Credit.</td>
<td>Laboratory, Lecture</td>
<td>Prerequisite: MT 51</td>
<td>Technology</td>
</tr>
<tr>
<td>MT 54(0)</td>
<td>010557</td>
<td>2017-09-13</td>
<td>CNC Mill Procedures</td>
<td>Basics of CNC Machine programming and operation of the Haas Bed Mill; topics covered include machine start up and homing, conversational programming, drill patterns, profiles, and pockets. The course would consist of three lectures of 1.5 hours and four labs of 2 hours each.</td>
<td>Laboratory, Lecture</td>
<td></td>
<td>Technology</td>
</tr>
<tr>
<td>MT 55(0)</td>
<td>010558</td>
<td>2019-02-06</td>
<td>Basic Welding Procedures</td>
<td>Basic welding addresses the operation and use of welding equipment in a safe and effective manner; topics include general welding safety, oxygen-acetylene techniques, basic arc welding, MIG welding, TIG welding, and use of the plasma cutting torch. The course would consist of three lectures of 1.5 hours each and four labs of 2 hours each. Offered Pass/No Credit.</td>
<td>Laboratory, Lecture</td>
<td>Prerequisite: MT 51</td>
<td>Technology</td>
</tr>
<tr>
<td>MT 56(0)</td>
<td>011053</td>
<td>2019-02-06</td>
<td>Introduction to MasterCam</td>
<td>This course is an overview of the CAD software MasterCam. Students will draw, choose tool paths, create machine code, and run programs on CNC mills using CAD.</td>
<td>Laboratory, Lecture</td>
<td>Prerequisite: MT 54</td>
<td>Technology</td>
</tr>
<tr>
<td>MT 57(0)</td>
<td>011054</td>
<td>2019-02-06</td>
<td>Advanced Lathes</td>
<td>This course will cover the use of the precision lathes in the student shop. Students will set up and machine on several different lathes using advanced techniques and tooling. Prerequisite: MT52.</td>
<td>Laboratory, Lecture</td>
<td>Prerequisite: MT 52</td>
<td>Technology</td>
</tr>
</tbody>
</table>
Engineering - School of Engineering - Subject: Multidisciplinary Project Team

MT 58(0)
Course ID: 011587
2019-03-14

CNC Lathe Operation
CNC Lathe Operations and Programming. Topics covered include machine programming and operation; using g-code programs generated by CAD/CAM software, tool path creation utilizing conversational HAAS lathe programming and basic g-code. Students will learn how to turn complex profiles and mill a variety of 3D contours. This course will consist of four lectures of 1.25 hours each and four labs of 2 hours each.

Components: Laboratory, Lecture

Attributes: Given When Needed

Requirement Group: Prerequisites: MT56, and MT 57

Req. Designation: Technology

MT 109(0)
Course ID: 009127
2014-10-29

Mini Baja Car Project
Active participation in Mini Baja Car project. Pass/No Credit only. Must have permission of instructor.

Components: Project Team

Req. Designation: Technology

MT 110(0 - 3)
Course ID: 009128
2014-09-22

Multidisciplinary Course (CPS OM-DINI)
Active participation in Creative Problem Solving -- Odyssey of the Mind/Destination Imagination project. Pass/No Credit only. Must have permission of instructor.

Prerequisite: Consent of the instructor.

Components: Project Team

Req. Designation: Technology

MT 209(0)
Course ID: 009146
2014-10-29

Mini Baja Car Project
Active participation in Mini Baja Car project. Pass/No Credit only. Must have permission of instructor.

Components: Project Team

Req. Designation: Technology

MT 210(0 - 3)
Course ID: 009670
2014-09-22

Multidisciplinary Course (CPS OM-DINI)
See MT 110 for course description.

Components: Project Team

Req. Designation: Technology

MT 214(0)
Course ID: 009147
2015-02-09

Multidisciplinary Course (FIRST Robotics Competition)
Clarkson students work together with local high school students to participate in a nation-wide robotics competition and get a hands-on, inside look at the engineering profession. During the fall semester, students plan for the upcoming spring competition by participating in a series of seminars that focus on various aspects of mobile robot design and construction. Competition rules are announced at the start of the spring semester, and during an intense six-week period, students work to brainstorm, design, construct, and test their robot entry. With only six weeks of build time, all jobs are critical path. Teams from across the nation then compete in a tournament complete with referees, cheerleaders and time clocks. The competition changes each year, so returning team members always have a new challenge.

Components: Project Team

Attributes: Offered Each Term

Req. Designation: Technology

MT 309(0)
Course ID: 009158
2014-10-29

Mini Baja Car Project
Active participation in Mini Baja Car project. Pass/No Credit only. Must have permission of instructor.

Components: Project Team

Req. Designation: Technology

MT 310(0 - 3)
Course ID: 009676
2014-09-22

Multidisciplinary Course (CPS OM-DINI)
See MT 110 for course description.

Components: Project Team

Req. Designation: Technology
Mini Baja Car Project

Active participation in Mini Baja Car project. Pass/No Credit only. Must have permission of instructor.

Components: Project Team

Req. Designation: Technology
Geometry for Math Teachers
This geometry course will focus primarily on content in the new high school Common Core geometry course. The main domains in this course are congruency, similarity, circle properties, measurement and modeling, and coordinate geometry. Emphasis will be on changes in the high school course especially in the areas of transformations, geometric constructions, trigonometric concepts, and modeling with geometry. Students will develop strong proof and reasoning skills throughout this course.

Components: Seminar
Attributes: Given When Needed
Req. Designation: Technology
Common Core Math Standards for Teachers
Common Core Mathematics is a 3-credit course that focuses on the changes in teaching mathematics in the present day classroom. Teachers in the Common Core classroom faces changes in curriculum, modeling, assessments and APPR. This class prepares teachers by analyzing pedagogical shifts, discussing the eight mathematical practices, and examining the new rigorous curriculum. Students will be able to demonstrate models in class and will show the progression from concrete, pictorial and finally abstract representations.

Components: Seminar
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program
Req. Designation: Technology

MAT Project in Mathematics (Content Area)
The MAT Project is a one-term research project whose purpose is to allow students time and supervision to develop breadth and/or depth of knowledge to become a better teacher in their certification field. What the project will entail varies greatly from student to student. The course is intended to be custom-tailored to meet the specific needs of an individual intern. MAT projects are well-grounded in research and theory, but also include a strong and extensive applied aspect, directly addressing the question: What would this look like in the classroom?

Components: Seminar
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program
Req. Designation: Technology

Independent Study in Mathematics
A graduate level course for which there is no comparable Clarkson course. This course may be used to satisfy course requirements for a graduate degree.

Components: Independent Study
Attributes: Given When Needed
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program
Req. Designation: Technology

Independent Study in Mathematics
A graduate level course for which there is no comparable Clarkson course. This course may be used to satisfy course requirements for a graduate degree.

Components: Independent Study
Attributes: Given When Needed
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program
Req. Designation: Technology
Business - School of Business - Subject: Operations Management

OM 1(2 - 4) Course ID:009204 2015-01-19
Operations Management Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
Components: Lecture
Attributes: Transfer Credit Only
Req. Designation: Technology

OM 2(2 - 4) Course ID:009205 2015-01-19
Operations Management Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only. This course may be used to satisfy a Business Foundation Curriculum Requirement.
Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

OM 331(3) Course ID:009010 2022-04-05
Operations & Supply Chain Management
(Cross-listed with EM 331) (May be used to satisfy a CUSB MBA and MS foundation requirement.) An introduction to the planning, analysis and control of production systems. Topics include product and service design, manufacturing processes, aggregate production planning, inventory models and MRP, just-in-time systems, facility layout, forecasting/demand planning, project management, and quality management. Students acquire problem solving experience using ERP software.
Components: Lecture
Course Equivalents: EM 331
Attributes: Offered Fall and Spring
Requirement Group: Prerequisites: STAT 282 or STAT 383 or MA 330, and at least sophomore standing
Req. Designation: Technology

OM 341(3) Course ID:009019 2017-10-11
Supply Chain Design & Management
(Cross-listed with EM 341) Fierce competition in today's global markets has forced business enterprises to focus on reducing costs while meeting rising customer expectations by designing and managing effective and sustainable supply chains. This course focuses on a systems approach to review state-of-the-art models and practical tools for inventory and materials management, design for supply chain, as well as supply chain integration. Topics covered include managing inventories in the supply chain, the bullwhip effect, risk pooling, delayed differentiation, measuring the financial performance of supply chains, the value of information and the role of information technology in the supply chain, coordination and collaboration with channel partners, supply chain related strategic alliances, and outsourcing/off-shoring/reshoring trends. Several team projects and hand-on experiences are utilized to demonstrate real world issues and applications.
Components: Lecture
Course Equivalents: EM 341
Attributes: Offered Spring Term
Requirement Group: Prerequisite: OM331 and at least junior standing.
Req. Designation: Technology

OM 371(3) Course ID:012840 2022-02-10
Strategic Sourcing
This course provides an in-depth analysis of the procurement process and supplier management, with strong emphasis on managing a supplier base for both products and services. Topics covered include the strategic role of sourcing in supply chains, the identification and evaluation of requirements, the strategic make versus buy decision, supplier selection, development and evaluation processes, the supplier coordination and control mechanisms, the relationship between product design and the supplier base and the impact of information technology on strategic sourcing. Both theoretical and quantitative perspectives will be offered. In addition, the topics will be addressed from strategic, financial, sustainability and global perspectives. Students will also develop practical skills in using quantitative tools to select and evaluate suppliers.
Components: Lecture
Course Equivalents: EM 371
Attributes: Offered Fall Term
Requirement Group: Prerequisites: OM/EM331 and at least junior standing.
Req. Designation: Technology
OM 380 (3) Project Management

This course will introduce students to all phases of project management from project initiation to termination. Topics covered include project selection, organization, contracts, planning and scheduling (PERT and CPM), estimating, budgeting and cost control, procurement, resource allocation, variance analysis, auditing and termination procedures. Project management software, case studies, and student team projects will be an integral part of the course.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Equivalents:</td>
<td>EM 380</td>
</tr>
<tr>
<td>Attributes:</td>
<td>Economics and Organizations, Offered Each Term</td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Restrictions: Enrollment is limited to students in E&M, CUSB, Software Engineering, Project Management</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

OM 451 (3) Quality Management & Lean Enterprise

This course will introduce the students to both the managerial and technical aspects of quality improvement. The course emphasizes statistical applications to quality related topics such as process/product design, process capability, quality control, design of experiment, and inspections/sampling. Other topics of interest include: Juran quality trilogy, six-sigma project methodology, and cost of quality. The course consists of a series of lecture and problems solved in class.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Equivalents:</td>
<td>EM 451</td>
</tr>
<tr>
<td>Attributes:</td>
<td>Offered Fall and Spring</td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisites: MA/STAT282 or MA/STAT383 or MA330 or permission of instructor</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

OM 476 (3) Management of Technology

Management of technology links together the engineering, science, and management disciplines to plan, develop, and implement technological capabilities to be competitive in the global arena. Students taking the course will gain an understanding of the following topics: innovation, product life cycles, product development process, concurrent engineering, management of technology strategy, selecting technical projects, management of the R&D process, initiating new ventures, international technology transfer, and the management of complex projects. Lectures, readings, and case studies focus on firms operating in an international context.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Equivalents:</td>
<td>EM 476</td>
</tr>
<tr>
<td>Attributes:</td>
<td>Science, Technology and Society, Offered Each Term</td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisite: OM331</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

OM 484 (3) Advanced Project Management

This course builds on the foundation of EM/OM380 (Project Management) by introducing advanced topics in decision making, risk, and cost control as well as providing comprehensive knowledge of project scheduling and other PM tools. This course also provides an opportunity for students to further extend their PM skills in managing and controlling projects by applying the PM methods in a project management simulation using typical project management software. Students are exposed to advanced research topics in the emerging PM areas.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Equivalents:</td>
<td>EM 484</td>
</tr>
<tr>
<td>Attributes:</td>
<td>Offered Fall and Spring</td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisite: EM/OM380</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

OM 487 (1 - 3) Special Project in Operations Management

An investigation of a problem or in-depth topic undertaken by the student under the guidance of a faculty member.

<table>
<thead>
<tr>
<th>Prerequisites:</th>
<th>Permission of the instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components:</td>
<td>Research</td>
</tr>
<tr>
<td>Attributes:</td>
<td>Given When Needed</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>
Business - School of Business - Subject: Operations Management

OM 602(2) Course ID: 009044 2015-07-06
Decision Analysis and Supply Chain Modeling (MBA Module)
In today's fast-paced competitive environment, successful managers need the ability to define business problems, construct quantitative models and effectively utilize decision making tools. This course will introduce students to decision analysis techniques by focusing on the development and analysis of models for a variety of business management problems. Topics include supply chain network design, project management, decision making under uncertainty and risk, business process management, and simulation modeling of supply chain systems. Microsoft Excel will be used as a modeling and analysis environment to investigate a variety of analytic techniques.
Prerequisites: completion of all CUSB MBA foundation requirements and admission to the MBA program.
Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology
Decision Analysis & Supply Chain Modeling
This course introduces students to different approaches, support tools, and analytical methods for decision making in various business management situations. The objective is to develop the students' ability to define business problems, construct quantitative models and effectively utilize decision making application software. Topics such as linear programming, network modeling, project management, decision making under uncertainty and risk, queueing theory, business process simulation, and Monte Carlo simulation will be explored. Special attention will be given to supply chain modeling and applications. Microsoft Excel will be used as a spreadsheet modeling and analysis environment to investigate a variety of analytic techniques.

Components:
- Lecture

Same As Offering:
- OM 603

Attributes:
- Offered Spring Term

Requirement Group:
- Prerequisites: OM607

Req. Designation:
- Technology
Supply Chain Management (MBA Module)

(Cross-listed with OM 607) Global supply chains are networks of facilities around the globe that procure raw materials, transform them into intermediate and final products, and subsequently deliver the products to customers worldwide through distribution systems. Rapid advances in information technology are accelerating productivity by providing a multitude of new, lower-cost options for integrating supply chains. In this course we review and discuss state-of-the-art concepts and practical tools to effectively design and management the supply chain. Topics covered include a strategic framework for supply chain management, supply chain design and operation, logistics strategies and design for logistics, inventory management and risk pooling, warehousing and material handling systems, supplier relations, and new and future trends in supply chain management.

Prerequisites: completion of all CUSB MBA foundation requirements and admission to the MBA program.

Components:
- Lecture

Course Equivalents: OM 607, OM 607

Req. Designation: Technology

Global Supply Chain Management

(Cross-listed with OM 606) Intense global competition has forced business enterprises to redesign and integrate their supply chains to effectively meet rising customer expectations at a reasonable cost. This course will start with selected introductory topics before covering the state-of-the-art concepts and practical tools to effectively design and manage the supply chain. Topics covered include a strategic framework for supply chain management, supply chain design, managing inventories in the supply chain, global logistics and distribution strategies, design for logistics, global sourcing, managing supply chain risk/disruptions, and new and future trends in supply chain management. Some combination of team projects, case studies, simulation games, and consulting experiences will be utilized to demonstrate real world issues, challenges and applications.

Components:
- Lecture

Same As Offering: OM 607

Course Equivalents: OM 606

Req. Designation: Technology
Global Supply Chain Management

[Intense global competition has forced business enterprises to redesign and integrate their supply chains to effectively meet rising customer expectations at a reasonable cost. This course will start with selected introductory topics before covering the state-of-the-art concepts and practical tools to effectively design and manage the supply chain. Topics covered include a strategic framework for supply chain management, supply chain design, managing inventories in the supply chain, global logistics and distribution strategies, design for logistics, global sourcing, managing supply chain risk/disruptions, and new and future trends in supply chain management. Some combination of team projects, case studies, simulation games, and consulting experiences will be utilized to demonstrate real world issues, challenges and applications.]

Components: Lecture
Same As Offering: OM 607
Course Equivalents: OM 606
Req. Designation: Technology
Business - School of Business - Subject: Operations Management

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Offered Term</th>
<th>Description</th>
</tr>
</thead>
</table>
| OM 620(3) | 013019 | 2019-11-01 | Supply Chain and Operations Analytics
Data-driven decision making is essential to drive performance and growth in modern supply chain management. This course showcases real-life applications of data analytics (descriptive, predictive and prescriptive) in various fields of supply chain management. Students learn to define the right data set, ask the right questions to drive supply chain excellence and business value, and use the right models and tools to develop data-driven decisions. Topics include demand forecasting, retail analytics, transportation analytics fulfillment diagnostic in logistic systems, sales and operations analytics in production, and inventory and resource management. |
| OM 650(3) | 009061 | 2016-08-27 | Operations Strategy and International Competitiveness
The emphasis of the course is the operations and logistics function in firms that source, produce, distribute and market in multiple nations. The management of logistics in such firms differs from its domestic counterpart along several key dimensions. First, there is the need to be able to identify and analyze factors that differ across nations that influence the effectiveness of this function. These include worker productivity, process adaptability, governmental concerns, transportation availability, culture, and so on. In addition, because of the distances involved, transportation and distribution are of greater significance. Finally, these geographically dispersed set of facilities and markets must be integrated and managed to enhance the strategy of the business unit. |
| OM 671(3) | 010251 | 2015-07-06 | Supply Chain Environmental Management
Manufacturing organizations have increased their interest in environmental management through activities such as green purchasing, reverse logistics, product stewardship and design-for-the environment. These activities, usually involving several organizations, are often part of what is known as supply chain environment management. This course aims to gain a greater understanding of supply chain environmental management by examining: (i) the advantages and business risks of adopting and implementing environmental practices and technologies in the supply chain, (ii) the role of suppliers and customers to facilitate the adoption/implementation of environmental practices and technologies, and (iii) the implications of such supply chain activities on an organization’s operations strategy. This course consists of a mix of lectures and class discussion and relies primarily on a set of readings and a series of cases that will be analyzed in class. |
| OM 672(3) | 013103 | 2018-10-08 | Supply Management Strategy and Analysis
Effective supply management strategies and management enhances efficiency, customer service, and innovations, ultimately contributing to the profitability and competitive advantages of the entire organization and its supply chain. This course equips you with analytical methods and theoretical strategies to develop and implement an effective supply management strategy for your company. Specific topics include global sourcing and supply chain management strategy alignment, pricing and cost strategy, supplier network evaluation and development, contract management, and sustainable sourcing. Highly interactive format features student-led discussions and staged debates. Includes assignments on case studies and sourcing analysis, as well as projects and a final exam. |
| OM 676(3) | 009071 | 2015-07-06 | Developing and Managing Technology
This course covers the creation, design, development, implementation, diffusion and transfer of product and process innovation. The course covers the full range of activities from laying a foundation of technical knowledge in research, through the creation of new products and processes, to the integration of marketing, manufacturing and engineering, to commercialization. Topics include innovation management, managing r&d, product and process development, concurrent engineering, project selection, initiating new ventures, and technology transfer. Lectures, cases, reading, and projects focus on managing technology in companies. |
Strategic Project Management
(Cross-listed with ES 510, OM 681) A project is a one-time or infrequently occurring operation with a unique goal, a limited lifespan and limited resources. This course will focus on project management from a decision-making perspective and how projects can be used to implement organizational strategy. The course follows the project life cycle model from project initiation to implementation to termination. Topics covered include such things as project scope development, project selection, organizational strategy, leadership, team building, planning, conflict resolution, budgeting, resource allocation, information management, control, auditing, and termination procedures. Computer applications such as MS Project, case studies, project simulations and student project teams will be an integral part of the course. This course satisfies the educational prerequisite for the Project Management Institute’s (PMI) Certified Associate in Project Management (CAPM) and Project Management Professional (PMP) certifications.

Components:
- Lecture

Course Equivalents:
- ES 510, OM 681

Attributes:
- Offered Spring Term

Req. Designation:
- Technology
Strategic Project Management

A project is a one-time or infrequently occurring operation with a unique goal, a limited lifespan and limited resources. This course will focus on project management from a decision-making perspective and how projects can be used to implement organizational strategy. The course follows the project life cycle model from project initiation to implementation to termination. Topics covered include such things as project scope development, project selection, organizational strategy, leadership, team building, planning, conflict resolution, budgeting, resource allocation, information management, control, auditing, and termination procedures. Computer applications such as MS Project, case studies, project simulations and student project teams will be an integral part of the course. This course satisfies the educational prerequisite for the Project Management Institute’s (PMI) Certified Associate in Project Management (CAPM) and Project Management Professional (PMP) certifications.
Quality Management and Process Improvement

This course will introduce the students to both the managerial and technical aspects of quality improvement techniques. The discussion of statistical topics will be tied to the Six Sigma methodology for the improvement of quality, productivity, and competitive position. A systemic and strategic approach to quality management will be provided, with emphasis on process improvement tools and methodologies. The course is designed to expose students to the integral elements of a total quality management system within both manufacturing and service organizations. Several individual and team projects involving class presentations, discussion of supplemental articles and case studies are utilized to demonstrate real world issues and applications.

Prerequisites: SB284 or consent of the instructor.

Components:
- Lecture

Course Equivalents: OM 686

Req. Designation: Technology
Quality Management and Process Improvement

This course will introduce the students to both the managerial and technical aspects of quality improvement techniques. The discussion of statistical topics will be tied to the Six Sigma methodology for the improvement of quality, productivity, and competitive position. A systemic and strategic approach to quality management will be provided, with emphasis on process improvement tools and methodologies. The course is designed to expose students to the integral elements of a total quality management system within both manufacturing and service organizations. Several individual and team projects involving class presentations, discussion of supplemental articles and case studies are utilized to demonstrate real world issues and applications.

Components:
- Lecture

Course Equivalents:
- OM 685

Attributes:
- Offered Fall Term

Req. Designation:
- Technology
Independent Project in Management

[Cross-listed with OM 688] An investigation of a problem undertaken by the student under the guidance of an individual faculty member. The course provides an opportunity for the student to explore an area of management research in depth on an independent study basis. To register students must receive approval of the faculty member.

Prerequisites: consent of the instructor.

Components: Independent Study

Req. Designation: Technology
Organizational Studies Elective

Course ID: 009207
Offered: 2015-01-19

Components: Lecture
Attributes: Transfer Credit Only
Req. Designation: Technology

This course is a college level course for which there is no comparable Clarkson course. Used for transfer credit only.

Organizational Studies Elective

Course ID: 009208
Offered: 2015-01-19

Components: Lecture
Attributes: Transfer Credit Only
Req. Designation: Technology

This course may be used to satisfy a Business Foundation Curriculum Requirement.

Organizational Behavior I

Course ID: 009016
Offered: 2015-07-06

Components: Lecture
Course Equivalents: PY 286, EM 286
Attributes: Individual and Group Behavior, Offered Each Term
Prerequisites: sophomore standing or the permission of the instructor
Req. Designation: Technology

This course provides an introduction to the processes required to manage contemporary organizations with a focus on individual behaviors as they relate to the functions of planning, organizing, controlling, and leading. The most recent concepts of behavioral science in the practice of management are presented to assist the student in gaining understanding of the pervasiveness of the discipline in all types of organizations and processes. Topics include motivation, leadership, perceptions, personality theory, learning theory, personnel issues, stress management, organizational culture, and decision making.

Strategic Human Resource Management

Course ID: 009013
Offered: 2015-07-06

Components: Lecture
Attributes: Offered Each Term
Prerequisites: OS 286 (or equivalent)
Req. Designation: Technology

This course provides an introduction to the strategic management of human resources in organizations. Topics include human resource planning, recruitment and selection of employees, training and development, performance appraisal, employee motivation, compensation and benefits, and employee and labor management relations. These topics should be understood in the context of business strategy, pressures external to organizations, and relevant theories of human and organizational behavior.

Organizational Policy and Strategy

Course ID: 009021
Offered: 2015-07-06

Components: Lecture
Course Equivalents: EM 432
Attributes: Two communication units, Offered Each Term
Prerequisites: FN361, OM331, OS286, MK320 and Senior standing
Req. Designation: Technology

A capstone course designed to integrate the functional areas and tools of management studied in previous courses within a strategic planning framework giving due attention to ethical and social responsibility concerns and international business issues. Emphasis is placed on the business environment in a global economy, industry analysis, tactical planning, overall strategic planning, policy establishment and implementation. Case analysis, in the small group setting, is utilized, enabling students to share their expertise and explore their value structure. Students present results via written and oral reports.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Year</th>
<th>Title</th>
<th>Description</th>
<th>Components</th>
<th>Attributes</th>
<th>Requirement Group</th>
<th>Prerequisites</th>
<th>Req. Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS 452(3)</td>
<td>011767</td>
<td>2015</td>
<td>Advanced Human Resource Management</td>
<td>This course provides advanced instruction in the strategic management of human resources in organizations. The focus is on the development and critical evaluation of sound HR policies and systems in key HR areas such as selection, training and development, performance management, and compensation. The course will also address the use of HR metrics, employee surveys, and the relationship between strategic HR practices and organizational performance. Knowledge and skills will be developed through qualitative and quantitative data analysis, evaluating best practices, and linking current HR research to practice.</td>
<td>Lecture</td>
<td>Offered Spring Term</td>
<td>Prerequisites: OS352.</td>
<td></td>
<td>Technology</td>
</tr>
<tr>
<td>OS 466(3)</td>
<td>009028</td>
<td>2015</td>
<td>Negotiations and Relationship Management</td>
<td>This course introduces students to the complex problems associated with the management of stakeholder relationships. The course emphasis is on the establishing, negotiating, building, sustaining, and repairing of both workplace and external relationships, including relationships with employees, management, customers, suppliers, manufacturers, shareholders, society, and other key stakeholders. This course introduces theories of negotiation, conflict, complaint handling, and norms and ethics of fairness. The course introduces labor relations, collective bargaining, and U.S. labor and employment laws, and considers corresponding implications for union and nonunion workplaces.</td>
<td>Lecture</td>
<td>Offered Each Term</td>
<td>Prerequisites: OS286 and Junior Standing.</td>
<td></td>
<td>Technology</td>
</tr>
<tr>
<td>OS 487(1 - 3)</td>
<td>010260</td>
<td>2017</td>
<td>Special Project in Organizational Studies</td>
<td>An investigation of a problem or in-depth topic undertaken by the student under the guidance of a faculty member.</td>
<td>Research</td>
<td>Given When Needed</td>
<td></td>
<td>Permission of the instructor</td>
<td>Technology</td>
</tr>
</tbody>
</table>
Leadership Development I - Foundations of Leadership & Organizational Behavior

The purpose of this course is to help students understand the general principles and processes of organizational behavior and effective leadership so that they can lead in a wide variety of situations. Course concepts include personality, motivation, decision making, power, team dynamics, and leadership styles. This course proceeds from the premise that leadership skills supplement the technical and diagnostic skills learned in other Clarkson MBA courses. Students in this course will develop an understanding of the course topics through hands-on experience, using a business simulation and a number of team exercises.

Components: Lecture

Attributes: Offered Summer Term

Req. Designation: Technology

Leadership and Organizational Behavior

(Cross-listed with OS 608) This course builds upon the lessons learned in OS602 and other MBA classes to allow students to further develop their leadership skills and understanding of behavior within an organizational setting. Specific topics to be covered include organizational culture and structure, influencing others through formal and informal means, negotiations, and analysis of organizational congruence. The course uses business cases, videos, articles from the academic and popular press, as well as in-class exercises.

Components: Lecture

Course Equivalents: OS 608

Attributes: Offered Fall and Spring

Req. Designation: Technology
Organizational Behavior and Performance Management

(Cross-listed with OS 603) The purpose of this module is to prepare students for leadership responsibilities in the organization. The module may focus around one or more of several topics: managing your own performance and that of subordinates; managing organizational change; managing power, politics and conflicts; working in and managing groups effectively; managing technology to enhance productivity. Other topics will be covered as appropriate.

Prerequisites: completion of all CUSB MBA foundation requirements and admission to the MBA program.

Components:
- Lecture

Course Equivalents:
- OS 603

Attributes:
- Offered Fall Term

Req. Designation:
- Technology

Strategic Planning

(Cross-listed with OS 611) This course provides an integrative approach to recognition, analysis and solution of strategic issues or challenges facing business executives in their quest to gain and sustain strategic advantage in the world marketplace. Through case analyses, as well as other instructional methods, students will develop the synthetic, critical thinking, and communication skills necessary for effectively managing in a global context. Students will also develop an ethical/moral understanding of the dynamics involved in the creation and distribution of value among organizational stakeholders.

Prerequisites: completion of all CUSB MBA foundation requirements and admission to the MBA program.

Components:
- Lecture

Attributes:
- Offered Fall Term

Requirement Group:
- Prerequisites: AC603, EC604, FN607, MK609, OM606, OS608, and SB609.

Req. Designation:
- Technology
OS 651(3) Course ID:012565 2016-07-25
High Performance Leadership
[Formerly MBA 652] This course emphasizes cognitive skills and experiential practicum learning applied to ongoing leadership and organizational problems. Students learn about leadership roles and competencies essential for building and supporting organizational capabilities and business strategies in global markets. The course also enables students to learn a method to diagnose their strengths and weaknesses in leadership capacities and measure their proficiency against benchmarked models of high performance leadership.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Offered Spring Term</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

OS 654(3) Course ID:012567 2017-07-14
Labor Relations
[Formerly MBA 654] This comprehensive course ties together the history of modern labor movements in the United States with issues facing workers in the Twenty-First Century, including the impact of globalization and international outsourcing. Subtopics include negotiation, conflict resolution, and workforce diversity. In addition, a comparative study on international unions will be examined. Each week, current events and their implications for labor relations will be discussed.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same As Offering:</td>
<td>OS 654</td>
</tr>
<tr>
<td>Attributes:</td>
<td>Offered Summer Term</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>
Leading Organizational Change

This course examines the processes of organizational change in dynamic technological and global business environments to enhance organizational quality, productivity, and overall operation. The course focuses on leadership approaches that facilitate stakeholder acceptance of change and employee contribution to the management of change. Topics include: change models and theories, the various types of organizational change, planned organizational change, resistance to change, the role of change management consultants, and human resource management practices that facilitate change. The types of change considered range from minor change interventions to transformational change, including technological, cultural, and work design changes. The course utilizes case studies, skills development exercises, and group projects in the study of organizational change.

Components: Lecture

Requirement Group: Prerequisite: OS 608 (Organizational Behavior and Performance Management), or OS 603 (Leadership Development II)

Negotiations and Relationship Management

This course examines the complex problems associated with the management of stakeholder relationships under conditions of rapid economic change and intense global competition. The course emphasis is on the establishing, negotiating, building, sustaining, and repairing of both workplace and external relationships, including relationships with employees, management, customers, suppliers, manufacturers, shareholders, society, and other key stakeholders. This course provides an in-depth understanding of the theories of negotiation, conflict, complaint handling, and norms and ethics of fairness. The course also provides a foundation on labor relations, collective bargaining, and U.S. labor and employment laws, with an emphasis on the corresponding implications for union and nonunion workplaces. The course is intended to be applicable to a broad spectrum of work- or business-related relationship issues faces by managers and professionals.

Components: Lecture

Course Equivalents: OS 667, OS 667

Requirement Group: Prerequisites: OS608 (Organizational Behavior & Performance Management) or OS602 (Leadership Development I)

Req. Designation: Technology
Negotiations and Relationship Management

(Cross-listed with OS 666) This course examines the complex problems associated with the management of stakeholder relationships under conditions of rapid economic change and intense global competition. The course emphasis is on the establishing, negotiating, building, sustaining, and repairing of both workplace and external relationships, including relationships with employees, management, customers, suppliers, manufacturers, shareholders, society, and other key stakeholders. This course provides an in-depth understanding of the theories of negotiation, conflict, complaint handling, and norms and ethics of fairness. The course also provides a foundation on labor relations, collective bargaining, and U.S. labor and employment laws, with an emphasis on the corresponding implications for union and nonunion workplaces. The course is intended to be applicable to a broad spectrum of work- or business-related relationship issues faces by managers and professionals.

Components:
- Lecture

Same As Offering:
- OS 667

Course Equivalents:
- OS 666

Attributes:
- Offered Summer Term

Requirement Group:
- Prerequisites: OS603 or OS602

Req. Designation:
- Technology
International Human Resources

Course ID: 012581
Year: 2016-07-25
This course will focus on how effective human resource policy and practice contributes to a global company’s competitiveness. It will be considered within the context of strategic business objectives, culture, and resource management constraints given by the various national entities. Special focus will be placed on understanding the unifying human resource policies that support the strategic objectives of a global organization. This course will draw on practical examples from companies that have experienced challenges of international human resource management.

Components:
- Lecture

Attributes: Offered Summer Term

Req. Designation: Technology

Strategic Management

Course ID: 012582
Year: 2020-08-11
This capstone course provides an integrative approach to the recognition, analysis, and action that managers need as part of the effective strategic management process. Critical thinking, creative thinking, and analytical skills applicable to strategy formulation and implementation are developed across a variety of organizational contexts. Concepts including multiple strategic frameworks, competitor analysis, and competitive advantage are applied to real organizations. Enhanced written and oral communications skills are developed to persuasively and credibly present strategic conclusions and recommendations. Different types of data are analyzed and tools and models from core MBA coursework are integrated. A strategic assessment is conducted, including relevant recommendations that consider ethical practices and corporate social responsibilities.

Components:
- Lecture

Same As Offering: OS 681

Prerequisites: AC 604, EC 605, FN 608, MK 610, OM 607, OS 603, and SB 610

Req. Designation: Technology
Project in Organizational Studies

An investigation of a problem undertaken by the student under the guidance of an individual faculty member. The course provides an opportunity for the student to explore an area of organizational research in depth on an independent study basis. To register, students must receive approval of the faculty member.

Prerequisites: consent of the instructor.

Components: Independent Study

Course Equivalents: OS 688

Req. Designation: Technology
Project in Organizational Studies
An investigation of a problem undertaken by the student under the guidance of an individual faculty member. The course provides an opportunity for the student to explore an area of organizational research in depth on an independent study basis. To register students must receive approval of the faculty member.

Prerequisites: consent of the instructor.

Course Equivalents: OS 687

Attributes: Given When Needed

Req. Designation: Technology
Health Sciences - Occupational Therapy - Subject: Occupational Therapy

OT 501(4) Course ID:012048 2019-01-15
Gross Anatomy
This course will provide students with a sound working knowledge of the structure of the human body with a strong emphasis on the musculoskeletal and nervous systems through the study of clinical anatomy. The relationship between structure and function will be addressed and the integration of these body systems during normal and abnormal function will be reviewed. Course structure will focus on regional anatomy and therefore will emphasize the relationship between various structures including muscles, nerves and arteries. The laboratory is designed to facilitate the study of human anatomy through the dissection of human cadavers and examination of skeletal materials and anatomical models. In addition, dissection provides students a unique opportunity to consider and discuss issues of professionalism, team-building, ethics, and death and dying.

Components: Lecture
Attributes: Offered Odd Falls
Requirement Group: Prerequisite: Students must be admitted into the OT-MS program
Req. Designation: Technology

OT 503(4) Course ID:012049 2019-04-24
Neuroscience
This course will focus on the application of neuroscience theory and clinical principles of nervous system function to behavioral outcomes in sensation, movement, perception and cognition as typically seen by rehabilitation professionals. Anatomy and function of the human nervous systems will be taught with emphasis placed on their role in development, movement and motor learning, the sensory system, cognition, perception and behavior for the purpose of understanding rehabilitation principles and intervention. Components of normal function and dysfunction of the peripheral and central nervous systems will be reviewed from the perspective of the rehabilitation specialist. Nervous system components including the spinal cord, brainstem, cerebrum and the auditory, visual and vestibular systems will be reviewed. Primary roles and functions, knowledge of the physical structures involved and the neural pathways that link systems will be reviewed. Examination of human brain specimens and anatomical models will be used both in this course and

Components: Lecture
Attributes: Offered Odd Springs
Req. Designation: Technology

OT 507(4) Course ID:012051 2018-12-11
Basic Science: Cognition and Occupational Performance
In this basic science course, students are introduced to the tenets of cognitive and perceptual rehabilitation in occupational therapy. Students will explore how cognitive and perceptual deficits impact occupational performance and health related quality of life. Neurocognitive disorders will be reviewed, along with current assessments, evidence-based interventions, and practice models. Competency will be assessed with two simulation practical examinations.

Components: Lecture
Attributes: Offered Even Springs
Requirement Group: Prerequisite: Students must be admitted into the OT-MS program
Req. Designation: Technology

OT 511(2) Course ID:012073 2019-01-15
Development and Occupational Performance Across the Lifespan
In this course, students will explore motor, cognitive and psychosocial development and age-related changes that occur from birth through older adulthood in typical individuals. Students will gain an appreciation for, and understanding of, individual and contextual factors that influence development and aging, including but not limited to biologic, social, environmental and health-related factors. They will examine the relationship between development and aging on performance skills, and apply this knowledge to gain a deeper understanding of activity demands. Students will be able to recognize the challenges that are presented when typical development does not occur or when age-related conditions negatively impact occupational performance.

Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisite: Students must be admitted into the OT-MS program
Req. Designation: Technology

OT 521(2) Course ID:012056 2019-04-24
Basic Science: Mental Health and Occupational Performance
This basic science course provides students the opportunity to revisit the roots of occupational therapy, as students explore the role of the profession as it relates to mental health issues. Students will compare the traditional role of OT practice in this field with current trends and emerging practice as they explore the impact of mental health and psychosocial issues on occupational performance across a lifespan. Additionally, students will explore how mental health and psychosocial issues can impact all areas of practice, from pediatrics, to adult physical dysfunction, to non-traditional practice areas.

Components: Lecture
Attributes: Offered Odd Falls
Req. Designation: Technology
OT 531(3) Foundations in Occupation Based Practice

In this foundational course, students are introduced to the profession of occupational therapy through history, theory, and current practice and professional affiliations. Overview of the value of occupational therapy in society is presented as students examine professional terminology, historical constructs of occupation, and the use of activities as therapeutic and healing practices. Students will be introduced to professional behaviors, ethical codes of behavior, professional documentation and the global community of the profession.

Components: Lecture

Attributes: Offered Odd Falls

Requirement Group: Prerequisite: Students must be admitted into the OT-MS program

Req. Designation: Technology

OT 533(2) Basic Science: Applied Kinesiology for OT's

Kinesiology is the study of human motion. Students will demonstrate knowledge and understanding of the structure and function of the human body as it relates to human movement and occupation. This course is designed to establish a basis of general biomechanical principles as it relates to Occupational Therapy practice. The course consists of both lecture and laboratory sessions. Laboratory sessions will provide the student with practical applications of principles discussed in lectures. In addition, the laboratory sessions will allow the student to become proficient in the areas of surface anatomy and palpation, manual muscle testing, and goniometry. The student will study normal and pathological movements. Students will employ logical thinking, critical analysis, problem solving, and creativity throughout this course. The influence of the environment on occupational performance will be explored. Cases will invite the exploration of the learned concepts to subjective experiences of meaningful engagement in work and play.

Components: Lecture

Attributes: Offered Odd Springs

Req. Designation: Technology

OT 537(2) Bridging Science to Pediatric Assessment

In this course, students will develop skills in obtaining, interpreting and reporting evaluative information and data through both standardized and non-standardized methods. They will gain the ability to utilize comprehensive evaluation results to identify meaningful and realistic intervention goals that are relevant to the practice setting, and reflect client/family needs and priorities. Students will gain an ability to accurately and professionally report the results of an evaluation both orally and in a formal evaluation report.

Prerequisites: Successful completion of all semester 3 courses.

Components: Lecture

Attributes: Offered Summer Term

Req. Designation: Technology

OT 539(3) Experiential Learning Lab 4: Professional Practice, Leadership, Management and Activism

What is OT the unique solution for? How can occupational engagement and participation be core components to an abundant world? This course begins with an exploration of theories related to management and leadership and ends investigating the concept of social entrepreneurs and change agents. Students will explore aspects of the OT profession as they learn what it takes to practice as an OT from a business and leadership perspective.

Prerequisites: Successful completion of all semester 4 courses.

Components: Lecture

Attributes: Offered Even Springs

Req. Designation: Technology
OT 541(3)
Course ID: 012054
2019-01-15
Foundations in Research
Students will refine their ability to locate, evaluate, and incorporate research evidence into the practice of occupational therapy. Students will build upon research analysis and information literacy skills from prior coursework as they develop clinical questions, conduct database searches to obtain evidence, critically analyze available evidence, and determine relevancy to clinical practice. Students will review quantitative and qualitative research methodologies and designs, analyze scholarly works and assess both role established and role emergent concerns in occupational therapy profession. Students will identify an over-arching research question derived from their own area of interest and begin to examine the current body of knowledge related to their variables of interest, identify appropriate methodologies for the question. Students will work with faculty to develop a proposal from which their scholarly activity and propose a plan for their scholarly study will evolve. This course will include the development of a Critically Appraised Paper (CAP).

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Offered Even Falls</td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisite: Students must be admitted into the OT-MS program</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

OT 549(3)
Course ID: 012055
2019-09-26
Synthesizing Evidence and Practice to Become an Evidence-Based Practitioner
This experiential learning course is the final course in the occupational therapy research sequence. The course provides an in-depth examination of research and its relationship to multiple areas of practice and practice assumptions. Students will obtain an advanced understanding of theory-based research, selecting appropriate methodology and units of analysis in the design of research, ways of evaluating practice, and approaches to analyzing data. They will learn how to carry out and complete a scholarly activity. At the conclusion of this course, students will produce a scholarly report and participate in the dissemination of their work.

Prerequisites: Successful completion of all previous semester courses.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Offered Even Springs</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

OT 551(3)
Course ID: 012065
2019-01-15
Foundations in Defining and Understanding Occupational Performance
This course will incorporate a combination of lecture, video, guest lectures and collaborative group learning activities to reinforce the connection between the Occupational Therapy Practice Framework and real-life. Students will apply knowledge of human development, behavior, and newly acquired knowledge of occupational performance to observations of humans engaged in daily routines and activities. They will employ critical thinking skills to explore the relationships between client factors, context and environment, and occupation, and how this impacts health and disability. Through active learning assignments, students will apply concepts of occupation and activity to therapeutic intervention, and become familiar with various service delivery models. Throughout the course, core competencies of interpersonal skills, oral and written communication, critical thinking and scientific reasoning will be reinforced. Students can expect to gain an understanding of the role and process of occupational therapy in promoting health among individuals with and

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Offered Odd Falls</td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisite: Students must be admitted into the OT-MS program</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

OT 553(2)
Course ID: 012057
2019-04-24
Basic Science: Cognition and Occupational Performance
In this basic science course, students are introduced to the tenets of cognitive and perceptual rehabilitation in occupational therapy. Students will explore how cognitive and perceptual deficits impact occupational performance and health related quality of life. Neurocognitive disorders will be reviewed, along with current assessments, evidence-based interventions, and practice models. Competency will be assessed with two simulation practical examinations.

Prerequisites: Successful completion of all previous semester courses.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Offered Odd Springs</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>
Bridging Science to Upper Extremity Rehabilitation

In this hands-on, highly interactive course, students will link learned science concepts from anatomy, neuroanatomy, kinesiology, and occupational science to the art and science of upper extremity rehabilitation. Upper extremity assessment and intervention, and the link to meaningful occupational engagement, will be explored through cases. The importance of the hand in everyday functioning will be explored through an anthropology, biological, and occupational science perspective. Experiential learning component of the course will require students to create orthotic devices aimed toward the client’s social and cultural adaptation to disabilities and to maximize health and participation.

Prerequisites: Successful completion of all semester 3 courses.

- **Components:** Lecture
- **Attributes:** Offered Even Falls
- **Req. Designation:** Technology
School of Arts and Sciences - Occupational Therapy - Subject: Occupational Therapy

OT 563(2) Course ID: 012811 2018-09-12
Bridging Science to Adult Conditions and Assessment
This course links concepts learned in gross anatomy (OT 500) to the first experiential learning lab (OT 583). Clinical correlations covered in lectures as well as laboratory will present the fundamentals of human anatomy in a clinical context. Material covered will provide students with a rich foundation in which they will develop clinical reasoning that guides occupational therapy practice, professional inquiry and evidence based decision-making.
Components:
- Lecture
Requirement Group:
- Corequisite: OT583
Req. Designation:
- Technology

OT 567(2) Course ID: 012812 2019-03-06
Bridging Science to Adult Neuro Conditions and Assessment
This course links concepts learned in Neuroscience (OT 503) to the second experiential learning (OT 587). Clinical correlations covered in lectures as well as laboratory will present the fundamentals of understanding and identifying neuroscience related health conditions in a clinical context. Material covered will provide students with a rich foundation in which they will develop clinical reasoning that guides occupational therapy practice, professional inquiry and evidence based decision-making.
Components:
- Lecture
Attributes:
- Given When Needed
Req. Designation:
- Technology
OT 579(2) Course ID: 012995 2019-11-19
Experiential Learning Lab III: Group Dynamics Across Practice Settings
This course utilizes self-directed, life-long learning concepts as students explore therapeutic use of self and group dynamics. Using case studies and experiential learning, students will explore and apply these concept domains while examining daily living tasks, activities, and engagement in performance of occupations. Using the group process, students identify a variety of intervention techniques affording the client opportunities to engage in meaningful occupations. The overarching purpose of this course is to enable students to understand the group process experience as a viable intervention option. Students will develop entry level skills of the student occupational therapist sufficient for intervention planning, note writing, patient/consumer safety, and student safety in varied practice settings.

Components:
Lecture

Attributes:
Offered Odd Springs

Req. Designation: Technology

OT 583(3) Course ID: 012879 2019-04-24
Experiential Learning Lab I: Adult Assessment and Intervention Lab
This course serves as the experiential lab for common conditions and ailments seen by OTs in the adult population. Students integrate knowledge of gross anatomy, the impact of disease and disability throughout the lifespan and related pathological conditions to explore the impact of life style choice, health and disability on occupational performance and participation. Students begin to become competent in administering, interpreting and documenting the evaluation process and the related impact on client factors, performance skills and patterns, occupational performance, and the interconnectedness of cultural, contextual and environmental factors. The use of evaluation data to design and implement interventions with those who are at risk for, or who have acquired, disabilities due to disease or trauma will be explored in this course. Case studies are woven throughout this course to provide a platform for students to develop critical thinking skills, design and implement theoretically sound, evidence based interventions through goal setting.

Components:
Laboratory

Req. Designation: Technology
ELL II: Applied Neuroscience and Human Occupation: Conditions and Function

This course serves as the experiential lab for OT 503 Case Base Reasoning II: Gross Anatomy, Neuro-Rehabilitation and Human Occupation. Students integrate knowledge focused on the neurological concepts and related pathological conditions to explore the impact on occupational performance and participation with the adult population. Students will become competent in identifying, administering, interpreting and documenting the evaluation process and the related impact on client factors, performance skills and patterns, occupational performance, the impact of contextual and environmental factors. Students will develop critical thinking skills to provide sound rationale for, design and implement evidence based interventions through goal setting, treatment planning and the use of a variety of intervention techniques incorporating innovation and technology to allow the client to engage in meaningful occupations. Students must achieve competence in assessment, intervention and documentation of the OT process for all conditions covered in this course.

Components: Laboratory
Attributes: Offered Odd Springs
Req. Designation: Technology
Health Sciences - Occupational Therapy - Subject: Occupational Therapy

OT 589(3) Course ID:012058 2019-09-26
Experiential Learning Lab IV: Pediatric Intervention Lab
This is the final of four experiential learning labs. The focus of the course is to allow students the opportunity to critically evaluate ecological perspectives for occupational therapy intervention as we move through crises and transitions across our lifespans. Students will use evaluation data and experiential learning to explore the interconnectedness of the individual, the environment and the engagement in occupation and examine the ways multiple contextual influences impact intervention and health outcomes. Students will critically assess the concept of 'thinking locally and globally' as they analyze theoretical approaches from a literature and a variety of intervention techniques.
Prerequisites: Successful completion of all previous semester courses.
Components: Lecture
Attributes: Offered Even Falls
Req. Designation: Technology

OT 591(2) Course ID:012061 2019-01-15
Professional Seminar A: Professionalism in Occupational Therapy
In this highly interactive, advanced seminar, students will explore their own strengths and challenges, and explore how to utilize that information to optimize the learning experience, work in a cohort, and work as an occupational therapist. Professional behaviors, group cohesion and interprofessional communication will be examined as a means of developing oneself as a professional and agent of change. Entry-level concepts such as ethical practice and medical documentation will also be explored. This class is the first of four professional seminar classes.
Components: Seminar
Attributes: Offered Odd Falls
Req. Designation: Students must be admitted into the OT-MS program

OT 595(2) Course ID:012062 2019-04-03
Professional Seminar B: Inter-professional Practice and Emerging Practice
Students will explore inter-professional practice, emerging practice, and understand the crucial, unique, and vital role occupational therapists play in a variety of teams. Through the exploration of different practice areas, students will understand how occupational performance plays a key role in health and wellness, despite practice setting. Health literacy and advocacy are addressed, as students start exploring clinical questions, critically analyze available evidence, and begin learning how to convey this knowledge to clients, colleagues, and other stakeholders. This class is the second of four professional seminar classes.
Prerequisites: Successful completion of all semester 2 courses.
Components: Seminar
Attributes: Offered Odd Springs
Req. Designation: Technology

OT 597(2) Course ID:012063 2019-02-25
Professional Seminar C: Clinical Scholarship
This seminar provides students the opportunity to examine and discuss specialty topics related to practice. Topics are taught in modules, allowing students to explore each topic in depth. During each module, students will explore research as it applies to occupation based practice, understand ways to collect evidence in the clinic and incorporate that evidence into occupational therapy best practice, learn ways to disseminate this information to peers, colleagues, and clients, and advocate for change. Examples of concepts covered in this class may include, death and dying, cancer, social determinants of health, and driving. The course will remain fluid to allow for educational changes as the profession changes. This class is the third of four professional seminar classes.
Prerequisites: Successful completion of all semester 3 courses.
Components: Seminar
Attributes: Offered Even Falls
Req. Designation: Technology

OT 599(2) Course ID:012064 2019-09-26
Professional Seminar D: Innovation and Advanced Cases
This seminar provides students with the opportunity to synthesize and integrate core concepts throughout the entire academic program through the utilization of advanced cases. Concepts related to OT practice, client assessment and treatment, pharmacology, research and evidence-based practice, and management/leadership will be intricately linked together as students examine advanced cases and begin preparation for the NBCOT exam and Level II fieldwork. This is the final professional seminar class.
Prerequisites: Successful completion of all semester 4 courses
Components: Seminar
Attributes: Offered Even Springs
Req. Designation: Technology
Health Sciences - Occupational Therapy - Subject: Occupational Therapy

OT 603(3) Course ID:012066 2019-04-24

Engineering Health through Creativity, Craft and Analysis of Occupation

Students will explore both historic and present-day relevance of Mary Reilly’s quote: “Man, through the use of his hands as they are energized by mind and will, can influence the state of his own health.” Students will examine the relationship between creativity, activity, and occupation through personal involvement in creative endeavors and analysis. This course explores how creative expression plays a vital role in health and personal transformations. Students will learn to gather occupational history, analyze tasks and skills, identify necessary performance skills, and explore current and innovative adaptations and modifications to foster participation.

Prerequisites: Successful completion of all previous semester courses.

Components: Lecture

Attributes: Offered Odd Springs

Req. Designation: Technology

OT 605(2) Course ID:012067 2019-02-25

Engineering Pathways to Participation through Technology

In this course, students will explore the role that modifications and adaptations have in maximizing independence, functional capabilities, and occupational performance and engagement for individuals with a variety of health conditions. They will gain an understanding of concepts of Universal Design as a proactive means of supporting participation among all individuals. They will also acquire an understanding of the no-tech, low-tech, mid-tech and high-tech interventions that can be implemented to address specific functional areas. Students will gain an understanding of the process of selecting appropriate strategies, adaptive equipment or assistive technologies, while ensuring a good fit between client needs and intervention/tool characteristics.

Prerequisites: Successful completion of all semester 2 courses.

Components: Lecture

Attributes: Offered Summer Term

Req. Designation: Technology

OT 630(2) Course ID:012075 2021-05-11

Engineering Pathways to Clinical Practice: Technology for Health-Related Quality of Life I

Students who elect to participate in the Technology for HRQoL track will have the opportunity to capitalize on the entrepreneurial spirit that is inherent in a Clarkson education and leverage Clarkson’s expertise through cross-disciplinary collaborations. Faculty will assist students to identify a need, formulate a plan to action, and develop a well thought out solution.

Components: Lecture

Attributes: Offered Fall Term

Req. Designation: Technology

OT 631(2) Course ID:012076 2021-05-11

Engineering Pathway to Clinical Practice: Occupational Therapist as a Researcher I

In this first course of the Research Track, students will take what they learned in Foundations in Research a step further, focusing on becoming practitioners of research methods. Students will begin by completing critically appraised papers for quantitative and qualitative research, conducting a brief needs assessment, and engaging with topics in research ethics. At the same time, students will decide on their capstone research topics and begin to develop the research. For some, this may involve working on an Institutional Review Board proposal; for others, it may involve specialized training to conduct specific assessments or design a program. During the final three didactic semesters, all students in the Research Track will receive advanced training in qualitative interviewing, ethnomethodology, and grounded theory. Classic texts on advanced research methods will be assigned as appropriate. All students will complete a research paper and poster for presentation at the end of the spring semester.

Components: Lecture

Attributes: Offered Even Falls

Req. Designation: Technology

OT 632(2) Course ID:012077 2021-05-11

Engineering Pathway to Clinical Practice: Innovative Practitioner I

Students who elect to participate in the Innovation Track will have the opportunity to capitalize on the entrepreneurial spirit that is inherent in a Clarkson education and leverage Clarkson's expertise through cross-disciplinary collaborations. Faculty will assist students to identify a need, formulate a plan to action, and develop a well thought out solution.

Components: Lecture

Attributes: Offered Even Falls

Req. Designation: Technology
Health Sciences - Occupational Therapy - Subject: Occupational Therapy

OT 640(2)
Course ID: 012078
2020-06-04
Engineering Pathway to Clinical Practice: Technology for Health-Related Quality of Life II
In the second track courses, students will develop their own learning project or research under the tutelage of the course instructor and/or a mentor advisor. Students remain in their chosen track course, and by doing so, have an opportunity to immerse themselves in their specialty area of interest, expand their knowledge and skills, and apply their knowledge and skills to produce a scholarly project that contributes to the profession. Throughout this process students will be encouraged to engage in activities to promote personal and professional growth while developing the critical skills of a life-long learner.

Prerequisites: Successful completion of all semester 3 courses.
Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology

OT 641(2)
Course ID: 012079
2020-06-04
Engineering Pathway to Clinical Practice: Occupational Therapist as a Researcher II
In the second track courses, students will develop their own learning project or research under the tutelage of the course instructor and/or a mentor advisor. Students remain in their chosen track course, and by doing so, have an opportunity to immerse themselves in their specialty area of interest, expand their knowledge and skills, and apply their knowledge and skills to produce a scholarly project that contributes to the profession. Throughout this process students will be encouraged to engage in activities to promote personal and professional growth while developing the critical skills of a life-long learner.

Prerequisites: Successful completion of all semester 3 courses.
Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology

OT 642(2)
Course ID: 012080
2020-06-04
Engineering Pathway to Clinical Practice: Innovative Practitioner II
In the second track courses, students will develop their own learning project or research under the tutelage of the course instructor and/or a mentor advisor. Students remain in their chosen track course, and by doing so, have an opportunity to immerse themselves in their specialty area of interest, expand their knowledge and skills, and apply their knowledge and skills to produce a scholarly project that contributes to the profession. Throughout this process students will be encouraged to engage in activities to promote personal and professional growth while developing the critical skills of a life-long learner.

Prerequisites: Successful completion of all semester 3 courses.
Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology
Engineering Pathways to Clinical Practice: Technology for Health-Related Quality of Life III

Course ID: 012964
Run Date: 06/27/2022
Run Time: 14:02:09

In the third and final track courses, students will finalize their own learning project or research. Students continue to immerse themselves in their specialty area of interest as they remain in their chosen track course. The final scholarship project results in disseminating the outcomes of the project to the greater community. Throughout this process students will be encouraged to engage in activities to promote personal and professional growth while developing the critical skills of a life-long learner.

Prerequisites: Successful completion of all semester 4 courses.

Components: Lecture
Attributes: Offered Spring Term
Req. Designation: Technology

Engineering Pathways to Clinical Practice: Occupational Therapist as a Researcher III

Course ID: 012962
Run Date: 06/27/2022
Run Time: 14:02:09

In the third and final track courses, students will finalize their own learning project or research. Students continue to immerse themselves in their specialty area of interest as they remain in their chosen track course. The final scholarship project results in disseminating the outcomes of the project to the greater community. Throughout this process students will be encouraged to engage in activities to promote personal and professional growth while developing the critical skills of a life-long learner.

Prerequisites: Successful completion of all semester 4 courses.

Components: Lecture
Attributes: Offered Spring Term
Req. Designation: Technology

Engineering Pathways to Clinical Practice: Innovative Practitioner III

Course ID: 012963
Run Date: 06/27/2022
Run Time: 14:02:09

In the third and final track courses, students will finalize their own learning project or research. Students continue to immerse themselves in their specialty area of interest as they remain in their chosen track course. The final scholarship project results in disseminating the outcomes of the project to the greater community. Throughout this process students will be encouraged to engage in activities to promote personal and professional growth while developing the critical skills of a life-long learner.

Components: Lecture
Attributes: Offered Spring Term
Req. Designation: Technology
Health Sciences - Occupational Therapy - Subject: Occupational Therapy

OT 700A(2) Course ID:012081 2019-04-24

Fieldwork Level I

OT 700 provides the student with an introduction to the fieldwork experience and the opportunity to develop a basic comfort level with and understanding of client needs. Students will develop professional and ethical behaviors while exploring current and emerging roles of occupational therapy with a variety of populations across the lifespan, in a variety of settings. While assisting in service delivery and intervention, students engage in an exploration of efficacy, therapeutic use of self, empathy and mindfulness and the development of self-awareness to support the art, craft and skill of effective therapeutic relationships. Students will reflect on the role of innovation and technology in meeting the needs of clients in a rural context. Students will begin to develop a deeper understanding of how psycho-social factors influence engagement in occupation. Students also participate in an accompanying seminar that offers the opportunity for peer interaction, mentoring and feedback as professional competence begins to emerge.

Components: Field Studies
Attributes: Offered Fall and Spring
Req. Designation: Technology
OT 700B(2)
Course ID:012799
2019-04-23
Fieldwork Level I
OT 700 provides the student with an introduction to the fieldwork experience and the opportunity to develop a basic comfort level with and understanding of client needs. Students will develop professional and ethical behaviors while exploring current and emerging roles of occupational therapy with a variety of populations across the lifespan, in a variety of settings. While assisting in service delivery and intervention, students engage in an exploration of efficacy, therapeutic use of self, empathy and mindfulness and the development of self-awareness to support the art, craft and skill of effective therapeutic relationships. Students will reflect on the role of innovation and technology in meeting the needs of clients in a rural context. Students will begin to develop a deeper understanding of how psycho-social factors influence engagement in occupation. Students also participate in an accompanying seminar that offers the opportunity for peer interaction, mentoring and feedback as professional competence begins to emerge.

Components:
Field Studies

Attributes:
Offered Fall and Spring

Req. Designation:
Technology
Health Sciences - Occupational Therapy - Subject: Occupational Therapy

OT 705(9)
Course ID: 012082 2017-12-06
Fieldwork Level II A
This is the first 12-week placement which will allow the student to begin their transition from an OT academic role to that of entry-level therapist. Potential placements will encompass the lifespan, a variety of client populations and service delivery models, and will allow the student to apply skills in their area of specialty interest. Fieldwork is highly individualized and may span from local to global, traditional to emerging and innovative roles. Students will have opportunities to utilize critical thinking and clinical reasoning to apply curricular theories and concepts to practice in the evaluation process, intervention planning, and the use of occupation as intervention and outcome.

Components: Field Studies
Attributes: Offered Summer Term
Requirement Group: Prerequisites: OT 507, OT 517, OT 527, OT 547, and (OT 640 or OT 641 or OT 642)
Req. Designation: Technology

OT 710(9)
Course ID: 012083 2020-11-03
Fieldwork Level II B
This second 12-week placement will allow the student to complete their transition from an OT academic role to that of entry-level therapist. Potential placements will encompass the lifespan, a variety of client populations and service delivery models, and will allow the student to apply skills in their area of specialty interest. Fieldwork is highly individualized and may span from local to global, traditional to emerging and innovative roles. Students will have opportunities to utilize critical thinking and clinical reasoning to apply curricular theories and concepts to practice in the evaluation process, intervention planning, and the use of occupation as intervention and outcome.
Prerequisites: Successful completion of all previous semester courses.
Components: Field Studies
Attributes: Given When Needed, Offered Odd Falls
Req. Designation: Technology
Health Sciences - Physician Assistant Studies - Subject: Physician Assistant Studies

PA 501(6)
Course ID: 011500
2016-04-08

Clinical Medicine I
This is the first in a series of courses designed to provide an intensive study of human diseases and disorders, using a lifespan approach from pediatrics to geriatrics, in the areas of clinical medicine including epidemiology, etiology, historical data, clinical manifestations, progression, therapeutic management, prevention, laboratory medicine, imaging, and prognosis. Emphasis will be on disease processes common to primary care practices and the emergency department following the NCCPA Blueprint, and the development of differential diagnoses and plans based upon the patient's clinical presentation. This course will be facilitated through lecture and problem-based learning.
Prerequisite: Admission to the PA program

Components: Lecture
Attributes: Offered Spring Term
Req. Designation: Technology

PA 502(6)
Course ID: 011501
2016-04-08

Clinical Medicine II
This is the second in a series of courses designed to provide an intensive study of human diseases and disorders, using a lifespan approach from pediatrics to geriatrics, in the areas of clinical medicine including epidemiology, etiology, historical data, clinical manifestations, progression, therapeutic management, prevention, laboratory medicine, imaging, and prognosis. Emphasis will be on disease processes common to primary care practices and the emergency department following the NCCPA Blueprint, and the development of differential diagnoses and plans based upon the patient's clinical presentation. This course will be facilitated through lecture and problem-based learning.
Prerequisite: Successful completion of prior semester of PA course work or program permission

Components: Lecture
Attributes: Offered Summer Term
Req. Designation: Technology

PA 503(6)
Course ID: 011504
2016-04-08

Clinical Medicine III
This is the third in a series of courses designed to provide an intensive study of human diseases and disorders, using a lifespan approach from pediatrics to geriatrics, in the areas of clinical medicine including epidemiology, etiology, historical data, clinical manifestations, progression, therapeutic management, prevention, laboratory medicine, imaging, and prognosis. Emphasis will be on disease processes common to primary care practices and the emergency department following the NCCPA Blueprint, and the development of differential diagnoses and plans based upon the patient's clinical presentation. This course will be facilitated through lecture and problem-based learning.
Prerequisite: Successful completion of prior semester of PA course work or program permission

Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology

PA 504(2)
Course ID: 011505
2016-04-08

Basic Science I
This is the first in a series of courses designed to develop an understanding of normal physiology, genetics, pathologic, and pathophysiologic concepts of diseases per organ system, and clinical anatomy with an emphasis on important anatomical landmarks required in physical evaluation of patients, anatomical relationships of structures to each other, and anatomical components of body systems.
Prerequisite: Admission to the PA program

Components: Lecture
Attributes: Offered Spring Term
Req. Designation: Technology

PA 505(2)
Course ID: 011506
2016-04-08

Basic Science II
This is the first in a series of courses designed to develop an understanding of normal physiology, genetics, pathologic, and pathophysiologic concepts of diseases per organ system, and clinical anatomy with an emphasis on important anatomical landmarks required in physical evaluation of patients, anatomical relationships of structures to each other, and anatomical components of body systems.
Prerequisite: Successful completion of previous semester of PA course work or program permission

Components: Lecture
Attributes: Offered Summer Term
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
<th>Description</th>
<th>Prerequisite</th>
<th>Components</th>
<th>Attributes</th>
<th>Req. Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>011515</td>
<td>Basic Science III</td>
<td>This is the third in a series of courses designed to develop an understanding of normal physiology, genetics, pathologic, and pathophysiologic concepts of diseases per organ system, and clinical anatomy with an emphasis on important anatomical landmarks required in physical evaluation of patients, anatomical relationships of each other, and anatomical components of body systems.</td>
<td>Successful completion of prior semester of PA course work or program permission</td>
<td>Lecture</td>
<td>Offered Fall Term</td>
<td>Technology</td>
</tr>
<tr>
<td>011516</td>
<td>Pharmacotherapeutics I</td>
<td>This is the first in a series of courses designed to develop skills related to the principles of pharmacology as they pertain to therapeutic agents, prescription, and non-prescription medications. Discussion will include the principal mechanisms of action of the major classes of therapeutic agents, understanding of pharmacodynamics, uses, side effects, and toxicities.</td>
<td>Admission to the PA program</td>
<td>Lecture</td>
<td>Offered Spring Term</td>
<td>Technology</td>
</tr>
<tr>
<td>011517</td>
<td>Pharmacotherapeutics II</td>
<td>This is the second in a series of courses designed to develop skills related to the principles of pharmacology as they pertain to therapeutic agents, prescription, and non-prescription medications. Discussion will include the principal mechanisms of action of the major classes of therapeutic agents, understanding of pharmacodynamics, uses, side effects, and toxicities.</td>
<td>Successful completion of prior semester of PA course work or program permission</td>
<td>Lecture</td>
<td>Offered Summer Term</td>
<td>Technology</td>
</tr>
<tr>
<td>011521</td>
<td>Pharmacotherapeutics III</td>
<td>This is the third in a series of courses designed to develop skills related to the principles of pharmacology as they pertain to therapeutic agents, prescription, and non-prescription medications. Discussion will include the principal mechanisms of action of the major classes of therapeutic agents, understanding of pharmacodynamics, uses, side effects, and toxicities.</td>
<td>Successful completion of prior semester of PA course work or program permission</td>
<td>Lecture</td>
<td>Offered Fall Term</td>
<td>Technology</td>
</tr>
<tr>
<td>011522</td>
<td>Patient Assessment I</td>
<td>This is the first in a series of courses designed to develop the knowledge and skills required to obtain and record the complete medical history, use of appropriate equipment, proper techniques, and accurate medical terminology to document findings. This course will provide an overview of the medical record as well as development of writing and organizational skills for medical record keeping and oral presentation skills.</td>
<td>Admission to the PA program</td>
<td>Lecture</td>
<td>Offered Spring Term</td>
<td>Technology</td>
</tr>
<tr>
<td>011523</td>
<td>Patient Assessment II</td>
<td>This is the second in a series of courses designed to develop the knowledge and skills required to obtain and record the complete medical history, use of appropriate equipment, proper techniques, and accurate medical terminology to document findings. This course will provide an overview of the medical record as well as development of writing and organizational skills for medical record keeping and oral presentation skills.</td>
<td>Successful completion of prior semester of PA course work or program permission</td>
<td>Lecture</td>
<td>Offered Summer Term</td>
<td>Technology</td>
</tr>
</tbody>
</table>
Health Sciences - Physician Assistant Studies - Subject: Physician Assistant Studies

PA 512(3)
Course ID: 011524
2016-04-08

Patient Assessment III
This is the third in a series of courses designed to develop the knowledge and skills required to obtain and record the complete medical history, use of appropriate equipment, proper techniques, and accurate medical terminology to document findings. This course will provide an overview of the medical record as well as development of writing and organizational skills for medical record keeping and oral presentation skills. Skills will be developed through lecture and structured laboratory exercises.
Prerequisite: Successful completion of prior semester of PA course work or program permission
Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology

PA 513(1)
Course ID: 011525
2016-04-08

The Patient and the PA I
This is the first in a series of courses designed to develop skills in the area of patient communication, patient counseling, patient education, and cultural diversity and how they influence all aspects of medical practice. Instruction is focused on the detection and application of preventive measures and treatment of health risk behaviors including stress, abuse and violence, substance abuse, sexuality, end of life issues, and reaction to illness. The course will also include discussions on medical ethics.
Prerequisite: Admission to the PA program
Components: Lecture
Attributes: Offered Spring Term
Req. Designation: Technology

PA 514(1)
Course ID: 011526
2016-04-08

The Patient and the PA II
This is the second in a series of courses designed to develop skills in the area of patient communication, patient counseling, patient education, and cultural diversity and how they influence all aspects of medical practice. Instruction is focused on the detection and application of preventive measures and treatment of health risk behaviors including stress, abuse and violence, substance abuse, sexuality, end of life issues, and reaction to illness. The course will also include discussions on medical ethics.
Prerequisite: Successful completion of prior semester of PA course work or program permission
Components: Lecture
Attributes: Offered Summer Term
Req. Designation: Technology

PA 515(1)
Course ID: 011527
2016-04-08

The Patient and the PA III
This is the third in a series of courses designed to develop skills in the area of patient communication, patient counseling, patient education, and cultural diversity and how they influence all aspects of medical practice. Instruction is focused on the detection and application of preventive measures and treatment of health risk behaviors including stress, abuse and violence, substance abuse, sexuality, end of life issues, and reaction to illness. The course will also include discussions on medical ethics.
Prerequisite: Successful completion of prior semester of PA course work or program permission
Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology

PA 516(1)
Course ID: 011528
2016-04-08

Medical Informatics
This course will cover the importance of evidence-based medicine and review basic statistics, research methods, and ethical standards in research. It will also cover the interpretation of medical literature and application of various types of clinical articles in answering clinical questions. It will also include the basics of medical writing to provide added guidance for upcoming projects.
Prerequisite: Successful completion of prior semester of PA course work or program permission
Components: Lecture
Attributes: Offered Summer Term
Req. Designation: Technology
Health Sciences - Physician Assistant Studies - Subject: Physician Assistant Studies

PA 517(2)
Course ID: 011529
2016-04-08
Clinical Procedural Studies
This course will prepare the student for the upcoming clinical year. The focus will be on procedures, such as bedside and surgical procedures including aseptic technique, air and blood-borne pathogen transmission prevention, phlebotomy, IV placement, Foley catheter insertion, lumbar puncture, injections, surgical techniques, and casting.
Prerequisite: Successful completion of prior semester of PA course work or program permission
Components:
- Clinical
- Required Designation: Technology
Attributes:
- Offered Fall Term
Components:
- Clinical
- Required Designation: Technology
Attributes:
- Offered Fall Term

PA 518(1)
Course ID: 012888
2018-10-08
Laboratory and Diagnostics I
Introduction to basic laboratory and diagnostic testing/studies as it applies to physician assistant studies.
Components:
- Laboratory
- Required Designation: Technology
Attributes:
- Offered Spring Term
Components:
- Laboratory
- Required Designation: Technology
Attributes:
- Offered Spring Term

PA 600(3)
Course ID: 011530
2021-09-14
Supervised Practice - Ambulatory Medicine
This 5 week clinical course will be within a Family Medicine clinic setting. This course provides the PA student with experience in the outpatient evaluation and treatment of pediatric and adult patients, including preventive medicine, acute and chronic illness, and patient education.
Prerequisite: Completion of the preclinical year of the physician assistant program or program permission.
Components:
- Field Studies
- Required Designation: Technology
Attributes:
- Offered Fall, Spring, and Summer

PA 601(3)
Course ID: 011531
2021-09-14
Supervised Practice - Internal Medicine
This 5 week clinical course will be within an Internal Medicine practice. It will include a substantial inpatient experience for the PA student to gain knowledge of the evaluation and treatment of the multiple diseases and conditions of the adult population requiring hospitalization.
Prerequisite: Completion of the preclinical year of the physician assistant program or program permission.
Components:
- Field Studies
- Required Designation: Technology
Attributes:
- Offered Fall, Spring, and Summer

PA 602(3)
Course ID: 011532
2021-09-14
Supervised Practice - General Surgery
This 5 week clinical course will be within a surgical practice. PA students will participate in Operating Room (OR) cases and hospital consultations as well as clinic based cases and visits in caring for conditions that require surgical management. This will include preoperative, intra-operative, and post-operative care.
Prerequisite: Completion of the preclinical year of the physician assistant program or program permission.
Components:
- Field Studies
- Required Designation: Technology
Attributes:
- Offered Fall, Spring, and Summer

PA 603(3)
Course ID: 011533
2021-09-14
Supervised Practice - Emergency Medicine
This 5 week clinical course will be within a hospital Emergency Department. PA students will gain knowledge and learn skills relevant to the triage, stabilization, diagnosis, and management of acute, lifethreatening injuries and illnesses as well as the care of less threatening conditions.
Prerequisite: Completion of the preclinical year of the physician assistant program or program permission.
Components:
- Field Studies
- Required Designation: Technology
Attributes:
- Offered Fall, Spring, and Summer
PA 604(3) Course ID: 011534 2021-09-14
Supervised Practice - Pediatrics
This 5 week clinical course will provide the PA student with experience in outpatient and/or in-patient management of pediatric patients. The student will have the opportunity to perform well child exams, problem oriented exams, evaluate common pediatric illnesses, and the care of the newborn and children.
Prerequisite: Completion of the preclinical year of the physician assistant program or program permission.
Components: Field Studies
Attributes: Offered Fall, Spring, and Summer
Req. Designation: Technology

PA 605(3) Course ID: 011535 2021-09-14
Supervised Practice - Women’s Health
This 5 week clinical course provides the PA student with experience in managing common gynecologic disorders. The obstetric experience will include routine prenatal and postpartum care. It will include labor & delivery when possible.
Prerequisite: Completion of the preclinical year of the physician assistant program or program permission.
Components: Field Studies
Attributes: Offered Fall, Spring, and Summer
Req. Designation: Technology

PA 606(3) Course ID: 011536 2021-09-14
Supervised Practice - Behavioral Health
This 5 week clinical course will provide the PA student with a behavioral medicine experience in caring for ambulatory and/or hospitalized patients with psychiatric disorders. The student will perform basic psychiatric evaluations, monitor medications, and support the clinical management plan for patients after psychiatric evaluation and treatment.
Prerequisite: Completion of the preclinical year of the physician assistant program or program permission.
Components: Field Studies
Attributes: Offered Fall, Spring, and Summer
Req. Designation: Technology

PA 607(3) Course ID: 011537 2021-09-14
Supervised Practice - Elective I
This 5 week clinical course will provide the PA student the opportunity to practice in any available medical setting of the student’s choice. This may be used to augment a previous clinical experience or explore an area of interest or potential future employment.
Prerequisite: Completion of the preclinical year of the physician assistant program or program permission.
Components: Field Studies
Attributes: Offered Fall, Spring, and Summer
Req. Designation: Technology

PA 608(3) Course ID: 011538 2021-09-14
Supervised Practice - Elective II
This 5 week clinical course will provide the PA student the opportunity to practice in any available medical setting of the student’s choice. This may be used to augment a previous clinical experience or explore an area of interest or potential future employment.
Prerequisite: Completion of the preclinical year of the physician assistant program or program permission.
Components: Field Studies
Attributes: Offered Fall, Spring, and Summer
Req. Designation: Technology

PA 609(3) Course ID: 011539 2021-05-13
Clinical Research Elective
This 5 week course allows the PA student to participate in research in any medical area of interest in preparation for the student’s Master’s Project. The student may engage the multiple academic departments of Clarkson University outside of PA Studies for this research. Topics for research must be approved by the Department Chair and must be approved by the appropriate university review board. As an alternative, the student may perform a service learning project during this time as part of the Master’s Project.
Prerequisite: Completion of the preclinical year of the physician assistant program or program permission.
Components: Independent Study
Attributes: Offered Spring Term
Req. Designation: Technology
SUMMATIVE REVIEW

This course, presented near the end of the clinical year, will include intensive board review in preparation for the PANCE, review for clinical skills testing, CV preparation, and interviewing skills. It also include a final clinical skills exam as well as a cumulative written test, both of which must be successfully passed to graduate from the program.

Prerequisite: Successful completion of the preclinical year and all supervised practice rotations

Components: Lecture
Attributes: Offered Spring Term
Req. Designation: Technology

MASTER PROJECT

This course is a follow up to Medical Informatics and the Research elective. It is designed to allow the PA student to complete a master's degree project under the guidance of Clarkson faculty or a community advisor. Students may identify an area of medicine, disease process or condition, conduct research, and produce a paper worthy of publication. The student may also perform a learning service project resulting in a publishable paper or product for use in the community. The student will prepare and present an oral presentation on their topic at the conclusion of the year.

Prerequisite: Completion of the preclinical year of the physician assistant program or program permission.

Components: Research
Attributes: Offered Spring Term
Req. Designation: Technology

PA CLINICAL PlaceHolder

This course is a clinical rotation placeholder until final clinical assignments have been finalized. Once finalized, students will be placed into the correct clinical assignment course number.

Components: Independent Study
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>009210</td>
<td>PE 100(1)</td>
<td>Prerequisite: for Clarkson School students only.</td>
</tr>
<tr>
<td></td>
<td>First Year Seminar</td>
<td>[Cross-listed with FY 100] See FY 100 First Year Seminar for description.</td>
</tr>
</tbody>
</table>

Components: Lecture

Requirement Group: Technology
Introduction to Lifetime Activities
This will be a 14 week course combining seven lifetime activities (racquetball, weight training/physical fitness, badminton, volleyball, golf, indoor soccer, and tennis) Each activity will go for two week and will cover rules, strategies, and skills.

Components: Physical Education
Attributes: Offered Spring Term
Req. Designation: Technology
Introduction to Complex Networks
This course will introduce the student to the new, burgeoning field of Complex Networks, their analysis and applications to everyday-life. Elementary concepts from Graph Theory, Statistical Physics and Discrete Math techniques will be taught as demanded by the material. Covered topics will include: Basic concepts from Graph Theory, Global vs. local algorithms of analysis, Erdos-Renyi Random Graph, Small-World model of Watts & Strogatz, Scale-free networks, Barabasi-Albert and Krapivsky-Redner models, Recursive scale-free models and their applications; The percolation problem and its applications to epidemic spreading, vaccination strategies, etc. and Kleinberg navigation.

Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Title</th>
<th>Credits</th>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>009246</td>
<td>PH Elective</td>
<td>2-4</td>
<td>2015-01-19</td>
<td>A college level course for which there is no comparable Clarkson course. Used for transfer credit only.</td>
</tr>
<tr>
<td>009247</td>
<td>PH Elective</td>
<td>2-4</td>
<td>2015-01-19</td>
<td>A college level course for which there is no comparable Clarkson course. Used for transfer credit only.</td>
</tr>
<tr>
<td>009248</td>
<td>Elementary Physics I</td>
<td>2</td>
<td>2015-01-28</td>
<td>Introduction to Newtonian Mechanics. Given as a Pass or No-Credit (P/NC) only. Credit does not count toward graduation.</td>
</tr>
<tr>
<td>009254</td>
<td>Physics Freshman Seminar</td>
<td>1</td>
<td>2015-02-19</td>
<td>Activities and facilities in the Physics Department, curriculum choices, and career options in Physics will be introduced to incoming freshmen through group discussions and faculty seminars. Challenge problem solving and team projects will cover selected topics beyond the material in general freshman Science courses.</td>
</tr>
<tr>
<td>009255</td>
<td>Physics I</td>
<td>4</td>
<td>2015-02-12</td>
<td>Calculus-based general physics course covering elements of Newtonian mechanics and thermal physics. Laboratory experiments keyed to the lectures to illustrate and demonstrate some of the physical principles and concepts.</td>
</tr>
<tr>
<td>009256</td>
<td>Physics II</td>
<td>4</td>
<td>2015-02-12</td>
<td>Calculus-based general physics course covering elements of electricity and magnetism, waves and optics. Laboratory experiments keyed to the lectures to illustrate and demonstrate some of the physical principles and concepts.</td>
</tr>
<tr>
<td>009257</td>
<td>Physics for Life Sciences I</td>
<td>4</td>
<td>2022-06-07</td>
<td>General physics course covering elements of mechanics, thermal physics, and physics of fluids, with emphasis on topics and applications relevant for biological sciences, physical therapy, and pre-med (MCAT). Laboratory experiments keyed to the lectures to illustrate and demonstrate some of the physical principles and concepts.</td>
</tr>
<tr>
<td>Course ID</td>
<td>Course Name</td>
<td>Offered Term</td>
<td>Components</td>
<td>Attributes</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------</td>
<td>--------------------</td>
<td>---------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>009258</td>
<td>Physics for Life Sciences II</td>
<td>2022-06-07</td>
<td>Laboratory, Lecture</td>
<td>Offered Spring Term</td>
</tr>
<tr>
<td>012028</td>
<td>Elementary Astronomy</td>
<td>2022-06-07</td>
<td>Lecture</td>
<td>Offered Fall and Spring</td>
</tr>
<tr>
<td>013088</td>
<td>Solar Energy</td>
<td>2022-06-07</td>
<td>Lecture</td>
<td>Offered Fall Term</td>
</tr>
<tr>
<td>009267</td>
<td>Theoretical Mechanics I</td>
<td>2015-01-20</td>
<td>Lecture</td>
<td>Offered Spring Term</td>
</tr>
<tr>
<td>012137</td>
<td>Physics III</td>
<td>2016-02-22</td>
<td>Lecture</td>
<td>Given When Needed</td>
</tr>
<tr>
<td>009268</td>
<td>Fundamentals of Modern Physics</td>
<td>2022-06-07</td>
<td>Lecture</td>
<td>Offered Each Term</td>
</tr>
</tbody>
</table>
School of Arts and Sciences - Physics - Subject: Physics

PH 232(1)
Course ID: 009269
2022-06-07

Modern Physics Laboratory
Laboratory course to supplement PH 231. Experiments keyed to the lectures to illustrate and demonstrate some of the physical principles and concepts.
Components: Laboratory
Attributes: One communication unit, Offered Each Term, Writing Intensive Course
Requirement Group: Corequisites: PH231
Req. Designation: Technology

PH 245(3)
Course ID: 013087
2022-06-07

Medical Physics
Components: Lecture
Attributes: Given When Needed
Requirement Group: PH142 or Instructor Consent
Req. Designation: Technology

PH 301(1 - 2)
Course ID: 009272
2015-02-19

Teaching Methodology in Physics I
Assisting a faculty member in a physics course, in order to prepare the student for teaching physics with emphasis on skills needed for work as a teaching assistant (TA) in a graduate school.
Prerequisite: consent of the instructor.
Attributes: Offered Fall Term
Req. Designation: Technology

PH 302(1 - 2)
Course ID: 009273
2015-01-20

Teaching Methodology in Physics II
Assisting a faculty member in a physics course, in order to prepare the student for teaching physics with emphasis on skills needed for work as a teaching assistant (TA) in a graduate school.
Prerequisite: consent of the instructor.
Attributes: Offered Spring Term
Req. Designation: Technology

PH 315(3)
Course ID: 013155
2022-03-17

Introduction to Complex Networks
This course will introduce the student to the new, burgeoning field of Complex Networks, their analysis and applications to everyday-life. Elementary concepts from Graph Theory, Statistical Physics and Discrete Math techniques will be taught as demanded by the material. Covered topics will include: Basic concepts from Graph Theory, Global vs. local algorithms of analysis, Erdos-Renyi Random Graph, Small-World model of Watts & Strogatz, Scale-free networks, Barabasi-Albert and Krapivsky-Redner models, Recursive scale-free models and their applications; The percolation problem and its applications to epidemic spreading, vaccination strategies, etc. and Kleinberg navigation.
Components: Lecture
Course Equivalents: MA 315
Attributes: Offered Fall Term
Requirement Group: Prerequisite: MA132
Req. Designation: Technology
School of Arts and Sciences - Physics - Subject: Physics

PH 320(3) Course ID: 012858 2022-06-07
Physical Models of Living Systems
This course focuses on modeling essential processes in living systems using the tools and techniques of physics, including computer modeling. Using case studies in virus dynamics, bacterial genetics and naturally evolved cellular circuits, the course will explore how living organisms use physical mechanisms to gain information about their surroundings, process information and make decisions. It will also examine some of the cutting edge techniques used by scientists at the forefront of biophysical and life sciences research to study living organisms and understand their behavior. This course is broadly aimed at students studying in physics, chemistry, mathematics, computer science, chemical engineering, and biomedical engineering, in addition to biology majors with advanced math classes.
Components: Lecture
Course Equivalents: PH 520
Attributes: Given When Needed
Requirement Group: Prerequisites: PH132 and MA132
Req. Designation: Technology

PH 323(3) Course ID: 009276 2022-06-07
Optics
Components: Lecture
Attributes: Offered Odd Falls
Requirement Group: Prerequisite: PH132 or consent of the instructor.
Req. Designation: Technology

PH 325(3) Course ID: 009277 2015-02-19
Thermal Physics
Temperature, heat, thermodynamics and applications. Introduction to kinetic theory and classical and quantum statistical mechanics.
Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: PH231 and MA231 or consent of the instructor.
Req. Designation: Technology

PH 327(1 - 3) Course ID: 009278 2022-06-07
Experimental Physics I
Experiments selected from the fields of atomic physics, electricity and magnetism, thermal physics, condensed matter physics and optics. A major component of the course involves statistical analyses of experimental data and random uncertainties. The topics of data analysis include: Standard deviation and standard deviation of the mean; variance, co-variance and Schwarz inequality; weighted averages, histograms and distribution functions; confidence limit; least-squares fitting, uncertainties in slopes and intercepts, error-bars, coefficients of correlation and determination, chi squared test; general formula of error propagation and its applications. Computer based graphing and data analyses are routinely used throughout the course. Elements of writing technical research papers are practiced in the laboratory reports.
Components: Lecture
Attributes: Two communication units, Offered Spring Term
Requirement Group: Prerequisites: PH 132 and MA 132, or consent of the instructor
Req. Designation: Technology

PH 328(1 - 3) Course ID: 009279 2022-06-07
Experimental Physics II
Continuation of PH 327.
Components: Lecture
Attributes: Offered Spring Term, Writing Intensive Course
Requirement Group: Prerequisite: PH327 or consent of the instructor
Req. Designation: Technology

PH 331(3) Course ID: 009280 2015-01-20
Quantum Physics I
Basic principles of quantum mechanics, Schrödinger equation for simple potentials including harmonic oscillator and hydrogen atom. Selected application to atomic, molecular and nuclear structure.
Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: PH 231 and MA 232
Req. Designation: Technology
Solid State Physics I
This course focuses on the fundamental physical processes that occur in solid state materials. Topics include crystal structure of solids, point defects and dislocations, crystal bonding, X-ray diffraction, lattice vibrations, thermal properties, specific heat, thermal conductivity, free electron gas theory of metals, energy bands, theory of semiconductors, band gaps, doping, and a brief introduction to device physics. Graduate students will do additional coursework.

Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: PH231, or ES260, or consent of the instructor
Req. Designation: Technology
PH 371(3) Course ID:009283 2014-11-20

Physical Chemistry I

(Cross-listed with CM 371) This course covers the gaseous state, kinetic theory and chemical thermodynamics, with applications to chemical and phase equilibria. The emphasis is on mathematics and problem solving.

Components: Lecture
Course Equivalents: CM 371
Prerequisites: CM104 or CM132, MA132, PH131
Corequisites: PH132

PH 372(3) Course ID:009284 2014-11-20

Physical Chemistry II

(Cross-listed with CM 372) A continuation of PH 371. Topics may include quantum mechanics, atomic structure, chemical bonds, intermolecular forces, spectroscopy, molecular symmetry, optical activity, photochemistry and photobiology.

Components: Lecture
Course Equivalents: CM 372
Attributes: Offered Spring Term
Prerequisites: CM371 or BY371 or PH371.

Req. Designation: Technology
Electromagnetic Theory I
PH 380(3)
Course ID: 009285
Course ID: 009291
2015-02-19
Electromagnetic Theory I
Fundamental properties of electric and magnetic fields. Gauss law, Poisson equation, dielectrics, boundary value problems, vector potential, inductance, Maxwell equations, electromagnetic waves.
Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: PH132 and MA231 or consent of the instructor.
Req. Designation: Technology

Teaching Methodology in Physics III
PH 401(1 - 2)
Course ID: 009287
Course ID: 009288
2015-02-19
Teaching Methodology in Physics III
Assisting a faculty member in a physics course, in order to prepare the student for teaching physics with emphasis on skills needed for work as a teaching assistant (TA) in a graduate school.
Prerequisite: consent of the instructor.
Components: Independent Study
Attributes: Offered Fall Term
Req. Designation: Technology

Teaching Methodology in Physics IV
PH 402(1 - 2)
Course ID: 009288
2015-01-21
Teaching Methodology in Physics IV
Assisting a faculty member in a physics course, in order to prepare the student for teaching physics with emphasis on skills needed for work as a teaching assistant (TA) in a graduate school.
Prerequisite: consent of the instructor.
Components: Independent Study
Attributes: Offered Fall Term
Req. Designation: Technology

Introduction to Biophysics
PH 426(3)
Course ID: 009291
2022-06-07
Introduction to Biophysics
[Cross-listed by BY 426] This course concentrates on the fundamental physical processes that occur within living organisms, particularly the cell. Topics include the structure and physics of macromolecules, biological membranes, the thermodynamics of living systems, muscle contraction and the propagation of signals in nerve cells.
Components: Lecture
Course Equivalents: PH 526
Attributes: Given When Needed
Requirement Group: Prerequisites: BY160 or BY312 or consent of instructor
Req. Designation: Technology

Quantum Physics II
PH 432(3)
Course ID: 009292
2022-06-07
Quantum Physics II
Continuation of PH 331. Transformation theory and matrix formulation of quantum mechanics; angular momentum, spin, perturbation theory, variational methods, scattering theory.
Components: Lecture
Attributes: Given When Needed
Requirement Group: Prerequisite: PH331 or consent of the instructor.
Req. Designation: Technology

Physics Senior Seminar
PH 435(1)
Course ID: 009295
2015-02-19
Physics Senior Seminar
Forum for discussion of current research in physics. Exploration of employment and career opportunities for physics majors. Preparation for GRE in Physics.
Prerequisite: consent of the instructor.
Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology

Undergraduate Thesis I
PH 445(1 - 3)
Course ID: 009300
2015-01-28
Undergraduate Thesis I
Investigation of a topic selected by the student in consultation with a thesis adviser. A written thesis is required.
Prerequisite: consent of the instructor.
Components: Lecture
Attributes: Two communication units, Given When Needed
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH 447(3)</td>
<td>009302</td>
<td>2022-06-07</td>
</tr>
<tr>
<td>Nuclear Physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An introduction to nuclear structure, nuclear radiation and elementary particle physics. Topics include properties of nuclei, the two-nucleon forces, complex nuclei, interaction of radiation with matter, accelerators, nuclear reactions, elementary particles and their classification.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Course Equivalents:</td>
<td>PH 547</td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Offered Even Falls</td>
<td></td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisites: PH331 or consent of the instructor.</td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
</tr>
</tbody>
</table>

PH 451(3)	009303	2022-06-07
Statistical Mechanics I		
Components:	Lecture	
Course Equivalents:	PH 551	
Attributes:	Given When Needed	
Requirement Group:	Prerequisites: PH325 or consent of the instructor.	
Req. Designation:	Technology	

| PH 455(3) | 009305 | 2022-06-07|
| Mathematical Methods in Physics | | |
| Mathematics methods used in theoretical physics. Topics covered include complex variables, Fourier transforms, special functions, eigenfunction expansions, Green's functions, differential equations, linear algebra and linear spaces, with physical applications. Prerequisite: consent of the instructor. |
Components:	Lecture
Course Equivalents:	PH 555
Attributes:	Offered Even Springs
Req. Designation:	Technology

| PH 457(3) | 009306 | 2022-06-07|
| Introduction to Astrophysics | | |
| Radiation from astrophysical sources and measurement of position, mass, temperature, velocity, density, composition and age. Emphasis will be on recent discoveries and interpretations. |
Components:	Lecture
Attributes:	Offered Odd Falls
Requirement Group:	Prerequisites: PH231 or consent of the instructor.
Req. Designation:	Technology

| PH 460(3) | 009307 | 2022-06-07|
| Physics of Fluids | | |
| Discussion of the mechanics of fluids based on the Navier-Stokes equation. Laminar and turbulent flows, dimensional analysis. Special topics with applications. |
Components:	Lecture
Course Equivalents:	PH 560
Attributes:	Given When Needed
Requirement Group:	Prerequisites: PH221 and PH325 or consent of the instructor.
Req. Designation:	Technology
Computer Simulation Methods in Physics

This is a computer laboratory course that explores physical concepts using computer simulations. Topics include: Euler method and its applications in classical mechanics and thermodynamics; the cooling of coffee, motion of falling objects, planetary motion with and without the solar wind, simple harmonic oscillator, damped oscillations, Molecular Dynamics, Boltzmann distribution, random walk and Brownian Dynamics, percolation model, and Monte Carlo Method.

Components: Lecture

Course Equivalents: PH 563

Attributes: Two communication units, Given When Needed

Requirement Group: PH463/563 Prerequisites: PH132, MA232; PH325 or ES340 and PH380 or EE381 or instructor consent.

Req. Designation: Technology
PH 470 (1 - 3)
Course ID: 009308
Run Date: 2015-01-28
Components:
- Independent Study
Attributes: Given When Needed
Req. Designation: Technology

Directed Study Experimental
A course of study of subjects not otherwise available in formal courses may be undertaken under the supervision of a faculty member.
Prerequisite: consent of the instructor.

PH 471 (1 - 3)
Course ID: 009309
Run Date: 2015-01-28
Components:
- Independent Study
Attributes: Given When Needed
Req. Designation: Technology

Directed Study Experimental
A course of study of subjects not otherwise available in formal courses may be undertaken under the supervision of a faculty member.
Prerequisite: consent of the instructor.

PH 473 (1 - 3)
Course ID: 009311
Run Date: 2015-01-28
Components:
- Independent Study
Attributes: Given When Needed
Req. Designation: Technology

Directed Study Experimental
A course of study of subjects not otherwise available in formal courses may be undertaken under the supervision of a faculty member.
Prerequisite: consent of the instructor.

PH 474 (1 - 3)
Course ID: 009312
Run Date: 2015-01-28
Components:
- Independent Study
Attributes: Given When Needed
Req. Designation: Technology

Directed Study Theoretical
A course of study of subjects not otherwise available in formal courses may be undertaken under the supervision of a faculty member.
Prerequisite: consent of the instructor.

PH 475 (1 - 3)
Course ID: 009313
Run Date: 2005-05-15
Components:
- Independent Study
Req. Designation: Technology

Directed Study Theoretical
Prerequisite: consent of the instructor.

PH 476 (1 - 3)
Course ID: 009314
Run Date: 2005-05-15
Components:
- Independent Study
Req. Designation: Technology

Directed Study Theoretical
Prerequisite: consent of the instructor.

PH 478 (1 - 3)
Course ID: 011319
Run Date: 2017-01-13
Components:
- Research
Req. Designation: Technology

Directed Research in Experimental Physics
Students will carry out research in experimental physics under the supervision of a faculty member. Topics will be determined by faculty research programs. A formal report is required at the conclusion of the course.

PH 479 (1 - 3)
Course ID: 011320
Run Date: 2017-01-13
Components:
- Research
Req. Designation: Technology

Directed Research in Theoretical Physics
Students will carry out research in theoretical physics under the supervision of a faculty member. Topics will be determined by faculty research programs. A formal report is required at the conclusion of the course.
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
<th>Description</th>
<th>Prerequisites</th>
<th>Components</th>
<th>Course Equivalents</th>
<th>Attributes</th>
<th>Req. Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>009316</td>
<td>PH 480 Internship/Co-op in Physics</td>
<td>Students will gain practical work experience in Physics under the direction and supervision of professionals outside their department. Students must submit a formal report describing work performed as well as the Internship/Co-op learning opportunities. Report approval is required for the award of credit. Feedback will be provided by their Internship/Co-op field supervisor. This course will be graded on a pass/no-credit basis.</td>
<td>Consent of the instructor</td>
<td>Independent Study</td>
<td></td>
<td>Project/Co-op learning opportunities</td>
<td>Technology</td>
</tr>
<tr>
<td>012910</td>
<td>PH 487 Applications of Synchrotron and Electron Based Techniques</td>
<td>The purpose of the course is to familiarize all students with the x-ray and electron based experimental techniques available at Brookhaven National Lab and other similar facilities. Students will be cognizant of the applications of these cutting edge facilities, and well positioned to use them in their own research. This course is suitable for graduate students, postdocs, and advanced undergrads in physical sciences and engineering, as well as students in biological, environmental, and chemical sciences who may have the interest to learn more about the techniques they may use for their research.</td>
<td>Consent of the instructor</td>
<td>Lecture</td>
<td>PH 587, CM 487, CM 587, MSE 587, ES 587</td>
<td>Offered Spring Term</td>
<td>Technology</td>
</tr>
<tr>
<td>012859</td>
<td>PH 520 Physical Models of Living Systems</td>
<td>This course focuses on modeling essential processes in living systems using the tools and techniques of physics, including computer modeling. Using case studies in virus dynamics, bacterial genetics and naturally evolved cellular circuits, the course will explore how living organisms use physical mechanisms to gain information about their surroundings, process information and make decisions. It will also examine some of the cutting edge techniques used by scientists at the forefront of biophysical and life sciences research to study living organisms and understand their behavior. This course is broadly aimed at students studying in physics, chemistry, mathematics, computer science, chemical engineering, and biomedical engineering, in addition to biology majors with advanced math classes.</td>
<td>Consent of the instructor</td>
<td>Lecture</td>
<td>PH 320</td>
<td>Given When Needed</td>
<td>Technology</td>
</tr>
<tr>
<td>009324</td>
<td>PH 523 Optics</td>
<td>Geometrical optics: reflection and refraction at plane and spherical surfaces, lenses, lens aberrations. Physical optics: interference, diffraction, polarization, photons, absorption, scattering, electrooptics.</td>
<td>Consent of the instructor</td>
<td>Lecture</td>
<td>PH 426</td>
<td>Offered Odd Falls</td>
<td>Technology</td>
</tr>
<tr>
<td>009325</td>
<td>PH 525 Thermal Physics</td>
<td>Temperature, heat, thermodynamics and applications. Introduction to kinetic theory and classical and quantum statistical mechanics.</td>
<td>Consent of the instructor</td>
<td>Lecture</td>
<td>PH 231 and MA231 or consent of the instructor</td>
<td>Offered Fall Term</td>
<td>Technology</td>
</tr>
<tr>
<td>009326</td>
<td>PH 526 Introduction to Biophysics</td>
<td>This course concentrates on the fundamental physical processes that occur within living organisms, particularly the cell. Topics include the structure and physics of macromolecules, biological membranes, the thermodynamics of living systems, muscle contraction and the propagation of signals in nerve cells.</td>
<td>Consent of the instructor</td>
<td>Lecture</td>
<td>PH 426</td>
<td>Given When Needed</td>
<td>Technology</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course ID</td>
<td>Semester</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| PH 531(3) | 009327 | 2015-01-21| Quantum Physics I
Basic principles of quantum mechanics, Schrödinger equation for simple potentials including harmonic oscillator and hydrogen atom. Selected application to atomic, molecular and nuclear structure.
Prerequisites: PH231 and MA232, or consent of the instructor. |
| PH 532(3) | 009328 | 2022-06-07| Quantum Physics II
Continuation of PH 531. Transformation theory and matrix formulation of quantum mechanics; angular momentum, spin, perturbation theory, variational methods, scattering theory.
Prerequisites: PH331 or PH531, or consent of the instructor. |
| PH 541(3) | 009332 | 2022-06-07| Solid State Physics I
This course focuses on the fundamental physical processes that occur in solid state materials. Topics include crystal structure of solids, point defects and dislocations, crystal bonding, X-ray diffraction, lattice vibrations, thermal properties, specific heat, thermal conductivity, free electron gas theory of metals, energy bands, theory of semiconductors, band gaps, doping, and a brief introduction to device physics.
Graduate students will do additional course work.
Prerequisites: PH231 or ES260, or consent of the instructor. |
| PH 547(3) | 009334 | 2022-06-07| Nuclear Physics
An introduction to nuclear structure, nuclear radiation and elementary particle physics. Topics include properties of nuclei, the two-nucleon forces, complex nuclei, interaction of radiation with matter, accelerators, nuclear reactions, elementary particles and their classification.
Prerequisites: PH331 or PH531, or consent of the instructor. |
| PH 551(3) | 009335 | 2022-06-07| Statistical Mechanics I
Prerequisites: PH325 or PH525, or consent of the instructor. |
| PH 555(3) | 009337 | 2022-06-07| Mathematical Methods in Physics
Mathematics methods used in theoretical physics. Topics covered include complex variables, Fourier transforms, special functions, eigenfunction expansions, Green's functions, differential equations, linear algebra and linear spaces, with physical applications.
Prerequisite: consent of the instructor. |
Physics

PH 560(3)
Physics of Fluids
Discussion of the mechanics of fluids based on the Navier-Stokes equation. Laminar and turbulent flows, dimensional analysis. Special topics with applications.
Prerequisite: consent of the instructor.

Components: Lecture

Course Equivalents: PH 460

Attributes: Given When Needed

Req. Designation: Technology

PH 563(3)
Computer Simulation Methods in Physics
(Cross-listed with PH463) This is a computer laboratory course that explores physical concepts using computer simulations. Topics include: Euler method and its applications in classical mechanics and thermodynamics; the cooling of coffee, motion of falling objects, planetary motion with and without the solar wind, simple harmonic oscillator, damped oscillations, Molecular Dynamics, Boltzmann distribution, random walk and Brownian Dynamics, percolation model, and Monte Carlo Method.

Components: Lecture

Course Equivalents: PH 463

Attributes: Given When Needed

Requirement Group: PH463/563 Prerequisites: PH132, MA232; PH325 or ES340 and PH380 or EE381 or instructor consent.

Req. Designation: Technology

PH 570(1 - 3)
Directed Study Experimental
A course of study of subjects not otherwise available in formal courses may be undertaken under the supervision of a faculty member.
Prerequisite: consent of the instructor.

Components: Lecture

Attributes: Given When Needed

Req. Designation: Technology

PH 574(1 - 3)
Directed Study Theoretical
A course of study of subjects not otherwise available in formal courses may be undertaken under the supervision of a faculty member.
Prerequisite: consent of the instructor.

Components: Independent Study

Attributes: Given When Needed

Req. Designation: Technology

PH 580(3)
Electromagnetic Theory I
Fundamental properties of electric and magnetic fields. Gauss law, Poisson equation, dielectrics, boundary value problems, vector potential, inductance, Maxwell equations, electromagnetic waves.
Prerequisites: PH132 and MA231, or consent of the instructor.

Components: Lecture

Attributes: Offered Fall Term

Req. Designation: Technology

PH 587(3)
Applications of Synchrotron and Electron Based Techniques
The purpose of the course is to familiarize all students with the x-ray and electron based experimental techniques available at Brookhaven National Lab and other similar facilities. Students will be cognizant of the applications of these cutting edge facilities, and well positioned to use them in their own research. This course is suitable for graduate students, postdocs, and advanced undergrads in physical sciences and engineering, as well as students in biological, environmental, and chemical sciences who may have the interest to learn more about the techniques they may use for their research.

Components: Lecture

Course Equivalents: CM 487, CM 587, PH 487, MSE 587, ES 587

Attributes: Offered Spring Term

Req. Designation: Technology
Computer Modeling in Physics

Course ID: PH625(1 - 3)
Course ID: 011370
Run Date: 06/27/2022
Run Time: 14:02:09

Course Catalog

Course: Computer Modeling in Physics
Title: Physical concepts using computer simulations: Euler method and its applications in classical mechanics and thermodynamics (cooling of coffee, Styrofoam ball fall, motion of planets, pendulum), random walks (Brownian dynamics), percolation, Monte Carlo method.
Prerequisite: PH325, MA232 and knowledge of any programming language (Java, Fortran, C, C++, Matlab, etc.) or consent of the instructor. (Optional PH231/PH331 and PH380/PH381.)

Components:
- Independent Study

Req. Designation: Technology

Electroanalytical Methods

Course ID: PH626(3)
Course ID: 013023
Run Date: 06/27/2022
Run Time: 14:02:09

Course Catalog

Course: Electroanalytical Methods
Title: This course explores fundamental principles and selected applications of modern electroanalytical methods. Topics include: Ions in electrolytes; transport numbers, specific conductivity, Walden's rule, ionic strength; Laplace transform and diffusion problems. Electrode potentials and kinetics; Nernst equation, Butler-Volmer formulation. Voltammetry, chronoamperometry, and chronopotentiometry. Mixed potential effects, corrosion and Pourbaix diagram. Double layer models, specific adsorption and isotherms. Electromechanical impedance spectroscopy (EIS); analyses of EIS data; complex impedance elements; nonlinear least square method, circuit models of interfacial reactions; Kramers Kronig transform, statistical analyses, F-test and t-test. Applications of electroanalysis; fuel cells, electrocatalysis, corrosion protection, chemical mechanical planarization, batteries and supercapacitors. The course requires a strong undergraduate background in mathematics.

Components:
- Lecture

Attributes: Given When Needed

Req. Designation: Technology

Classical Mechanics

Course ID: PH661(3)
Course ID: 009363
Run Date: 06/27/2022
Run Time: 14:02:09

Course Catalog

Course: Classical Mechanics
Title: Basic concepts of classical mechanics. The two body central force problem, Lagrange's equations, kinematics and dynamics of a rigid body, many particle systems, variational principles, Hamilton's equations, canonical transformations, Hamilton-Jacobi theory, perturbation theory, small oscillations, and continuous systems and fields.
Prerequisite: consent of the instructor.

Components:
- Lecture

Attributes: Given When Needed

Req. Designation: Technology

Electromagnetic Theory I

Course ID: PH663(3)
Course ID: 009364
Run Date: 06/27/2022
Run Time: 14:02:09

Course Catalog

Course: Electromagnetic Theory I
Title: This course includes theoretical treatment of static electric and magnetic fields, time-dependent fields, electromagnetic waves in a vacuum, in homogeneous isotropic media, and at boundaries. Also included are selected topics from special relativity, wave guides and resonant cavities, radiation and magnetohydrodynamics.
Prerequisite: consent of the instructor.

Components:
- Lecture

Attributes: Given When Needed

Req. Designation: Technology

Quantum Mechanics I

Course ID: PH669(3)
Course ID: 009367
Run Date: 06/27/2022
Run Time: 14:02:09

Course Catalog

Course: Quantum Mechanics I
Title: General formulation of quantum mechanics and its interpretation, matrix formulation, advanced perturbation and variational methods, scattering theory, atomic structure, radiative transitions and applications to atoms, nuclei, molecules and solids.
Prerequisite: consent of the instructor.

Components:
- Lecture

Attributes: Offered Spring Term

Req. Designation: Technology

Selected Topics in Physics I

Course ID: PH681(1 - 3)
Course ID: 009371
Run Date: 06/27/2022
Run Time: 14:02:09

Course Catalog

Course: Selected Topics in Physics I
Title: An advanced treatment of selected topics in fields of current interest not presently covered in other courses.
Prerequisite: consent of the instructor.

Components:
- Independent Study

Attributes: Given When Needed

Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Start Date</th>
<th>Instructor Consent Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH 682(1 - 3)</td>
<td>009372</td>
<td>2015-01-28</td>
<td>Yes</td>
</tr>
<tr>
<td>Selected Topics in Physics II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>An advanced treatment of selected topics in fields of current interest not presently covered in other courses.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisite: consent of the instructor.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent Study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Given When Needed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH 683(1)</td>
<td>009373</td>
<td>2021-09-20</td>
<td></td>
</tr>
<tr>
<td>Graduate Seminar I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculty, distinguished visiting speakers, and graduate students report on current research. An important objective is to encourage the graduate students to keep informed of current developments in physics and closely related fields, and practice presentation techniques of research results. Professional development of graduate students, including resume development, practicing in written article reviews, training in research ethics, and other relevant training.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisite: consent of the instructor.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Given When Needed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH 684(1)</td>
<td>009374</td>
<td>2017-08-25</td>
<td></td>
</tr>
<tr>
<td>Graduate Seminar II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuation of PH 683.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisite: consent of the instructor.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Given When Needed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH 699(1 - 15)</td>
<td>009382</td>
<td>2015-02-09</td>
<td></td>
</tr>
<tr>
<td>Thesis, Dissertation or Special Project</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>An investigation of a problem undertaken by the student under the guidance of a faculty member.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisite: consent of the instructor.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis Research</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offered Each Term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH 999(1 - 10)</td>
<td>011101</td>
<td>2015-01-19</td>
<td></td>
</tr>
<tr>
<td>Special Graduate Topics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A graduate level course for which there is no comparable Clarkson course. This course may be used to satisfy course requirements for a graduate degree.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent Study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfer Credit Only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PHIL 1(2 - 4) **Philosophy Elective**
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
- **Components:** Independent Study
- **Attributes:** Transfer Credit Only
- **Req. Designation:** Technology

PHIL 2(2 - 4) **Philosophy Elective**
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
This course may be used to satisfy a Humanities or Social Science Foundation Curriculum Requirement, depending on the specific designator.
- **Components:** Independent Study
- **Attributes:** Transfer Credit Only
- **Req. Designation:** Technology

PHIL 200(3) **Philosophy and Contemporary Issues**
This course introduces students to philosophy and philosophizing by using philosophical concepts and methods to examine contemporary issues. For example, a society's practices regarding crime and punishment rest on its beliefs about human freedom and responsibility, and philosophical discussions of determinism provide a vantage point from which to critically evaluate these beliefs. Other issues -- such as the possibility and implications of artificial intelligence, the legitimacy of religious beliefs, the morality of torture, and the paradoxes of democracy (for example, people who are rational managers of their time may not spend the time necessary to be informed citizens) -- can be evaluated on the basis of philosophical accounts about knowledge, religion, the basis of morality, and the nature of the state.
- **Components:** Lecture
- **Attributes:** One communication unit, Contemporary and Global Issues, Individual and Group Behavior, University Course, Offered Fall Term
- **Req. Designation:** Technology

PHIL 220(3) **Philosophy and Shakespeare**
This course is an introduction to ethics through a study of Shakespeare. The course pairs different moral theories with specific plays to examine their strengths and weakness and it attempts to understand Shakespeare's views on ethics. Along the way, the course examines the relationship between philosophy and art.
- **Components:** Lecture
- **Attributes:** Imaginative Arts, Individual and Group Behavior, University Course, Given When Needed
- **Req. Designation:** Technology

PHIL 222(3) **Philosophy for Life**
[Cross-Listed as LIT 222] In this course, we will learn to think philosophically (which is to say: critically, rigorously, and reflectively) about complex and difficult questions. We will study practical life philosophies from both the Eastern and Western traditions, from the Tao Te Ching to Marcus Aurelius, and from Plato to the Dalai Lama. We will reflect on the ontological, epistemological, rhetorical, and ethical perspectives of each of these philosophers and schools of thought. We will note striking similarities and important distinctions between them. Ultimately, we will reflect on our own life philosophies as well--each of us refining our personal life philosophy through reading, reflection, and discussion of these classic texts from the wisdom literature tradition.
- **Components:** Lecture
- **Course Equivalents:** LIT 222
- **Attributes:** One communication unit, Contemporary and Global Issues, Individual and Group Behavior, University Course, Given When Needed
- **Req. Designation:** Technology

PHIL 241(3) **Medical Ethics**
[Formerly LP241] The practice of modern medicine has created a number of moral dilemmas for health-care providers, their patients, and society as a whole. This course will explore the roots and nature of these various dilemmas and examine the moral theories and principles used to resolve them.
- **Components:** Lecture
- **Attributes:** One communication unit, Contemporary and Global Issues, Individual and Group Behavior, University Course, Offered Odd Springs
- **Req. Designation:** Technology
Business Ethics

[Formerly LP243] This course introduces students to ethical issues in business and the ethical concepts, theories, and methods they can apply to them. There are numerous examples of unethical behavior on the part of individual businesspersons, departments, and entire business organizations. Some of these are big enough to make the news media, but most are ethical missteps that negatively impact managers, employees, and customers without making the headlines. This course explores the causes and characteristics of ethical issues and problems in business, as well as ways to resolve them. Topics will include: Foundational theories about what makes an ethical decision correct. The role of such ethical theories in business. A decision procedure for thinking about and resolving ethical issues in business. Practice in applying the ethical theories and decision procedure to cases about issues such as honesty in business, fair and equitable treatment of employees, the environmental responsibilities of business, product safety, doing business in other countries.

Components: Lecture
Attributes: One communication unit, Contemporary and Global Issues, Offered Fall Term
Req. Designation: Technology
PHIL 245(3) Course ID:013034 2020-02-21
Philosophy of Mind
Most things don’t have minds. Mountains, molecules, suns, and apples are some of the many things that lack consciousness and thought. Yet, somehow, in a universe in which barely anything can think, you have a mind. How is this possible, and what does this mean? Are there other sorts of things with minds? What about pigs, or spiders, or computers? Is the mind just the brain? This course introduces students to classic and contemporary debates in the philosophy of mind. We will investigate the nature of the human mind from a philosophical perspective and try to make progress in one of the most mysterious fields of human inquiry.
Components: Lecture
Attributes: Individual and Group Behavior, Science, Technology and Society, University Course, Given When Needed
Req. Designation: Technology

PHIL 325(3) Course ID:013159 2022-03-18
Philosophy and Ethics of Sport
This course introduces students to thinking philosophically about sport. Students will learn to apply philosophical methods, concepts, and theories in analyzing the nature of sports, as well as particular ethical questions that arise from current practices in a variety of sports.
Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

PHIL 330(3) Course ID:011668 2022-02-11
Logic for Critical Thinking
This course helps students develop practical reasoning ability, i.e., the ability to analyze the arguments that they encounter every day (for example, editorials, political speeches, memos and reports at work, and their roommate’s, friends’, and parents’ infuriating, but apparently irrefutable, arguments) and decide whether or not these arguments really support the conclusions, as well as to construct sound arguments of their own.
Components: Lecture
Attributes: Individual and Group Behavior, Given When Needed
Requirement Group: Prerequisites: UNIV 190 and one additional course within the humanities and social sciences.
Req. Designation: Technology

PHIL 350(3) Course ID:013085 2022-02-11
Philosophy of Artificial Intelligence
This course investigates ethical and metaphysical questions that are prompted by artificial intelligence and machine learning. The ethical questions concern the best way to integrate artificial intelligence into society. How much of our critical infrastructure should we leave up to artificial intelligence? When is it wrong to replace human labor with machines? Can AI show prejudice? The metaphysical questions concern the possibility of computer minds. Is a conscious AI possible? How do the processes of current AI differ from human cognition? Can computers be creative? Throughout this course, students will discover what the development of AI has revealed about individual and group behavior, and will learn how these innovations in science and technology promise to impact society.
Components: Lecture
Attributes: Individual and Group Behavior, Science, Technology and Society, University Course, Given When Needed
Req. Designation: Technology

PHIL 485(3) Course ID:011833 2013-03-11 Instructor Consent Required
Advanced Topics
An advanced topics seminar open to students with at least 12 credit hours in the discipline or permission from the instructor. Limited to 12 students. Topics to be covered will be selected to conform to the mutual interests and needs of students and faculty. Additional prerequisites may be required depending on the topic. Graduate students will be required to perform additional work.
Components: Lecture
Req. Designation: Technology

PHIL 490(1 - 10) Course ID:008646 2015-02-09 Department Consent Required
Independent Study
[Formerly LP490] Designed primarily for an advanced student who wishes to pursue special interests in philosophy for one or more semesters, this series allows students to design and conduct independent study projects under faculty guidance.
Prerequisite: consent of the instructor.
Components: Independent Study
Attributes: Offered Each Term
Req. Designation: Technology
PHIL 491(1 - 10)
Course ID: 008647 **Date:** 2015-02-09 **Department Consent Required**

Independent Study
[Formerly LP491] Designed primarily for an advanced student who wishes to pursue special interests in philosophy for one or more semesters, this series allows students to design and conduct independent study projects under faculty guidance.

Prerequisite: consent of the instructor.

Components: Independent Study

Attributes: Offered Each Term

Req. Designation: Technology

PHIL 499(0)
Course ID: 008654 **Date:** 2015-02-09

Minor Portfolio
In this course, students complete their Liberal Arts Minor Portfolios under the direction of their minor advisor. The course is graded on a Pass-No Credit basis.

Components: Independent Study

Attributes: Offered Each Term

Req. Designation: Technology

PHIL 590(1 - 10)
Course ID: 012777 **Date:** 2016-12-06 **Instructor Consent Required**

Independent Study
Working under the direction of a faculty member, this course allows a graduate student to pursue topics of interest in philosophy.

Components: Independent Study

Attributes: Given When Needed

Req. Designation: Technology
MAT Project in Physics (Content Area)
The MAT Project is a one-term research project whose purpose is to allow students time and supervision to
develop breadth and/or depth of knowledge to become a better teacher in their certification field. What the
project will entail varies greatly from student to student. The course is intended to be custom-tailored to
meet the specific needs of an individual intern. MAT projects are well-grounded in research and theory, but
also include a strong and extensive applied aspect, directly addressing the question: What would this look
like in the classroom?

Components:
Seminar

Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program.

Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>POL 120(3)</td>
<td>008614</td>
<td>2015-01-19</td>
</tr>
<tr>
<td>POL 120(3)</td>
<td>008615</td>
<td>2015-01-19</td>
</tr>
<tr>
<td>POL 220(3)</td>
<td>008622</td>
<td>2015-03-03</td>
</tr>
<tr>
<td>POL 230(3)</td>
<td>012014</td>
<td>2015-03-05</td>
</tr>
<tr>
<td>POL 240(3)</td>
<td>011488</td>
<td>2022-02-11</td>
</tr>
<tr>
<td>POL 250(3)</td>
<td>008623</td>
<td>2020-02-18</td>
</tr>
</tbody>
</table>

POL 120(3) Course ID: 008614 2015-01-19

American Politics

A college level course for which there is no comparable Clarkson course. Used for transfer credit only.

Components: Lecture

Attributes: Transfer Credit Only

POL 120(3) Course ID: 008615 2015-01-19

American Politics

A college level course for which there is no comparable Clarkson course. Used for transfer credit only. This course may be used to satisfy a Humanities or Social Science Foundation Curriculum Requirement, depending on the specific designator.

Components: Lecture

Attributes: Transfer Credit Only

POL 220(3) Course ID: 008622 2015-03-03

Introduction to Global Politics

This course introduces students to key concepts, theories, and patterns for understanding politics in the international arena and within states. It aims to expose students to a broad spectrum of ideas and theories in international relations and comparative politics, and it does so by examining some enduring questions in the study of politics. Topics include the structure of the international system, the causes of war and peace, economic globalization, international organizations, democratic processes and democratization, economic and political development, civil society, and other issues within and across national borders. Cases from different parts of the world are examined to provide grounding in comparative analysis. In addition to simply learning more about world politics, the course will equip students with key political science concepts, theories and explanations, through which they can improve their capacity to critically interpret current events. By the end of the course, students should have a strong understanding of: the social and economic environment and purposes of the American political system; the political behavior of Americans; the patterns of decision-making within the American political system, and the consequences of public policy.

Components: Lecture

Attributes: One communication unit, Individual and Group Behavior, Offered Each Term

POL 230(3) Course ID: 012014 2015-03-05

Introduction to Global Politics

This course introduces students to key concepts, theories, and patterns for understanding politics in the international arena and within states. It aims to expose students to a broad spectrum of ideas and theories in international relations and comparative politics, and it does so by examining some enduring questions in the study of politics. Topics include the structure of the international system, the causes of war and peace, economic globalization, international organizations, democratic processes and democratization, economic and political development, civil society, and other issues within and across national borders. Cases from different parts of the world are examined to provide grounding in comparative analysis. In addition to simply learning more about world politics, the course will equip students with key political science concepts, theories and explanations, through which they can improve their capacity to critically interpret current events. By the end of the course, students should have a strong understanding of: the social and economic environment and purposes of the American political system; the political behavior of Americans; the patterns of decision-making within the American political system, and the consequences of public policy.

Components: Lecture

Attributes: Contemporary and Global Issues, Given When Needed

POL 240(3) Course ID: 011488 2022-02-11

Politics, Decisions and War

The main objective of this course is to inquire into the causes of war. Following critical engagement with traditional theoretical approaches to the question of conflict and cooperation in international politics, students will be introduced to systemic, group, and individual-level explanations of war, as well as to case study discussions regarding the influence of these factors. The course provides students with a set of tools for the analysis of classic and contemporary civil and international conflicts and strives to show how evidence and theory can be effectively used in understanding peace and conflict. The course draws on a wide range of disciplines, including international relations, political theory, social psychology, economics, and environmental studies. By the end of the term, students should be able to understand the main factors that drive war, as well as to outline solutions for preventing them.

Components: Lecture

Attributes: Contemporary and Global Issues, Individual and Group Behavior, University Course, Given When Needed

POL 250(3) Course ID: 008623 2020-02-18

Government & Politics around the World

[Formerly LP260] This course introduces students to the study of political development and constitutionalism. By studying at least four countries, course participants will learn to develop and test explanations intended to account both for common patterns of modernization and for the unique features of social and political evolution in each nation-state. Countries to be studied represent developed Western democracies (France and Germany), post-communist regimes (Russia), and 'third world' political systems (Mexico).

Components: Lecture

Attributes: Contemporary and Global Issues, Given When Needed

Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course ID</th>
<th>Run Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>POL 251(3)</td>
<td>010960</td>
<td>2022-02-11</td>
</tr>
<tr>
<td>Introduction to International Politics
This course introduces students to the prevailing explanations of international relations, and how they are used and misused in the analysis of contemporary policy issues. The main topics to be discussed include the definition and distribution of power in the international system, the role of individual leadership, the influence of international institutions, the impact of globalization and the future of international governance. Policy issues will include: national security strategy, the rise of China, democracy promotion, the role of the United Nations, terrorism and energy security.</td>
<td>Components: Lecture
Attributes: Contemporary and Global Issues, Individual and Group Behavior, University Course, Given When Needed</td>
<td>Req. Designation: Technology</td>
</tr>
<tr>
<td>POL 260(3)</td>
<td>012071</td>
<td>2015-03-27</td>
</tr>
<tr>
<td>Introduction to Public Policy
This is an introductory course to policy analysis. Policy analysts are responsible for defining and framing public problems, identifying and evaluating possible strategies for addressing problems, and recommending solutions that make the most sense. The goals of this course are to provide students with an understanding of the role that analysis plays in the policymaking process, and to make students critical consumers of policy analysis</td>
<td>Components: Lecture
Attributes: One communication unit, Contemporary and Global Issues, Individual and Group Behavior, University Course, Offered Fall Term</td>
<td>Req. Designation: Technology</td>
</tr>
<tr>
<td>POL 301(3)</td>
<td>008624</td>
<td>2015-02-20</td>
</tr>
<tr>
<td>Political Theory
[Formerly LP301] An historical and topical consideration of some prominent yet divergent conceptions of 'justice' and 'community' within the Western political tradition. Theorists to be considered include: Plato, Aristotle, Hobbes, Locke, Rousseau, Mill and Marx.</td>
<td>Components: Lecture
Attributes: One communication unit, Individual and Group Behavior, Offered Fall Term</td>
<td>Req. Designation: Technology</td>
</tr>
<tr>
<td>POL 302(3)</td>
<td>008625</td>
<td>2015-01-28</td>
</tr>
<tr>
<td>Contemporary Political Theory
[Formerly LP302] This course will begin by examining contemporary versions of liberalism, the still-dominant paradigm of political thought in the United States. Students will then read and discuss various critical perspectives on liberalism, such as communitarianism, 'civil society' theory, postmodernism, multiculturalism, and 'green' political thought. We shall try to decide whether liberalism has outlived its usefulness as a model of justice and/or political organization, or whether it can renew itself by responding to the countercurrents noted above.</td>
<td>Components: Lecture
Attributes: One communication unit, Individual and Group Behavior, Given When Needed</td>
<td>Req. Designation: Technology</td>
</tr>
<tr>
<td>POL 303(3)</td>
<td>012982</td>
<td>2019-10-21</td>
</tr>
<tr>
<td>Foreign Policy Analysis
The course seeks to introduce the ways in which scholars of foreign policy analysis have understood the nature of decision-making processes prevalent within governments and their agencies. It seeks to understand the intentions of actors and the complex global contexts and challenges they face in pursuing their goals. Foreign policy analysis, a distinct subfield within international relations has adopted research from several other subfields such as American politics, comparative politics, political psychology and cultural studies. To that end the course covers two knowledge areas, 1) Contemporary/Global Issues and 2) Cultures and Societies.</td>
<td>Components: Lecture
Attributes: Contemporary and Global Issues, Cultures and Societies, University Course, Given When Needed</td>
<td>Req. Designation: Technology</td>
</tr>
</tbody>
</table>
School of Arts and Sciences - Humanities & Social Sciences - Subject: Political Science

POL 330 (3) Course ID:012890 2018-10-08

Politics in the Americas
This class is an introduction to the politics and governments of the countries that comprise the American continents and the Caribbean. It will focus predominately on the Spanish & Portuguese-speaking countries in Mexico, Central & South America, and the Caribbean. It also may address relationships between or among Latin American countries and the United States and Canada. The course will address the region's political history, including periods of authoritarian rule, revolution and democratization. It also will examine the causes and consequences of these countries' institutional design, as well as the challenges to economic and political development they face, such as crime and corruption. Additionally the course will evaluate policy failures and successes from agrarian and land reform to economic development and wealth redistribution.

Components: Lecture
Attributes: Contemporary and Global Issues, Cultures and Societies, University Course, Offered Odd Springs
Req. Designation: Technology

POL 333 (3) Course ID:012935 2019-03-08

Latin American politics & Society through Cinema
This class is a course about Latin American politics and society through the use of film and literature. It is neither a critical film course, nor a course about the use of film in politics. This course does not offer a broad overview of the politics of Latin America, but rather explores in greater depth particular political and social issues that popular films from around the world have brought to light. As many of these films have made their way to the United States (several have been entrants or winners in the Best Foreign Language Film category of the Academy Awards), they have raised global awareness of these issues. However, films that achieve success, particularly at an international level, often focus on very dramatic issues. As such, please be conscious that this course does not offer a comprehensive portrayal of Latin America. Nevertheless, we deal with very important and influential issues in Latin American political

Components: Lecture
Attributes: One communication unit, Contemporary and Global Issues, Cultures and Societies, University Course, Given When Needed
Req. Designation: Technology

POL 334 (3) Course ID:013094 2022-02-11

War-Making and World Order
A relatively small number of states have been responsible for an overwhelming number of wars over the last century. States that are engaged in security competitions and are active in the security sphere tend to shape the conflict space based on innovation in technology, the type of adversaries they are facing, and the nature of their regional and global ambitions. In this class a set of complex questions are address. The questions include: 1) how security competitions between states affects states’ war-making capacity which includes technological innovation and institutional efficiency and its polity; 2) how changes in state capacity affects the probability of major and minor wars; and 3) how such wars along with escalating tensions changes regional and world orders. The course draws on scholarship in conflict processes and international relations theory and also considers major case studies that include the rise of China and the global response to the same. To understand global security competitions and conflict, it is important for students to be able to

Components: Lecture
Attributes: One communication unit, Contemporary and Global Issues, Individual and Group Behavior, University Course, Given When Needed
Req. Designation: Technology

POL 335 (3) Course ID:011934 2022-02-11

Violence and Reconciliation
(Cross-listed with LIT 335) While scholars have labeled the 20th century 'the century of genocide,' the past two decades have catalyzed global changes in the ways we think about peace-building and reconciliation. But reconciliation after mass conflict remains a difficult process. Can you forgive someone who has done irreparable harm to you or your loved ones? Can you reconcile -literally, return to a previous state of harmony- with someone if you never shared a harmonious relationship with that person? Is reconciling with a whole community the same as reconciling with an individual? This course examines the challenges to reconciliation after political trauma and assesses the strengths and weaknesses of major reconciliation mechanisms. Through the lens of two case studies, South Africa and Northern Ireland, and the disciplines of film, fiction, and political theory, students will compare the consequences of criminal trials, truth commissions, and informal efforts at communal healing. As a final project, the class will participate in a

Components: Lecture
Course Equivalents: LIT 335
Attributes: One communication unit, Contemporary and Global Issues, Imaginative Arts, University Course, Offered Odd Springs
Req. Designation: Technology
POL 337(3)
Course ID: 012978
2019-10-21

Dictatorships and Democracies

In this class students learn about differences among political regimes, not only between dictatorships and democracies, but also among subtypes within those broad categories. The focus of the course will be on political transitions from one regime type to another, examining revolutions, military and constitutional coups, bottom-up and top-down processes of democratization as well as the latest trend of democratic backsliding that has taken place in several countries around the world. Students will learn what distinguishes democracies from dictatorships in order to understand the various types of political transitions. The course material compares different paths countries have taken to democratize in order for students to understand the benefits and drawbacks of each path for the long-term health and survival of democracies. Students will read about a number of specific country cases to learn about regime changes around the world—including the causes and consequences of these political changes. Additionally, some of the

Components: Lecture

Attributes: Contemporary and Global Issues, Given When Needed

Req. Designation: Technology

POL 340(3)
Course ID: 012980
2021-08-26

Lawmaking in the United States: How the Sausage is Made

There are two things that you don’t want to see made: laws and sausages. This course examines the institutions responsible for producing laws and public policy in the United States, especially the president, Congress, the federal bureaucracy, interest groups, and elections. The course makes extensive use of active learning through in-class simulations and games, including an immersive multi-week digitized simulation of lawmaking in American government. Students will also produce advertisements from the perspective of a given interest group.

Components: Lecture

Attributes: Contemporary and Global Issues, Individual and Group Behavior, University Course, Given When Needed

Req. Designation: Technology

POL 342(3)
Course ID: 012981
2019-10-21

The American Nightmare? American Political Ideas in Literature and Film

This course explores the nature of political ideas in contemporary America through analyzing films and books. Through classroom discussion and close engagement with source material, we will consider topics such as America's place in the world, the benefits and costs of capitalism, scapegoating, race relations, and the necessity of government. Our intent is neither to defend nor attack America; rather, our objective is to think critically about the society in which we live.

Components: Lecture

Attributes: Contemporary and Global Issues, Imaginative Arts, University Course, Given When Needed

Req. Designation: Technology

POL 345(3)
Course ID: 012983
2020-01-15

Happiness: Politics, Policy, and More

[Cross-listed with POL 545] The U.S. Constitution argues for the rights of “life, liberty, and the pursuit of happiness.” What makes us happy? Should we be happy? Why might happiness be critical to democracy? How do political decisions make us happy? Should happiness be a political goal? That said, this course will go well beyond politics and political science. It is explicitly multi-disciplinary in nature: we will study the question of happiness from disciplines based in the sciences, humanities, and social sciences, and we will study material informed by psychology, public policy, economics, biology, medicine, philosophy, literature, and film.

Components: Lecture

Course Equivalents: POL 545

Attributes: One communication unit, Contemporary and Global Issues, Individual and Group Behavior, University Course, Given When Needed

Req. Designation: Technology

POL 350(3)
Course ID: 010204
2018-10-23

Political Economy of Development

[Cross-listed with SOC 350] [Formerly LP370] Explanations of social change and development in an international context are covered. The course moves from a starting point of the presentation of theories and explanations of how nations have historically attempted to modernize themselves and develop their economies, and concludes with a brief introduction to current discussions of the global economy and globalization. Students are introduced to competing explanations of the modernization process and the movement of nations from less industrialized to industrialized status. Other topics covered are the causes and consequences of poverty and famine and hunger, and policies to alleviate these social ills. This course is recommended for students interested in taking POL 351: Globalization.

Components: Lecture

Attributes: Economics and Organizations, Given When Needed

Req. Designation: Technology
POL 351(3)
Globalization
(Cross-listed with SOC 351) [Formerly LP 371] This seminar style class addresses the economic, political and social change collectively referred to as 'globalization.' The concept of globalization will be analyzed from a number of perspectives. Macro-level changes are addressed as are local adaptation strategies of individuals, communities and organized groups. Special attention is paid to the role of institutions, such as corporations, national and subnational governments and non-governmental and multilateral organizations, in the globalization process. The class will work through and discuss books critical of, and sympathetic to, the globalization process.
Components: Lecture
Course Equivalents: SOC 351
Attributes: One communication unit, Contemporary and Global Issues, Given When Needed
Req. Designation: Technology

POL 353(3)
Politics of Protest
To protest means to express strong disapproval or objection to something. With regard to the politics of protest, individuals or groups express their dissent or disapproval to a particular audience—usually local, national or even international governments, but also corporations, school administrations, etc. and the broader public—with the objective to change the behavior or policies that provoked their protest or to force a leadership or regime change. Protestors use myriad tactics to assert and publicize their dissent such as provocative art, cyber-attacks, street demonstrations and even violent rebellion. When protestors organize and carry out campaigns toward a common goal, we refer to the protestors as social movements. Social movements, however, do not monopolize protest. People also engage in less systematic protest. In this course, we study who engages in protest and to whom they protest. We study a variety of theories about social movements, collective organization and collective action. In this course, students examine why various people
Components: Lecture
Attributes: Individual and Group Behavior, Given When Needed
Req. Designation: Technology

POL 355(3)
Sex, Gender and Power
This course addresses the political, social, and economic circumstances of women in global perspective. Topics include: theories of gender and politics; intersectionality; the public / private divide; the construction and maintenance of gendered political interests; friction between feminism and multiculturalism in both the developed and developing worlds; issues surrounding the promotion of women's rights; women as political candidates; and women as office-holders.
Components: Lecture
Attributes: One communication unit, Contemporary and Global Issues, Given When Needed
Req. Designation: Technology

POL 360(3)
Politics of Pandemics
Pandemics act as major shocks to regional and international system(s) and have the potential to change global power distribution, initiate new technological advancements and reshape domestic politics. In other words, pandemics can shape politics and the course of history. Likewise, politics and public policies affect pandemics from their geographic scope to their social and political costs. This course delves into the relationships between domestic and global institutions and politics and pandemics. Students will study how pandemics affect political behavior at different levels of analyses. Students learn about how national and subnational politics evolve in different countries on account of global shocks from pandemics, such as HIV/AIDS, H1N1 (Swine Flu), and COVID-19. Students also will explore how pandemics shape international aid programs and investigate who benefits from such programs. During the course, students will read and analyze literature on why states act through international organizations, such as the World Health Organization, and
Components: Lecture
Attributes: Contemporary and Global Issues, Individual and Group Behavior, University Course, Given When Needed
Req. Designation: Technology
POL 362(3)
Course ID:010738
2022-02-11

Human Rights Law and Politics
The politics and law framed around various conceptions of Human Rights are primarily responses to perceived
crimes against people based on their ethnicity, religion, gender and/or age. This course is a historical,
institutional, and political inquiry, therefore, on how we go about protecting and improving the lot of the
most vulnerable populations throughout the world. The first half of the semester will examine the
institutional responses to Human Rights (the formation of the Declaration of Human Rights, various
international aid agencies, and war crimes tribunals). The second half of the semester will involve
investigation into legal and political responses to torture, political repression, war crimes and genocide,
the status of refugees, women s rights, children s rights, and humanitarian intervention.

Components:
Lecture

Attributes:
One communication unit, Contemporary and Global Issues, Given When Needed

Req. Designation:
Technology
Close and Contested Elections
Course material includes the study of electoral rules worldwide, including social and political consequences of these rules. The first section of this course examines the role of elections in both democratic and non-democratic systems. What are elections intended to accomplish? How do they work? The second, longer, section of the course turns to a series of case studies of contemporary close and contested elections in a number of different contexts, including cases ranging from the United States (2000) to Iran (2009). This latter portion of the course addresses such questions as (1) the tools and procedures that various kinds of states/regimes have for dealing with such contestation, (2) the extent to which such contested elections may de-legitimize the entire political system, and (3) the role of the media. The final week addresses international election monitoring bodies.

Components: Lecture
Attributes: One communication unit, Contemporary and Global Issues, Given When Needed
Req. Designation: Technology
Environmental Political Theory
This course is designed for students with interests in environmental science and policy, and political theory, or both. We will examine the relationship between nature, politics, and the political economy. We will also examine a wide spectrum of ideas on political, economic, social and scientific matters expressed by contemporary environmental thinkers, though we will also discuss thinkers from the past (Thoreau, Muir, Leopold, Carson). In particular, we will focus our discussions on the relationship between environmental concerns and dominant ideas in liberal capitalism and democracy. We will also study feminist, socialist, communitarian, authoritarian, and anarchist perspectives.

Components: Lecture
Attributes: One communication unit, Contemporary and Global Issues, Science, Technology and Society, University Course, Offered Odd Springs

Req. Designation: Technology
Environmental Law

In this course we will be examining the relationship between the Courts and various policies, laws, and regulations pertaining to the restoration and management of the environment. The central issues in the cases we will be examining emerge from the tension between property rights and what has been conceived as a constitutional right to a clean, healthy environment. Areas where this tension plays out include: the Clean Air Act, the Clean Water Act, The Superfund Law, and the National Environmental Policy Act. In general, the course is designed to help students assess whether environmental laws provide us with a route for attaining ecological goals, and to think critically about the role of the Courts as a defender of the environment.

Components: Lecture
Course Equivalents: POL 575
Attributes: Contemporary and Global Issues, Given When Needed
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Offer Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>POL 380(3)</td>
<td>010800</td>
<td>2015-01-21</td>
</tr>
<tr>
<td>POL 388(3)</td>
<td>012040</td>
<td>2020-02-18</td>
</tr>
<tr>
<td>POL 391(3)</td>
<td>011037</td>
<td>2017-10-11</td>
</tr>
<tr>
<td>POL 400(3)</td>
<td>008644</td>
<td>2019-09-02</td>
</tr>
</tbody>
</table>

POL 380(3): The Law and Bioethics
This course explores the relation between law, ethics, and new technologies. In particular, we will be exploring issues of the right to privacy, abortion, state sterilization programs, cloning, rights of surrogate parents, doctor/patient confidentiality, the right to die, new definitions of death, the human genome project and intellectual property rights, and organ transplantation. This inquiry will be guided by the question: ‘Who Owns Life?’ There is no definitive answer to this question offered by the American court system. Through readings and discussions students will gain political and ethical perspective on how legal standards are formed in response to new demands by the public and government, and how new ethical questions are inspired by innovations in germline bioengineering, medical and rehabilitative technology, robotics, virtual reality, and nanotechnology. The material for the course will be case law and articles by leading scientists, physicians, ethicists, and legal scholars in this young field.

Components: Lecture
Attributes: One communication unit, Contemporary and Global Issues, Science, Technology and Society, University Course, Offered Spring Term
Req. Designation: Technology

POL 388(3): Terrorism and Insurgencies
This course will focus on terrorism as political violence carried out by non-state actors, although we will also explore the topic of state sponsorship of terrorist groups. The purpose of the course is to familiarize students with the theoretical approaches to and contemporary challenges in the study of terror and terrorism. Topics will include the nuances involved in defining terrorism; the political context in which terrorist groups emerge; the ideologies, motivations, organizational structure, and decision-making processes of important terrorist groups; the effectiveness of various counter-terrorism tools; and the role of technology in the evolution of terror and terrorism. The course will provide a basis for discussing and analyzing contemporary terror/terrorist events and related security issues.

Components: Lecture
Attributes: One communication unit, Contemporary and Global Issues, Given When Needed
Req. Designation: Technology

POL 391(3): Special Topic: American Politics in Comparative Perspective
In what ways is the United States an outlier among western democracies, and in what ways does the United States resemble other democratic nations? To the extent that the United States is distinctive, what explains the differences between the United States and other advanced industrial societies? What do the structural differences of the American political system mean for democratic performance? Is the American way more or less effective than comparably developed states in Asia, Latin America, North America, or Europe? In order to explore these questions, this class examines major features of American democracy – political culture and public opinion, electoral institutions and behavior, interest groups, political parties, and social movements, the division of power between state and federal governments – from a comparative perspective. Understanding American politics in the twenty-first century requires moving beyond national boundaries and situating the United States and its interventions in the world.

Components: Lecture
Attributes: One communication unit, Contemporary and Global Issues, Individual and Group Behavior, University Course, Given When Needed
Req. Designation: Technology

POL 400(3): Constitutional Law
[Formerly LP400] [Cross-listed with POL500] An introduction to American Constitutional law and jurisprudence. Using a case study approach that focuses upon Supreme Court decision making, the course will pay particular attention to the evolution of discourse on 'rights' in the United States.

Components: Lecture
Course Equivalents: POL 500
Attributes: Contemporary and Global Issues, Given When Needed
Req. Designation: Technology
Environmental Policy

Course ID: 010203
2015-03-05

Environmental Policy

[Cross-listed with SOC 470] [Formerly LP360] Public policy is developed in response to problems or issues in society that are presumed, for whatever reasons, not to be resolvable by the private sector. In theory, public policy as it relates to environmental issues is used to intervene to alleviate problems, such as industrial pollution, that threaten the integrity of the natural resource base and the natural and built environments on which our lives and livelihoods depend. However, public policy development and implementation in general, and environmental policy in particular, are not immune to political forces and influences. Even scientific institutions that often provide the empirical basis for environmental policy are potentially influenced and shaped by the political process and political and economic interests. This course introduces students to the distinctive features or characteristics of environmental policy development and implementation. The course primarily focuses on the United States but includes international environmental components.

Components:
Lecture

Attributes:
One communication unit, Science, Technology and Society, Given When Needed

Req. Designation:
Technology

Energy Policy

Course ID: 011489
2015-03-05

Energy Policy

Energy policy is a critical component of state and national public policy. Issues surrounding the reliability and security of energy supplies directly affect national domestic and foreign policy, as well as state level environmental, economic development, and land use concerns. Via emphasis on specific issues unique to North American energy policy (US and Canada), the class will introduce students to the major theoretical frameworks used by political scientists, sociologists, economists, and other intellectual disciplines to understand how societies design and implement public policies related to energy, and how the energy industry responds. Topics covered will include theories of the state, monopoly and regulation, public choice, organizational behavior, international agreements, and innovation. The class will apply these theories to major current and historical issues in energy policy, such as ethanol, climate change, and renewable energy systems, nuclear power, energy efficiency, energy security, the world oil market, and OPEC, electricity production and markets.

Components:
Lecture

Course Equivalents:
POL 571

Attributes:
One communication unit, Economics and Organizations, Science, Technology and Society, University Course, Offered Spring Term

Req. Designation:
Technology

Independent Study

Course ID: 010775
2015-02-09

Department Consent Required

Independent Study

Designed primarily for an advanced student who wishes to pursue special interests in political science for one or more semesters, this series allows students to design and conduct independent study projects under faculty guidance.

Prerequisite: consent of the instructor.

Components:
Independent Study

Attributes:
Offered Each Term

Req. Designation:
Technology

Minor Portfolio

Course ID: 010793
2015-02-09

Minor Portfolio

In this course, students complete their Liberal Arts Minor Portfolios under the direction of their minor advisor. The course is graded on a Pass-No Entry basis.

Components:
Independent Study

Attributes:
Offered Each Term

Req. Designation:
Technology

Constitutional Law

Course ID: 012968
2019-09-02

Constitutional Law

[Cross-listed with POL400] This course will cover the same subject area and topics as POL 400. Additional materials at the graduate level will be expected of those who register under this catalog number. (The attached syllabus includes the additional requirements for graduate students.)

Components:
Lecture

Course Equivalents:
POL 400

Attributes:
Given When Needed

Req. Designation:
Technology
School of Arts and Sciences - Humanities & Social Sciences - Subject: Political Science

POL 545(3)
Course ID: 013026
2020-01-15
Happiness: Politics, Policy and More
(Cross-listed with POL 345) This course will cover the same subject area and topics as POL 345. Additional materials at the graduate level will be expected of those who register under this catalog number.
Components: Lecture
Course Equivalents: POL 345
Attributes: Given When Needed
Req. Designation: Technology

POL 570(3)
Course ID: 011653
2011-09-19
Environmental Policy
A course description has not been provided for this course. Please check with the Humanities & Social Science department for a description.
Components: Lecture
Req. Designation: Technology

POL 571(3)
Course ID: 011490
2015-03-05
Energy Policy
Energy policy is a critical component of state and national public policy. Issues surrounding the reliability and security of energy supplies directly affect national domestic and foreign policy, as well as state level environmental, economic development, and land use concerns. Via emphasis on specific issues unique to North American energy policy (US and Canada), the class will introduce students to the major theoretical frameworks used by political scientists, sociologists, economists, and other intellectual disciplines to understand how societies design and implement public policies related to energy, and how the energy industry responds. Topics covered will include theories of the state, monopoly and regulation, public choice, organizational behavior, international agreements, and innovation. The class will apply these theories to major current and historical issues in energy policy, such as ethanol, climate change, and renewable energy systems, nuclear power, energy efficiency, energy security, the world oil market, and OPEC, electricity production and markets
Components: Lecture
Course Equivalents: POL 471
Attributes: Offered Spring Term
Req. Designation: Technology
POL 575(3)
Course ID: 011766
2020-08-01
Environmental Law
(Cross-listed with EV 575) In this course we will be examining the relationship between the Courts and various policies, laws, and regulations pertaining to the restoration and management of the environment. The central issues in the cases we will be examining emerge from the tension between property rights and what has been conceived as a constitutional right to a clean, healthy environment. Areas where this tension plays out include: the Clean Air Act, the Clean Water Act, The Superfund Law, and the National Environmental Policy Act. In general, the course is designed to help students assess whether environmental laws provide us with a route for attaining ecological goals, and to think critically about the role of the Courts as a defender of the environment. Graduate students are required to perform additional assignments above those required by undergraduates.

Components: Lecture
Course Equivalents: POL 375
Attributes: Offered Spring Term
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Title</th>
<th>Description</th>
<th>Components</th>
<th>Attributes</th>
<th>Requirement Group</th>
<th>Req. Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>009414</td>
<td>PT Elective</td>
<td>A college level course for which there is no comparable Clarkson course. Used for transfer credit only.</td>
<td>Lecture</td>
<td>Transfer Credit Only</td>
<td>Corequisites: PT105 or Permission of Instructor.</td>
<td>Technology</td>
</tr>
<tr>
<td>009415</td>
<td>PT Elective</td>
<td>A college level course for which there is no comparable Clarkson course. Used for transfer credit only. This course may be used to satisfy a Science Foundation Curriculum Requirement.</td>
<td>Lecture</td>
<td>Transfer Credit Only</td>
<td>Corequisites: PT105 or Permission of Instructor.</td>
<td>Technology</td>
</tr>
<tr>
<td>011759</td>
<td>Introduction to Physical Therapy I</td>
<td>Introduction to the profession of physical therapy, the pre-physical therapy and DPT programs at Clarkson, the problem-based learning (PBL) mode of curriculum, and the concept of the medical model and team in the U.S.</td>
<td>Lecture</td>
<td>Offered Spring Term</td>
<td>Corequisites: PT506 and PT508.</td>
<td>Technology</td>
</tr>
<tr>
<td>009419</td>
<td>Independent Study</td>
<td>An opportunity for Pre-PT students to undertake a research project or clinical observation with approval by a PT faculty member. A portfolio or written report must be handed in at the end of the semester.</td>
<td>Independent Study</td>
<td>Offered Each Term</td>
<td>Corequisites: PT506 and PT508.</td>
<td>Technology</td>
</tr>
<tr>
<td>011758</td>
<td>Introduction to Physical Therapy II</td>
<td>Introduction to the requirements and process of graduate physical therapy education, participation in the (PBL) mode of curriculum, and issues of professionalism in physical therapy practice.</td>
<td>Lecture</td>
<td>Offered Fall Term</td>
<td>Corequisites: PT506 and PT508.</td>
<td>Technology</td>
</tr>
<tr>
<td>010620</td>
<td>Foundation Sciences for Physical Therapy</td>
<td>Using a Problem-Based Learning (PBL) format in small tutorial groups, clinical lab, gross anatomy lab, inquiry seminars, and self-directed learning students will develop the early cognitive, psychomotor, and affective skills necessary to be physical therapists. Cases related to the foundation sciences of anatomy (musculoskeletal and neurological) and kinesiology are covered in the different learning environments. Students will gain an appreciation for, and ability to implement physical therapy professional practice core values, in addition to skills in communication, cultural competence, clinical reasoning, evidence-based practice, and education. Students also will gain inductor clinical skills that relate to patients with all types of movement disorders who require physical therapy services.</td>
<td>Clinical, Discussion, Laboratory, Lecture</td>
<td>Corequisites: PT506 and PT508.</td>
<td>Corequisites: PT506 and PT508.</td>
<td>Technology</td>
</tr>
</tbody>
</table>
Health Sciences - Physical Therapy - Subject: Physical Therapy

PT 506(2) Course ID:010621 2015-02-20

Professional Foundation for Physical Therapy

This course assists the student in an exploration of the structure of the health care system and the evolving role of the physical therapy profession as a primary participant. The course integrates topics such as history, ethics, politics, sociology, and economics, using seminal articles from a variety of healthcare fields to broaden the learning experience. Utilizing a largely discussion-based format, each student and faculty member will have the opportunity to facilitate interaction by drawing from assigned readings, clinical examples, and students' life experiences. This course will be integrated with case discussions in PT 505 and will provide the foundation for growth as a professional throughout the physical therapy curriculum and beyond.

Prerequisite: Admission to graduate physical therapy professional curriculum (DPT).

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Offered Fall Term</td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Corequisites: PT505 and PT508.</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

PT 508(1) Course ID:010622 2019-06-07

Literature Critique and Review

This course provides students with foundational concepts of evidence-based practice (EBP), and skills for critical evaluation of physical therapy research literature related to both background questions (e.g., risk factors) and foreground questions (e.g., interventions). Students will contrast and critique different types of intervention research and relate to levels of evidence. Students learn how to search for, identify, obtain, analyze and summarize appropriate literature using appropriate tools such as PubMed, PEDro, PTNow, and clinical practice guidelines. The capstone project is a literature review poster presentation.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Offered Fall Term</td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Corequisites: PT505 and PT506.</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

PT 515(9) Course ID:010623 2021-09-10

Cardiopulmonary-Exercise Science

Using a Problem-Based Learning (PBL) format in small tutorial groups, clinical lab, anatomy lab using cadavers, inquiry seminars and self-directed learning students will develop the cognitive, psychomotor and affective skills necessary to be physical therapists and provide services to individuals with cardiorespiratory disorders, acute conditions found in hospital settings, and exercise and fitness environments. Foundational sciences, behavioral sciences, and clinical science related to cardiorespiratory disorders are covered in different learning environments. Students will gain an appreciation for and ability to implement physical therapy professional practice core values, in addition to skills in communication, cultural competence, clinical reasoning, evidence-based practice, and education. In the different learning environments, the skills and knowledge related to the management (screening, examination, evaluation, diagnosis, prognosis, plan of care, intervention and outcomes assessment) of patients/clients with

<table>
<thead>
<tr>
<th>Components:</th>
<th>Clinical, Discussion, Laboratory, Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirement Group:</td>
<td>Prerequisites: PT505, PT506, PT508. Good standing in the graduate physical therapy professional curriculum</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

PT 517(2) Course ID:010624 2021-09-10

Professional Practice I

Participation in planned small group part time professional practice experiences. Observation and participation in Phase II and III cardiac rehabilitation, pulmonary rehabilitation, and acute care, with emphasis on examination and intervention for patients with cardiac and pulmonary illness or disease.

Integration of these professional practice experiences with the case studies used in PT 515 Cardiopulmonary-Exercise Science.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Offered Spring Term</td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisites: PT505, PT506, PT508. Good standing in the graduate physical therapy professional curriculum</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>
Health Sciences - Physical Therapy - Subject: Physical Therapy

PT 518(1) Course ID: 010625 2021-09-10
Principles of Tests and Measures
Students will participate in discussions and activities focused on understanding principles of measurement and concepts related to measurement error, reliability, validity, sensitivity, specificity, minimal detectable change, minimal clinically important difference, likelihood ratios, odds/risk ratios, and clinical prediction rules. Practical interpretation of the psychometric properties for standardized tests and measures in physical therapist practice will occur through critical analysis of research articles, discussion, practice and comprehensive review of commonly utilized standardized measures in physical therapist practice.

Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: PT505, PT506, PT508. Good standing in the graduate physical therapy professional curriculum

Req. Designation: Technology

PT 525(9) Course ID: 010626 2015-01-21
Musculoskeletal Physical Therapy
Using a Problem-Based Learning (PBL) format in small tutorial groups, clinical lab, musculoskeletal lab, inquiry seminars and self-directed learning students will develop the cognitive, psychomotor and affective skills necessary to be physical therapists and provide services to individuals with musculoskeletal disorders. Foundational sciences, behavioral sciences, and clinical science related to musculoskeletal disorders are covered in the different learning environments. Students will gain an appreciation for and ability to implement physical therapy professional practice core values, in addition to skills in communication, cultural competence, clinical reasoning, evidence-based practice, and education. In the different learning environments, the skills and knowledge related to the management (screening, examination, evaluation, diagnosis, prognosis, plan of care, intervention and outcomes assessment) of patients/clients with musculoskeletal disorders are covered. Students also will gain skills in practice management for

Components: Discussion, Laboratory, Lecture
Attributes: Offered Summer Term
Requirement Group: Prerequisites: PT515, PT517, PT518. Good standing in the graduate physical therapy professional curriculum

Req. Designation: Technology

PT 527(2) Course ID: 010627 2015-01-21
Professional Practice Preparation
PT527 is the capstone course for preparation of upcoming internship courses throughout the curriculum. This course includes both scheduled course and individual meeting sessions. Students will discuss clinical education objectives, professional issues, select upcoming clinical internship sites, develop interview and daily organization skills, and learn how to utilize the full-time PT CPI website.

Components: Lecture
Attributes: Offered Summer Term
Requirement Group: Corequisites: PT515, PT517 and PT518

Req. Designation: Technology

PT 528(1) Course ID: 010628 2019-04-24
Analytical Methods for Evidence Based Practice
Students will learn about various analytical methods used in evidence based practice, with an emphasis on statistical methods. Students will learn to select, apply, and interpret statistical methods commonly used in physical therapy research, and will critique analytical methods used in research.

Components: Lecture
Attributes: Offered Summer Term
Requirement Group: Prerequisites: PT515, PT517 and PT518 Corequisites: PT525, PT527 and PT528

Req. Designation: Technology

PT 537(6) Course ID: 010629 2021-05-10
Professional Practice II
The first full-time internship course within the DPT curriculum, students participate in eight weeks of full-time internship at an orthopedic or acute care/cardiopulmonary setting following the third semester. Students synthesize their knowledge of musculoskeletal and/or cardiopulmonary disorders and gain an appreciation for managing multiple patients and responsibilities. The focus of this internship is on the patient/client management process—examination, evaluation, diagnosis, prognosis, intervention, and outcomes -- for patients within these settings with a variety of impairments leading to activity and participation limitations.

Components: Lecture
Attributes: Offered Fall and Summer
Requirement Group: Prerequisites: PT525, PT527, PT528. Good standing in the graduate physical therapy professional curriculum

Req. Designation: Technology
Health Sciences - Physical Therapy - Subject: Physical Therapy

PT 604(5) Course ID:010634 2021-03-19
Physical Therapy for Multiple System Disorders I
Using a Problem-Based Learning (PBL) format in small tutorial groups, clinical lab, neuroanatomy lab, inquiry seminars, and self-directed learning students will develop the cognitive, psychomotor, and affective skills necessary to be physical therapists and provide services to individuals with disorders of multiple systems. Foundational sciences, behavioral sciences, and clinical science related to disorders of multiple system disorders are covered in the different learning environments. Students will gain an appreciation for and ability to implement physical therapy professional practice, and education. In the different learning environments, the skills and knowledge related to the management (screening, examination, evaluation, diagnosis, prognosis, plan of care, intervention and outcome assessment) of patients/clients with multiple system disorders are covered. Students also will gain skills in practice management for individuals with multiple systems disorders who require physical therapy services.

Components: Clinical, Discussion, Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: PT525, PT527, PT528, PT537. Good standing in the graduate physical therapy professional curriculum.
Req. Designation: Technology

PT 605(4) Course ID:010630 2015-08-01
Neuromuscular Physical Therapy I
Using a Problem-Based Learning (PBL) format in small tutorial groups, clinical lab, neuroanatomy lab, inquiry seminars and self-directed learning, students will develop the cognitive, psychomotor, and affective skills necessary to be physical therapists and provide services to individuals with neuromuscular disorders. Foundational sciences, behavioral sciences, and clinical science related to neuromuscular disorders are covered in the different learning environments. Students will gain an appreciation for and ability to implement physical therapy professional practice core values, in addition to skills in communication, cultural competence, clinical reasoning, evidence-based practice, and education. In the different learning environments, the skills and knowledge related to the management (screening, examination, evaluation, diagnosis and prognosis, plan of care, intervention, and outcomes assessment) of patients/clients with neuromuscular disorders are covered. Students will also gain skills in practice management for individuals.

Components: Clinical, Discussion, Laboratory, Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: PT537, PT604, PT608. Good standing in the graduate physical therapy professional curriculum.
Req. Designation: Technology

PT 607A(1) Course ID:010631 2019-02-13
Professional Practice III-A
Students will participate in the first 8 weeks of a part-time clinical experience integrating clinical skills and practice management related to individuals with neurological impairments and disorders. Students will have the opportunity to practice patient interaction and management skills, clinical skills, and increase their knowledge of this complex patient population. Students will work with patients similar in diagnosis as discussed within tutorial cases and study concepts related to case management and policies that govern the clinical setting. The clinic portion of this course is highly integrated with PT 605 and PT 606, Neuromuscular Physical Therapy.

Components: Clinical
Attributes: Offered Fall Term
Requirement Group: Prerequisites: PT537, PT604, PT608. Good standing in the graduate physical therapy professional curriculum.
Req. Designation: Technology

PT 608(1) Course ID:010632 2021-05-07
Research Methods
Students will examine and contrast a variety of research methods, including both primary and secondary research (i.e. original data collection vs. systematic review/meta-analysis). Students will learn to integrate critique of multiple research articles and apply to clinical situations. This course will address a variety of ethical issues associated with research. By the end of the semester, students will have selected and developed a plan for their capstone research project.

Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: PT525, PT527, PT528, and good standing in the graduate physical therapy professional curriculum.
Req. Designation: Technology
Health Sciences - Physical Therapy - Subject: Physical Therapy

PT 613(2)
Course ID: 009439
2021-05-10

Professional Practice III

Students will participate in a part-time clinical education experience integrating clinical skills and practice management related to individuals with neurological impairments and disorders. Students will have the opportunity to practice patient interaction and management skills, clinical skills, and increase their knowledge of this complex patient population. Students will work with patients similar to those encountered within the Preclinical course and will have the opportunity to develop clinical reasoning skills by utilizing available resources to meet the needs of their assigned facility and through continuous self-reflection. The format of this course is designed to provide a comprehensive experiential learning opportunity that will develop independent thinking and problem solving skills.

Components: Clinical

Attributes: Offered Spring Term

Prerequisites: PT537, PT604, PT608. Good standing in the graduate physical therapy professional curriculum.

Requirement Group:

Offered Term: Spring

Req. Designation: Technology

PT 616(6)
Course ID: 010637
2021-05-07

Physical Therapy for Multiple System Disorders II

Using a Problem-Based Learning (PBL) format in small tutorial groups, clinical lab, neuroanatomy lab, inquiry seminars, and self-directed learning, students will develop the cognitive, psychomotor, and affective skills necessary to be physical therapists and provide services to individuals with disorders of multiple systems. Foundational sciences, behavioral sciences, and clinical science related to disorders of multiple systems are covered in the different learning environments. Students will gain an appreciation for and ability to implement physical therapy professional practice and education. In the different learning environments, the skills and knowledge related to the management (screening, examination, evaluation, diagnosis, prognosis, plan of care, intervention, and outcome assessment) of patients/clients with multiple system disorders are covered. Students also will gain skills in practice management for individuals with multiple systems disorders who require physical therapy services.

Components: Clinical, Discussion, Lecture

Attributes: Offered Summer Term

Prerequisites: PT613, PT614, PT617, PT618. Good standing in the graduate physical therapy professional curriculum.

Requirement Group:

Offered Term: Spring

Req. Designation: Technology

PT 617A(1)
Course ID: 010635
2021-05-10

Professional Practice IV-A

Students will develop and implement a community-based health and wellness project during PT 617A, with continuation in PT 617B. Each student will participate in at least six hours of wellness/prevention activities and/or education by developing and implementing a project selected by the faculty (4-6 hours estimated per session based on preparation, performance, analysis of outcomes, and program changes for future sessions). Throughout the project, each student will need to attend to his or her established program goals in order to prepare and implement an effective wellness session. The students, working with peers, are also expected to assess outcomes on an ongoing basis in order to modify methodologies to most effectively obtain the desired behavioral response from the participants. Through this project, it is expected that students will develop independent thinking and problem solving skills by utilizing available resources to meet the needs of their assigned facility and through continuous self-reflection. The format of this course is designed to provide a comprehensive experiential learning opportunity that will develop independent thinking and problem solving skills.

Components: Seminar

Attributes: Offered Spring Term

Prerequisites: PT537, PT604, PT608. Good standing in the graduate physical therapy professional curriculum.

Requirement Group:

Offered Term: Spring

Req. Designation: Technology

PT 617B(1)
Course ID: 012042
2021-05-10

Professional Practice IV-B

Students will develop and implement a community-based health and wellness project during PT 617A, with continuation in PT 617B. Each student will participate in at least six hours of wellness/prevention activities and/or education by developing and implementing a project selected by the faculty (4-6 hours estimated per session based on preparation, performance, analysis of outcomes, and program changes for future sessions). Throughout the project, each student will need to attend to his or her established program goals in order to prepare and implement an effective wellness session. The students, working with peers, are also expected to assess outcomes on an ongoing basis in order to modify methodologies to most effectively obtain the desired behavioral response from the participants. Through this project, it is expected that students will develop independent thinking and problem solving skills by utilizing available resources to meet the needs of their assigned facility and through continuous self-reflection. The format of this course is designed to provide a comprehensive experiential learning opportunity that will develop independent thinking and problem solving skills.

Components: Seminar

Attributes: Offered Summer Term

Prerequisites: PT 537, PT 605, PT 607A, PT 613, PT 614, PT 617A and good standing in the graduate physical therapy professional curriculum.

Requirement Group:

Offered Term: Fall

Req. Designation: Technology
Research Practicum

Students work in small groups to implement their research plans from the previous semester. Students will either collaborate with faculty on primary research, or conduct a systematic review of literature related to a clinical question. By the end of this semester, students should have completed most or all components of their projects except for writing.

Components: Independent Study
Attributes: Offered Spring Term
Requirement Group: Prerequisites: PT537, PT604, PT608. Good standing in the graduate physical therapy professional curriculum (DPT).

Req. Designation: Technology

Professional Practice V-A

PT627A is the second full-time internship course within the curriculum. Students will participate in the first 7 weeks of a total 10 weeks of full-time clinical internship (remaining 3 weeks through PT627B). This is scheduled during the summer semester of their second year at designated clinical education sites. Prior to this internship, students have completed five semesters of academic coursework covering the cardiopulmonary, musculoskeletal, neurologic, and integumentary systems throughout the lifespan, and multiple part-time clinical experiences. The focus of this internship will be on the examination, evaluation, diagnosis, prognosis, intervention, and outcomes for complex patients with a variety of impairments leading to activity and participation limitations. The financial aspects of patient care, supervision of support personnel, communication and education of patients, their families, peers, and interdisciplinary team members, and professional behavior development will be emphasized and progressed.

Components: Clinical
Attributes: Offered Summer Term
Requirement Group: Prerequisites: PT613, PT614, PT617, PT618. Good standing in the graduate physical therapy professional curriculum (DPT).

Req. Designation: Technology

Professional Practice V-B

PT627B is the second full-time internship course within the curriculum. Students will participate in the final 3 weeks of a total 10 weeks of full-time clinical internship (first seven weeks in PT627A). This is scheduled during the fall semester of their second year at designated clinical education sites. Prior to this internship, students have completed five semesters of academic coursework covering the cardiopulmonary, musculoskeletal, neurologic, and integumentary systems throughout the lifespan, and multiple part-time clinical experiences. The focus of this internship will be on the examination, evaluation, diagnosis, prognosis, intervention, and outcomes for complex patients with a variety of impairments leading to activity and participation limitations. The financial aspects of patient care, supervision of support personnel, communication and education of patients, their families, peers, and interdisciplinary team members, and professional behavior development will be emphasized and progressed.

Components: Clinical
Attributes: Offered Fall Term
Requirement Group: Prerequisites: PT 627A

Req. Designation: Technology

Practice Management in the Autonomous Environment

Using a Problem-Based Learning (PBL) format in small tutorial groups, clinical lab, administrative workshops, inquiry seminars and self-directed learning students will develop the cognitive, psychomotor, and affective skills necessary to be physical therapists and provide services to individuals with varied complex disorders. Foundational sciences, behavioral sciences, and clinical science related to neuromuscular, musculoskeletal, cardiopulmonary, practice management, and women's health are covered in the different learning environments. Students will gain an appreciation for and ability to implement physical therapy professional practice core values, in addition to skills in communication, cultural competence, clinical reasoning, evidence-based practice, and education. In the different learning environments screening, examination, evaluation, diagnosis, prognosis, plan of care, intervention and outcomes assessment are covered.

Components: Clinical, Discussion, Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: PT616, PT627. Good standing in the graduate physical therapy professional curriculum (DPT).

Req. Designation: Technology
PT 648 (2)
Course ID: 010640
2019-06-07

Writing and Presenting Research
Students work in small groups to write up their systematic review or primary research as an abstract and full manuscript and will give a platform presentation. During the process, students will participate in a peer review process within the class to improve their scientific writing and to become familiar with the publication process.
Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: Good standing in the graduate physical therapy professional curriculum (DPT). Corequisites: PT645, and PT657
Req. Designation: Technology

PT 657 (2)
Course ID: 010641
2015-02-20

Advanced Clinical Skills
Emphasis is placed on advanced clinical skills that progress, refine, and expand skills previously acquired. Includes topics such as: pediatrics, geriatrics, neurological treatment, exercise progression, post-surgical care, alternative modalities, manual therapy. Didactic presentations of evidence-based practice literature and clinical laboratory skills. Presentations by students who have had the opportunity to develop advanced clinical skills under mentorship during their clinical experiences. Application of principles of professional practice education through planning, supervising and assessing peers clinical skills practice. Integration of professional practice experiences with case studies used in PT 645 Practice Management in the Autonomous Environment.
Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisites: PT616, PT627. Good standing in the graduate physical therapy professional curriculum (DPT). Corequisites: PT645 & PT648
Req. Designation: Technology

PT 667 (8)
Course ID: 010643
2015-04-24

Professional Practice VI
The third full-time internship course within the curriculum, students will participate in a 10-week, full-time clinical internship scheduled during the first half of the final spring semester at selected clinical education sites. The focus of this internship is on the application and refinement of the PT patient/client management process for complex patients with a variety of impairments leading to activity and participation limitations. The administrative and financial aspects of patient care; consultation; communication and education of patients, their families, peers and interdisciplinary team members; and continued professional development will be emphasized and progressed during this experience.
Components: Clinical
Requirement Group: Prerequisites: PT645, PT648, PT657. Good standing in the graduate physical therapy professional curriculum (DPT).
Req. Designation: Technology

PT 677 (8)
Course ID: 010644
2015-04-24

Professional Practice VII
The fourth and final full-time internship course within the curriculum, students will participate in a 10-week, clinical internship scheduled during the second half of the final spring semester at selected clinical education sites. The focus of this internship is on the application and refinement of the PT patient/client management process for complex patients with a variety of impairments leading to activity and participation limitations. Continued professional development, administrative and financial aspects of patient care; promotion of the profession, pro bono opportunities, and communication and education of patients, their families, peers and interdisciplinary team members will be emphasized and progressed during this experience.
Components: Clinical
Attributes: Offered Spring Term
Requirement Group: Corequisites: PT667. Good standing in the graduate physical therapy professional curriculum (DPT).
Req. Designation: Technology
School of Arts and Sciences – Psychology – Subject: Psychology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Term</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY 1(2 - 4)</td>
<td>009466</td>
<td>2015-01-19</td>
<td>Psychology Elective</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A college level course for which there is no comparable Clarkson course. Used for transfer credit only.</td>
</tr>
</tbody>
</table>
| | Lecture | | Components:
| | Transfer Credit Only | | Attributes:
| | Technology | | Req. Designation:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Term</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY 2(2 - 4)</td>
<td>009467</td>
<td>2015-01-19</td>
<td>Psychology Elective</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A college level course for which there is no comparable Clarkson course. Used for transfer credit only. This course may be used to satisfy a Social Science Foundation Curriculum Requirement.</td>
</tr>
</tbody>
</table>
| | Lecture | | Components:
| | Transfer Credit Only | | Attributes:
| | Technology | | Req. Designation:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Term</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY 151(3)</td>
<td>009469</td>
<td>2015-02-12</td>
<td>Introduction to Psychology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Emphasizes the scientific study of the human mind. Appropriate research methods and philosophical questions will be considered. Topics include the brain, memory, perception, development, personality, social behavior, emotion, motivation, psychological disorders, stress, and states of consciousness.</td>
</tr>
</tbody>
</table>
| | Lecture | | Components:
| | Individual and Group Behavior, Offered Fall, Spring, and Summer | | Attributes:
| | Technology | | Req. Designation:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Term</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY 246(3)</td>
<td>012748</td>
<td>2016-09-16</td>
<td>Educational Psychology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This course will examine the ways in which theories of child development and learning inform classroom teaching methods, assessment, behavioral interventions, and student motivation.</td>
</tr>
</tbody>
</table>
| | Lecture | | Components:
| | Offered Spring Term | | Attributes:
| | Technology | | Requirement Group:
| | Prerequisites: PY151 or permission of the instructor | | Req. Designation:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Term</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY 253(3)</td>
<td>009485</td>
<td>2015-01-21</td>
<td>Social Psychology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Emphasis on the relative influences of society and other people on the individual. Topics include persuasion, attitude formation and change, group decision making, prejudice, social influence, altruism and aggression. Fundamental to the discussion of each topic is the scientific research that underlies it. A focus of the course is the means by which the individual can influence and be influenced by the organizations that play a major role in our lives.</td>
</tr>
</tbody>
</table>
| | Lecture | | Components:
| | Offered Spring Term | | Attributes:
| | Technology | | Requirement Group:
| | Prerequisite: PY151. | | Req. Designation:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Term</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY 255(3)</td>
<td>009487</td>
<td>2015-01-21</td>
<td>Cognitive Psychology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cognitive psychology is the study of how the mind perceives, attends to, remembers, and interacts with the world. The mental processes that will be examined include perception, attention, memory, language, decision-making, and problem solving. During this course, each topic will be explored by investigating theories and results from laboratory experiments, computer simulations and work in artificial intelligence.</td>
</tr>
</tbody>
</table>
| | Lecture | | Components:
| | Offered Spring Term | | Attributes:
| | Technology | | Requirement Group:
| | Prerequisite: PY151. | | Req. Designation:
Diversity Science
This course introduces the links between diversity and psychological processes at individual and interpersonal levels. The study of diversity in this course includes an understanding of the presence of, as well as the problems and issues associated with social and cultural differences in our society. The topics of this course cover concept and processes for understanding topics such as categorization, stereotyping, prejudice, and social stigma. This course is designed to be an active learning experience, providing students an opportunity to identify and reflect on their own cultures, values and preferences, and how this impacts their individual sphere of influence and the various contexts in which they interface.

Requisites: PY151 recommended, but not required.

Components: Lecture
Attributes: Contemporary and Global Issues, Cultures and Societies, University Course, Offered Spring Term
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID:</th>
<th>009496</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course:</td>
<td>PY 286(3)</td>
</tr>
<tr>
<td>Title:</td>
<td>Organizational Behavior I</td>
</tr>
<tr>
<td>Credits:</td>
<td>3</td>
</tr>
<tr>
<td>Description:</td>
<td>(Cross-listed with EM 286, OS 286) (May be used to satisfy a CUSB MBA or MS foundation requirement.) An introduction to the processes required to manage contemporary organizations with a focus on individual behaviors as they relate to the functions of planning, organizing, controlling, and leading. The most recent concepts of behavioral science in the practice of management are presented to assist the student in gaining understanding of the pervasiveness of the discipline in all types of organizations and processes. Topics include motivation, leadership, perceptions, personality theory, learning theory, personnel issues, stress management, organizational culture, and decision making.</td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
</tr>
<tr>
<td>Course Equivalents:</td>
<td>OS 286, EM 286</td>
</tr>
<tr>
<td>Attributes:</td>
<td>Individual and Group Behavior, Offered Each Term</td>
</tr>
<tr>
<td>Prerequisite Group:</td>
<td>Prerequisites: sophomore standing or the permission of the instructor.</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>
PY 310(3)
Course ID: 009476
2021-12-06

Human Sexuality

The course objective is to provide an informed perspective on human sexual behavior. Topics include anatomy and physiology, contraception, sexually transmitted diseases, sexual development and identity, varieties of sexual behavior across cultures and species, disorders and difficulties of sexual expression, therapeutic issues on the treatment of sexual disorders and the role of sex in interpersonal relationships.

Components: Lecture

Attributes: Contemporary and Global Issues, Individual and Group Behavior, University Course, Given When Needed

Req. Designation: Technology

PY 311(3)
Course ID: 012722
2016-09-06

Cyberpsychology

Cyberpsychology is the branch of psychology that examines human behavior in the context of interaction with modern technologies. The research in this field is primarily focused on the use of Internet, particularly social media sites, but other technologies, such as gaming, mobile device applications, artificial intelligence and virtual reality are also within the scope of this area of psychological research and practice. The goal of this course is to provide students with an in-depth understanding of the psychological factors associated with using technologies and interacting in on-line environment.

Components: Lecture

Attributes: Offered Spring Term

Requirement Group: Prerequisite: PY151

Req. Designation: Technology

PY 317(3)
Course ID: 009479
2021-12-06

Psyc of Psychoactive Drugs

The Psychology of Psychoactive Drugs will examine a number of medicinal and so-called recreational drugs that affect consciousness, including cocaine, morphine, LSD, marijuana, alcohol, nicotine and caffeine. The course will include a description of the drugs, their pharmacological action, and side-effects. Psychological, physiological, and pharmacological theories of tolerance and addiction, and addiction treatment programs will also be covered.

Components: Lecture

Attributes: Contemporary and Global Issues, Individual and Group Behavior, University Course, Given When Needed

Req. Designation: Technology
Current Readings in Animal Behavior

(Cross-listed with BY 319) The field of animal behavior is a rapidly advancing one, especially at the interface of neurobiology and cognition, and the interface of cognition and functional analysis of behavior (behavioral ecology and sociobiology). This one credit hour course is designed as a 'journal club' with a focus on the latest developments in theory and empirical research on animal behavior. The course is intended for any student who has a sincere interest in integrative animal behavior.

Components: Lecture
Course Equivalents: BY 319
Requirement Group: Prerequisites: BY222 or PY151
Req. Designation: Technology
PY 321(3) Course ID: 009480 2015-07-06

Consumer Behavior

[Cross-listed with MK 321] Extensive coverage of selected consumer behavior theories and models. Special emphasis given to the most recent research along with marketing mix applications. Topics include classic and operant conditioning, motivation and attribution theories and the elaboration likelihood model. Students are required to complete a term project.

Components: Lecture

Course Equivalents: MK 321

Requirement Group: Prerequisite: MK320.

Req. Designation: Technology
Personality
Examines research evidence that treats various features of personality. Includes introversion-extroversion, authoritarian personality, the psychoanalysis, aggression, sexuality, dream interpretation, self-monitoring, locus of control, defense mechanisms, and unconscious motivation.

Components: Lecture
Attributes: Given When Needed
Requirement Group: Prerequisites: PY151 or junior or senior standing.

Behavioral Ecology and Sociobiology
This course is concerned with the adaptive functions of animal behavior, emphasizing ecological and evolutionary perspectives. Topics covered include foraging behavior, sexual selection, social systems, parental care, and cooperation and conflict. One major focus will be on evaluating the arguments of proponents and critics of sociobiology on whether the fields is useful at explaining human behavior.

Components: Lecture
Course Equivalents: BY 340
Attributes: Individual and Group Behavior, Offered Odd Springs
Requirement Group: Prerequisites: BY140 or PY151 or consent of instructor.

Human Cognitive Evolution
Evolutionary psychology is concerned with the adaptive problems and selective pressures our ancestors encountered in their environments, the psychological mechanisms that evolved to help them solve those problems, and the way those evolved mechanisms function in current environments. This way of thinking about the brain, mind, and behavior is changing how scientists approach old topics, and is opening up new ones. This course will focus on current developments and selected topics in evolutionary psychology (e.g., foraging, mate choice, parental investment, cooperation and culture) and explore the evolution of cognition from a broad comparative perspective.

Components: Lecture
Course Equivalents: BY 357
Requirement Group: Prerequisites: PY151 or junior or senior standing.

Animal Learning and Cognition
This course focuses upon how animals acquire, process, store and recall information about their environment and social partners. Topics that will be examined include how animals perceive and classify stimuli; how they learn and remember; how they orient and navigate; how they measure time, number, and amount; how they acquire abstract concepts; how they perceive social relationships; and how they communicate. A diversity of invertebrate and vertebrate organisms will be included (sea slugs to primates!), and there will be an emphasis on understanding taxon-specific specializations as well as general patterns across animals.

Components: Lecture
Course Equivalents: BY 358
Requirement Group: Prerequisites: BY140 or PY151 or consent of the instructor.

Perception
Perception deals with our conscious experience of the world, ourselves and each other. This course will examine how perceptions are measured (psychophysics); how visual, auditory, touch and pain sensory stimulation is actively organized into conscious perceptions; developmental aspects of perception; the role of cognitive factors, such as attention; and how altered conscious states (e.g., achieved through meditation, hallucinogenic drugs) affect perception. Fundamental principles of perception discussed in this course will be used to explain how we experience the world, ourselves, and each other.

Components: Lecture
Course Equivalents: BY 359
Attributes: Offered Spring Term
Requirement Group: Prerequisites: PY151 or junior or senior standing.
PY 360(3)
Course ID: 009491
Date: 2015-02-20
Title: Learning and Memory
Attributes: Offered Fall Term
Requirement Group: Prerequisites: PY151 or Junior or Senior standing.
Components: Lecture
Description: The basic principles, major theories, and practical applications of learning and memory processes will be explored in humans and animals. Topics will include how knowledge is acquired (learning), how it is represented, stored and accessed (memory), and how these learning and memory principles can be applied in education and clinical settings. The course will take a multidisciplinary approach that will allow examining the processes underlying learning and memory at the behavioral, cognitive, neurobiological, and genetic levels.

PY 361(3)
Course ID: 009492
Date: 2015-02-20
Title: Motivation and Emotion
Attributes: Offered Fall Term
Requirement Group: Prerequisites: PY151 or Junior or Senior standing.
Components: Lecture
Description: This course examines the forces of personality, environment, and culture that lead people to want what they want, and do what they do. Motivation will be explored in the contexts of education, work, therapy, sports, and relationships. Topics include: self-efficacy, self-regulation, earned helplessness, intrinsic and extrinsic motivation, achievement motivation, goal-setting, implementation intentions, self-determination, and emotion. Recent developments in the field of motivation will be applied to the practice of motivating others.

PY 363(3)
Course ID: 010050
Date: 2015-08-06
Title: Judgment and Decision Making for the Biomedical Sciences
Attributes: Offered Odd Falls
Requirement Group: Enrollment is limited to students participating in the Trudeau Semester.
Components: Lecture
Description: Decision making is using information (and in some cases emotion) to guide behavior among multiple possible courses of action—for example, which foods to choose, which stocks to invest in, who to select for a romantic partner, or which products to buy. These choices determine our success in meeting the challenges of life. This course will cover a wide variety of topics regarding how individuals and groups form judgments and make decisions, by drawing on findings from psychology, economics, and biology. We will investigate the various techniques used to study and assess human judgment and decision making, explore how people reason under risk and uncertainty and apply the research addressed in class to real-world problems and issues. Particular focus will be given to judgment and decision-making in applied health contexts that are of high relevance for students with career goals in the biomedical sciences.

PY 366(3)
Course ID: 013101
Date: 2021-04-08
Title: Cultural Psychology
Attributes: Offered Fall Term
Requirement Group: Prerequisites: PY151 or Junior or Senior standing
Components: Lecture
Description: This course introduces the field of cross-cultural psychology and intricate connections between cultural experiences and psychological processes. With critical examinations of the study of culture within the field of psychology, the focus will be on developing an understanding of recent cultural theory, research methods, and critical interpretation of research results. This course includes topics such as cross-cultural psychology’s contributions to human development and socialization, identity and personality, emotions and cognition, motivation, and behaviors.

PY 370(3)
Course ID: 009495
Date: 2015-02-20
Title: Developmental Psychology
Attributes: Offered Fall Term
Requirement Group: Prerequisites: PY151 or Junior or Senior standing.
Components: Lecture
Description: This course will examine normal development from conception through old age and will cover theories of development and current developmental research. Consideration will be given to interaction of physical, social and cognitive aspects. Topics include the development of self, identity, moral beliefs, language, friendship, attachment, sexuality, and death/dying.
PY 372(3)
Course ID: 013052
2020-09-04
Community Psychology
This course is designed to introduce students to the field of Community Psychology, which aims to improve community mental health through research and social intervention programs such as prevention, citizen participation, environmental change, and influence of public policy. This course will introduce the background and content of community mental health and community psychology, present the key concepts involved, and engage students in practical applications of the methods used by community psychologists.
Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisite: PY151, or Junior or Senior standing.
Req. Designation: Technology

PY 400(3)
Course ID: 012936
2019-03-25
Internship - Professional Experience (Class Structure)
This course entails completing a professional experience (90 – 120 hours) through volunteer or work activities associated with psychology and writing an APA style paper that integrates the professional experience with relevant psychological literature. Examples of professional experiences include, but are not limited to, St. Lawrence Psychiatric Facility, Reach Out Crisis Hotline, Renewal House, Canton-Potsdam Hospital Chemical Dependency Unit, working in Human Resources or marketing/advertising departments, Hospice, patient advocacy, counseling, or mental health diagnoses. Note that the professional experience must be approved BEFORE the student begins the experience; please contact the Psychology Front Office for details.
Components: Independent Study
Attributes: Two communication units, Offered Fall Term
Requirement Group: PY400 Requirements: Junior or Senior standing.
Req. Designation: Technology

PY 401(3)
Course ID: 009497
2022-06-07
Instructor Consent Required
Internship - Clinical/Counseling Psychology (individual study format)
This course entails completing a professional experience (90 – 120 hours) through volunteer or work activities associated in clinical/counseling psychology and writing an APA style paper that integrates the professional experience with relevant psychological literature. Note that the professional experience must be approved BEFORE the student begins the experience; please contact the Psychology Front Office for details. This class is taught in an individual study format and can replace, if needed, the PY400 Internship - Professional Experience class.
Components: Independent Study
Attributes: Two communication units, Given When Needed
Requirement Group: Prerequisites: Must have junior or senior standing.
Req. Designation: Technology

PY 402(3)
Course ID: 009498
2022-06-07
Instructor Consent Required
Internship: Personnel Relations (individual study format)
This course entails completing a professional experience (90 – 120 hours) through volunteer or work activities associated in relevant organizations and writing an APA style paper that integrates the professional experience with relevant psychological literature. Note that the professional experience must be approved BEFORE the student begins the experience; please contact the Psychology Front Office for details. This class is taught in an individual study format and can replace, if needed, the PY400 Internship - Professional Experience class.
Components: Independent Study
Attributes: Two communication units, Given When Needed
Requirement Group: Prerequisites: Must have junior or senior standing.
Req. Designation: Technology

PY 403(3)
Course ID: 009499
2022-06-07
Instructor Consent Required
Internship - Psychology in Health Care Environments (individual study format)
This course entails completing a professional experience (90 – 120 hours) through volunteer or work activities associated in health care environments and writing an APA style paper that integrates the professional experience with relevant psychological literature. Note that the professional experience must be approved BEFORE the student begins the experience; please contact the Psychology Front Office for details. This class is taught in an individual study format and can replace, if needed, the PY400 Internship - Professional Experience class.
Components: Independent Study
Attributes: Two communication units, Given When Needed
Requirement Group: Prerequisites: Must have junior or senior standing.
Req. Designation: Technology
PY 411(3)
Course ID: 011045 2021-12-06

Counseling Psychology: Theory and Practice

This course builds a foundation of clinical knowledge and skills for those who may pursue work in counseling or psychotherapy. It surveys the most widely accepted theories of counseling and provides experiential opportunities to learn and practice facilitative communication skills. Students explore basic concepts for integrating diagnosis, evaluative testing, treatment planning, and appropriate referral into the counseling process. The various types of counseling professions and the ethical issues surrounding counseling are also discussed.

Components: Lecture
Attributes: Given When Needed
Requirement Group: Prerequisites: Psychology major with Senior or Junior standing, or consent of the instructor.

Req. Designation: Technology

PY 412(6)
Course ID: 012135 2016-02-22

Psychiatric Center Professional Experience

Students will spend one full day per week working with and observing Clinical Psychologists at the St. Lawrence Psychiatric Center in Ogdensburg, NY. The experience may include rounds at the Sex Offenders Treatment Program, Child and Youth Program, and the Adult Services Program. Activities include observing group therapy, developing a lesson plan for and delivering a therapy session under the supervision of a staff Psychologist, and observing treatment team meetings. This course is only open to Psychology majors. Prerequisites: PY151 and permission of the instructor. Acceptance into the course will be based on GPA and a short essay describing how this course will advance his/her personal and professional goals.

Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisite: PY151
Req. Designation: Technology

PY 453(3)
Course ID: 011752 2015-03-05

Advanced Topics in Social Psychology

In this course students will receive an intensive treatment of several classic and cutting-edge topics in social psychology, including social motivation, self-esteem, social identity and intergroup relations, the psychology of meaning, embodied social cognition and social neuroscience. Students will develop their understanding and communication of social psychological concepts, theories, and research by engaging in class debate and discussion, giving oral presentations, and writing scientific literature reviews.

Components: Lecture
Attributes: Two communication units, Offered Spring Term
Requirement Group: Prerequisite: PY151 and PY253 or consent of the instructor.
Req. Designation: Technology

PY 454(3)
Course ID: 009501 2021-02-18

Biological Psychology
[Cross-listed with BY 454] A comprehensive investigation of the neuroanatomical and neurophysiological foundations of behavior. Topics include, but are not limited to: perception, motivation, emotion, states of consciousness, learning, memory and mental illness.

Components: Lecture
Course Equivalents: BY 454
Attributes: Offered Odd Falls
Requirement Group: Prerequisites: PY151 or junior or senior standing.
Req. Designation: Technology

PY 456(3)
Course ID: 009502 2016-03-08

Experimental Psychology

This course involves research design, hypothesis testing, measurement and analysis, and includes the application and interpretation of statistics. The research methodologies covered will include experimental and quasi-experimental designs.

Components: Laboratory, Lecture
Attributes: Offered Fall Term
Requirement Group: Prerequisite: Must be a Psychology major with at least Junior standing. PY151, and one of: STAT282, STAT383

Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>2016-03-07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Psychology Laboratory</td>
<td>Students will work in teams to design and conduct an experiment, analyze the results and write up their findings in the American Psychological Association format.</td>
</tr>
<tr>
<td>Components:</td>
<td>Laboratory</td>
</tr>
<tr>
<td>Attributes:</td>
<td>Two communication units, Offered Fall Term</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course ID</th>
<th>2021-02-18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive Neuroscience</td>
<td>This course introduces a sampling of the theories and research concerning how various mental processes are accomplished within the brain. Emphasis will be placed on developing an understanding of both the physiological bases of the techniques and the issues involved in relating measures of brain activity to cognitive functioning. Students will be exposed to current topics of study in a number of areas of cognition: perception, language, memory, among others. In this course we will study a number of different techniques for studying the brain, including electrophysiological recording techniques, functional imaging techniques, and methods that involve brain lesions and disrupting neural activity.</td>
</tr>
<tr>
<td>Course Equivalents:</td>
<td>BY 458</td>
</tr>
<tr>
<td>Attributes:</td>
<td>Individual and Group Behavior, Science, Technology and Society, University Course, Offered Even Falls</td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisites: PY151 or junior or senior standing.</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>
School of Arts and Sciences - Humanities & Social Sciences - Subject: Psychology

<table>
<thead>
<tr>
<th>Course ID: 011215</th>
<th>2015-03-05</th>
<th>Instructor Consent Required</th>
</tr>
</thead>
</table>

Neuroscience and Society

(Cross-listed with HIST 459) The word 'neuroscience' is of recent origin. Yet we can trace neuroscientific ideas back to Rene Descartes. Since Decartes, social understanding of madness, the relationship between mind and brain, and the nature of sensation and perception has changed frequently. Beginning in the Age of Mechanical Man, and ending in the Age of Prozac, this course examines how society has influenced neuroscientific thought and how, in turn, neuroscience has influenced society.

Components: Lecture

Course Equivalents: HIST 459

Attributes: One communication unit, Science, Technology and Society, Offered Spring Term

Requirement Group: Restriction: Junior or senior standing, and permission of the instructor

Req. Designation: Technology
School of Arts and Sciences - Biology - Subject: Psychology

PY 460(3)
Course ID: 009504
2014-11-20

Neurobiology
(Cross-listed with BY 460) Neurons are electrically excitable cells that initiate and control many complex functions such as sensory perception, locomotion, memory, and learning. This course introduces the study of neuronal mechanisms at the cellular and molecular level. Topics include: membrane biophysics, ion channels, electrical signaling, synaptic transmission, glia, sensory transduction, neuromodulation, and neuronal plasticity.

- **Components:** Lecture
- **Course Equivalents:** BY 460, BY 561
- **Requirement Group:** Prerequisites: BY160 or BY360 or consent of instructor.

Req. Designation: Technology
School of Arts and Sciences - Psychology - Subject: Psychology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY 461(3)</td>
<td>011656</td>
<td>2015-01-21</td>
<td>Judgment and Decision Making
Decision making is using information (and in some cases, emotion) to guide behavior among multiple possible courses of action - which foods to choose, who to select for a romantic partner, or which products to buy. These choices determine our success in meeting the challenges of life. This course will cover a wide variety of topics regarding how people form judgments and make decisions by drawing on findings from psychology, economics, and biology. We will investigate the various techniques used to study and assess human judgment and decision making, explore how people reason under risk and uncertainty and apply the research addressed in class to real-world problems and issues.</td>
</tr>
<tr>
<td>PY 462(3)</td>
<td>009505</td>
<td>2015-02-20</td>
<td>Abnormal Psychology
This course surveys the major syndromes of psychopathology, including schizophrenia, depression and manic-depression, anxiety disorders, and psychopathic personality. Reviews known causes, symptomatology, and both pharmacological and psychological modes of intervention.</td>
</tr>
<tr>
<td>PY 463(3)</td>
<td>009506</td>
<td>2015-02-20</td>
<td>Health Psychology
This course will provide an introduction to the field of health psychology, which is concerned with the role of psychological and social factors in health and illness. The course will address three general subject areas: 1) attitudes, behavior, and lifestyle factors affecting disease prevention and development, 2) stress and the related personality and social processes associated with disease development and progression, and 3) the psychological and social consequences of physical illness.</td>
</tr>
<tr>
<td>PY 464(3)</td>
<td>012885</td>
<td>2018-09-17</td>
<td>Clinical Psychology
This course is designed to introduce students to the theoretical, empirical, and ethical foundations of clinical psychology. We will focus on the major roles of clinical psychologists, particularly psychotherapy, assessment, and issues in education and training. Students will also be asked to engage in self-reflection throughout the course, as the ongoing development of self-awareness and self-knowledge are essential to effective and ethical practice. Contemporary issues and controversies that are currently shaping the field of clinical psychology will also be addressed. Prior enrollment in PY462 (Abnormal Psychology) is recommended.</td>
</tr>
<tr>
<td>PY 480(1 - 6)</td>
<td>009508</td>
<td>2022-06-07</td>
<td>Directed Study in Psychology
This is a directed reading course that will allow the student the opportunity to pursue special interests in the general psychology. Prerequisite: consent of the instructor.</td>
</tr>
<tr>
<td>PY 481(1 - 6)</td>
<td>009509</td>
<td>2022-06-07</td>
<td>Directed Study in Social Psychology
This is a directed reading course that will allow the student the opportunity to pursue special interests in social psychology. Prerequisite: consent of the instructor.</td>
</tr>
</tbody>
</table>
Directed Study in Physiological Psychology
This is a directed study course that will allow the student the opportunity to pursue special interests in physiological psychology.
Prerequisite: consent of the instructor.
Components: Independent Study
Attributes: Given When Needed
Req. Designation: Technology

Directed Study in Cognitive Psychology
This is a directed study course that will allow the student the opportunity to pursue special interests in cognitive psychology.
Components: Independent Study
Attributes: Given When Needed
Req. Designation: Technology

Directed Research in Cultural Psychology
The student works on-on-one with a faculty member on a cultural psychology research project. The student will learn about the major theories related to the research topic, and gain first-hand experience with research methodology issues, data collection, and analysis. Does not count towards the directed research requirement for the psychology major.
Components: Research
Attributes: Offered Each Term
Req. Designation: Technology

Directed Research in Health Psychology
The student works one-on-one with a faculty member on a health psychology research project. The student will learn about the major theories related to the research topic and gain first-hand experience with research methodology issues, data collection, and analysis. Does not count towards the directed research requirement for the psychology major. Instructor consent required to enroll.
Components: Research
Attributes: Offered Each Term
Req. Designation: Technology

Directed Research in Psychophysiology
The student works one-on-one with a faculty member on a psychophysiological research project. The student will learn about the major theories related to the research topic and gain first-hand experience with research methodology issues, data collection, and analysis. Does not count towards the directed research requirement for the psychology major.
Components: Research
Attributes: Offered Each Term
Req. Designation: Technology

Directed Research in Cognitive Psychology
The student works one-on-one with a faculty member on a cognitive psychology research project. The student will learn about the major theories related to the research topic and gain first-hand experience with research methodology issues, data collection, and analysis. Does not count towards the directed research requirement for the psychology major.
Components: Research
Attributes: Offered Each Term
Req. Designation: Technology

Directed Research in Social Psychology
The student works one-on-one with a faculty member on a social psychology research project. The student will learn about the major theories related to the research topic and gain first-hand experience with research methodology issues, data collection, and analysis. Does not count towards the directed research requirement for the psychology major. Prerequisite: consent of the instructor.
Components: Research
Attributes: Offered Each Term
Req. Designation: Technology
School of Arts and Sciences – Psychology – Subject: Psychology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Run Date</th>
<th>Instructor Consent Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY 495(1 - 6)</td>
<td>009517</td>
<td>2018-10-23</td>
<td>No</td>
</tr>
<tr>
<td>Directed Research in Clinical Psychology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The student works one-on-one with a faculty member on a clinical psychology research project. The student will learn about the major theories related to the research topic, and gain first-hand experience with research methodology issues, data collection, and analysis. Does not count towards the directed research requirement for the psychology major.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Independent Study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Offered Each Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Run Date</th>
<th>Instructor Consent Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY 496(1 - 6)</td>
<td>009518</td>
<td>2017-01-13</td>
<td>Yes</td>
</tr>
<tr>
<td>Directed Research in Psychology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The student works one-on-one with a faculty member on a cognitive psychology research project. The student will learn about the major theories related to the research topic and gain first-hand experience with research methodology issues, data collection, and analysis. The student will write an APA style research paper. Can be used to satisfy the directed research requirement for the psychology major. Instructor consent required to enroll.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>One communication unit, Offered Each Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Run Date</th>
<th>Instructor Consent Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY 498(1 - 10)</td>
<td>009520</td>
<td>2022-06-07</td>
<td>Yes</td>
</tr>
<tr>
<td>Senior Thesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research under the direction of a faculty sponsor, who assists the student in the choice of a problem and in the planning and execution of the research.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>One communication unit, Given When Needed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisites: senior psychology major and consent of the department faculty.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Run Date</th>
<th>Instructor Consent Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY 499(1 - 10)</td>
<td>009521</td>
<td>2022-06-07</td>
<td>Yes</td>
</tr>
<tr>
<td>Senior Thesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuation of the research from PY498 leading to a written due at the end of the course. Can be used to satisfy the directed research requirement for the psychology major.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>One communication unit, Given When Needed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisite: PY498.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Run Date</th>
<th>Instructor Consent Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY 900(1 - 15)</td>
<td>011970</td>
<td>2015-02-09</td>
<td>No</td>
</tr>
<tr>
<td>Thesis, Dissertation or Special Project in Psychology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student performs research toward a masters degree under the guidance of a faculty thesis advisor. A graduate thesis committee monitors student progress and provides guidance toward completion of the project. Work done in satisfaction of the requirements for a degree will be assigned a grade when the thesis is submitted and approved.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Thesis Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Offered Each Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
School of Arts and Sciences - School of Arts & Sciences - Subject: School of Arts and Sciences

SA&S 1(2 - 4) Course ID:013002 2019-05-01
School of Arts and Science Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

SA&S 2(2 - 4) Course ID:011807 2015-01-19
School of Arts and Science Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

SA&S 3(2 - 4) Course ID:013003 2019-05-01
School of Arts and Science Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

SA&S 4(2 - 4) Course ID:011808 2015-01-19
School of Arts and Science Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

SA&S 100(1) Course ID:011737 2015-02-20
Co-Writing
A writing workshop to be taken concurrently with UNIV190, Clarkson Seminar. Provides supplementary instruction and practice in critical analysis and in writing and editing techniques. Each week students have a group session and also meet one-to-one with the course instructor about work in progress in their UNIV190 classes.
Components: Lecture
Attributes: Offered Fall Term
Requirement Group: Corequisite: UNIV190
Req. Designation: Technology

SA&S 300(1) Course ID:011435 2015-02-09
Arts and Sciences Seminar
Students attend seminars by alumni, faculty, and guest speakers. Students will attend one seminar per week. The School of Arts and Sciences will typically sponsor most of these seminars. Students may also attend seminars sponsored by the various Departments comprising Arts and Sciences. Students will write responses to at least three of the colloquia they attend over the semester.
Components: Seminar
Attributes: Offered Each Term
Requirement Group: Prerequisites: Major in the School of Arts and Sciences, and at least Sophomore standing
Req. Designation: Technology

SA&S 399(1) Course ID:012931 2019-03-01
The Adirondack Speaker Series
In this weekly seminar, students will learn about our region. The purpose of the series is to give Clarkson students a sense of place. The weekly seminar will feature talks by researchers, community members, and storytellers who will discuss all things Adirondack, including geology, economy, history, agriculture, rivers, parks, animals, art, politics, and social issues. This seminar is open to all - students, faculty, and community members.
Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology
School of Arts and Sciences - School of Arts & Sciences - Subject: School of Arts and Sciences

Internship

Students gain practical work experience by working with a professional outside their department on issues, problems, or projects that draw on concepts and methods from multiple fields. Students also prepare a report about their learning experiences in the internships. This course may be repeated for credit.

Components: Independent Study

Req. Designation: Technology

Professional Experience

This course number is used to matriculate the Professional Experience requirement of the Clarkson Common Experience curriculum. The student must participate in a project-based professional experience such as a co-op, internship, other professional-level work experience, directed research, significant responsibility in an appropriate team project, or a community project clearly related to the student’s professional goals. Enrollment requires approval by the Associate Dean or Dean of Arts and Sciences.

Requirement: Pre-approval of the experience (contact the Office of the School of Arts & Sciences for details).

Components: Independent Study

Attributes: Offered Each Term

Req. Designation: Technology
<table>
<thead>
<tr>
<th>School of Arts and Sciences - Biology - Subject: School of Arts and Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course ID: 011772</td>
</tr>
<tr>
<td>2022-03-18 Instructor Consent Required</td>
</tr>
<tr>
<td>Biology, Behavior and Society Minor Portfolio</td>
</tr>
<tr>
<td>The student will provide a portfolio based on (a) term papers or equivalent products from the three major required courses in the BiBS minor, (b) representative course material that shows mastery of subject matter area, and (c) will use the portfolio and materials from other courses taken for the BiBS minor to prepare a 10 page self-reflective essay on what the student has learned about the biological, psychological, and socio-cultural influences on human behavior, human cultural evolution, and human social organization.</td>
</tr>
<tr>
<td>Components:</td>
</tr>
<tr>
<td>Independent Study</td>
</tr>
<tr>
<td>Requirement Group: Prerequisites: HIST270, BY/PY340, and BY/PY357</td>
</tr>
<tr>
<td>Req. Designation: Technology</td>
</tr>
<tr>
<td>SB 1</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Business Elective</td>
</tr>
<tr>
<td>A college level course for which there is no comparable Clarkson course. Used for transfer credit only.</td>
</tr>
<tr>
<td>Components:</td>
</tr>
<tr>
<td>Attributes:</td>
</tr>
<tr>
<td>Req. Designation:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SB 2</th>
<th>2(2 - 4)</th>
<th>Course ID:009527</th>
<th>2015-01-19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Elective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A college level course for which there is no comparable Clarkson course. Used for transfer credit only. This course may be used to satisfy a Management/Business Foundation Curriculum Requirement.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Transfer Credit Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SB 100</th>
<th>1(1 - 3)</th>
<th>Course ID:009528</th>
<th>2016-09-09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantitative Methods of Business and Economics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This course is restricted to the HEOP Summer Program for incoming students. It is designed to prepare students for the required courses in the School of Business at Clarkson, and will emphasize the understanding of mathematical methods and their application to the fundamentals of business and economics. Topics will include algebraic and functional interpretation, geometry, creating and using graphs to understand and communicate data, marginal analysis, and other mathematical concepts as they are used in selected topics in business and economics. This course may not be used to satisfy business major requirements.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Offered Summer Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisite: For HEOP students only.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SB 113</th>
<th>3</th>
<th>Course ID:009529</th>
<th>2015-02-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrepreneurship and Business Innovation I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CUSB Freshmen Only) SB113 provides you with exposure to a range of business theories and skills by applying and reinforcing this knowledge through actual management and entrepreneurial experience. This "learning-by-doing" approach is designed to provide you with a solid foundation for critical, analytical and lateral thinking about management and increase your confidence and competence as practicing managers, leaders, and entrepreneurs. Additionally, this course will serve as an introduction to familiarize you with the Clarkson University School of Business curriculum and introduce you to each of the business disciplines. You will be exposed to theories, applications, and skills relevant to creating an effective business plan. These include: innovation, decision making, leadership, team building, oral and written communication, market research, financial analysis, and working under conditions of uncertainty. Ultimately, the course is centered on helping you become aware of and able to manage risk, resources, and opportunities, while understanding the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Laboratory, Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>One communication unit, Offered Fall Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Restriction: Must be a CUSB Freshmen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SB 114</th>
<th>3</th>
<th>Course ID:009530</th>
<th>2015-01-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrepreneurship & Business Innovation II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB114 provides you with exposure to a wide range of business theory and skills. Using the experiences gained in SB113, students will learn about the various types of business structures and how individual and group behavior can positively or negatively impact an organization’s success. Students will be exposed to topics including financial analysis, asset management, human resource management, supply chain management, intellectual property, international business and group behavior. Specifically, students will study concepts associated with managing a start up venture or new product introduction, leadership, personal accountability, stress, tolerance for uncertainty, change management and organizational flexibility. This foundation of learning is also designed to support the student’s choice of emphasis in future course selection.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Laboratory, Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>One communication unit, Offered Spring Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisite: SB113.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SB 115(3) Foundations of Innovation and Entrepreneurship

This course will expose the student to a wide range of business theories and skills and serves as an introduction to the curriculum of the School of Business. The course will provide the student with an introduction to each of the business disciplines and an introduction to the theories, application, and skills necessary to create an effective business plan. These skills and topics include: innovation, analytically thinking, decision making, leadership, team building, oral and written communication, market research, and financial analysis. This course is offered only to second semester freshmen students who have internally transferred to the School of Business. This course cannot be taken by a student who has taken SB113. The course will serve as a substitute for SB113 for those students who internally transfer into the School of Business.

Components: Laboratory, Lecture
Attributes: One communication unit, Offered Spring Term
Requirement Group: Restriction: This course cannot be taken by any student who has taken SB113.
Req. Designation: Technology

SB 310(0) CUSB Professional Experience: Internship

Project-based professional internship experience in business, related to student career interests and/or field of study. Fulfills Clarkson Common Experience Professional Experience Requirement for School of Business students. Course registration requires CUSB approval of application. Completion of course requires CUSB approval of post-internship assessment by student and employer. Offered Pass/No Credit.

Components: Independent Study
Attributes: Offered Each Term
Requirement Group: Prerequisite: Sophomore standing, consent of the instructor.
Req. Designation: Technology

SB 322(3) Designing and Leading Innovative Ventures

This course will provide students with opportunities to understand how the shifting business environment requires innovative ventures to adapt, change and respond to ensure competitiveness. Students will explore traditional organizational structures as well as cross-functional and virtual teams and networks, and will gain an understanding of the value of rewards and incentives in helping influence innovation and structural/organizational evolution. Students will also consider benchmark techniques and approaches used to inform and advocate innovation to key internal and external stakeholders.

Components: Lecture
Attributes: Offered Each Term
Requirement Group: Prerequisite: At least Sophomore standing.
Req. Designation: Technology

SB 356(3) Invention Development & Protection

[Listed with EM356] In this course, students learn how to develop inventions and protect them. Students will work in small teams to develop and describe their inventions in a form suitable for filing provisional patent applications with the U.S. Patent and Trademark Office. Aspects of intellectual property laws in the US and other countries will be covered to guide the student inventing process. Not open to E&M students.

Components: Lecture
Attributes: Given When Needed
Requirement Group: SB356 Prerequisites: Junior Standing, not open to E&M majors.
Req. Designation: Technology

SB 361(3) Supply Chain Environmental Management

[Listed with EM 361] In recent years, manufacturing organizations have increased their interest in environmental management through activities such as green purchasing, reverse logistics, product stewardship and design-for-the-environment. These activities, usually involving several organizations, are often part of what is known as supply chain environment management. This course aims to gain a greater understanding of supply chain environmental management by examining: (i) the advantages and business risks of adopting and implementing environmental practices and technologies in the supply chain, (ii) the role of suppliers and customers to facilitate the adoption/implementation of environmental practices and technologies, and (iii) the implications of such supply chain activities on an organization's operations strategy. This course consists of a mix of lectures and class discussion and relies primarily on a set of readings and a series of cases that will be analyzed in class.

Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Prerequisites: OM331.
Req. Designation: Technology
Logistics Management
[Cross-Listed EM381] Logistics involves planning, implementation and control of the forward and reverse flow and storage of goods, services, and information in the supply chain in order to effectively meet customer demand. Primary topics covered include management and location of facilities, management of channel networks, warehousing, transportation, management and design of integrated logistics networks, distribution strategies, third-party logistics, international logistics, and vehicle routing. In addition to lectures, case studies, numerical assignments and simulation of logistics systems may be utilized.

Components: Lecture

Course Equivalents: EM 381

Attributes: Offered Spring Term

Requirement Group: Prerequisites: MK 320 and OM/EM 331

Req. Designation: Technology

Global Business Strategies
This course takes a transnational perspective on strategic management. It explores the integrative and cross-functional nature of organizational strategy and decision-making within a global environment. Students are exposed to a wide range of strategic problems, opportunities, challenges, dilemmas/puzzles and paradoxes involved in forming and implementing organizational strategies in an era of globalization. The aim is to develop the sophisticated, critical thinking skills and understanding necessary to manage effectively in an increasingly globalized world.

Components: Lecture

Attributes: Offered Spring Term

Requirement Group: Prerequisites: Must have junior or senior standing.

Req. Designation: Technology

Commercializing Innovation
This course focuses on how to successfully commercialize an innovation. While it is important to come up with an innovative idea and develop a product concept, it is equally critical to effectively design and launch the product in the market and ensure its long-term success. This is where the innovation efforts of a large number of entrepreneurs and companies fail. The course provides an exposure to various product design approaches and strategies. Understanding commercialization activities such as pre-product launch planning, market testing, actual product launch, and post-launch follow-up is a major part of the course. These commercialization activities among other things involve developing a marketing plan for the product, carefully testing the plan, modifying the plan based on test market results, and crafting a long-term strategy for the product. The course also provides an exposure to how market data is generated and analyzed during these activities.

Components: Lecture

Attributes: Offered Spring Term

Requirement Group: Prerequisites: MK436, MK332.

Req. Designation: Technology

Innovation and Entrepreneurship Strategy
The employment of comprehensive case problems in the formulation of action programs and business policy is a major feature in this integrated course in innovation and entrepreneurship strategy. As a capstone course, it is designed to allow students to apply their knowledge in a complex case analysis environment. The hallmark of the course is the application of learned material to realistic, multifarious management issues. Thus, each case represents a complex web of managerial issues that must be resolved. The cases will cover many different content subjects that may vary from semester to semester. The course will also focus on the process of critical thinking in the context of management decision making.

Components: Lecture

Attributes: Offered Spring Term

Requirement Group: Prerequisites: MK320, MK321, MK332, MK436, and senior standing.

Req. Designation: Technology
Advanced Topics in Global Supply Chain Management

Course ID: 010982
2022-02-10

Course Equivalents: EM 441

This course introduces several emerging topics in supply chain management, including: demand management, revenue management, risk management, supply chain agility and flexibility, supply chain disruption management, and supply chain contracts. This course also provides students with the opportunity to gain experience dealing with complex supply chain issues by utilizing a simulation game. The simulation deals with both strategic and tactical aspects of management the supply chain.

Components: Lecture

Attributes: Offered Fall and Spring

Requirement Group: Prerequisite: OM341.

Req. Designation: Technology

Special Project in Business

Course ID: 012151
2017-01-13

Instructor Consent Required

An investigation of a problem or in-depth topic undertaken by the student under the guidance of a faculty member.

Prerequisites: Permission of the instructor

Components: Research

Attributes: Given When Needed

Req. Designation: Technology

Internship

Course ID: 012152
2016-04-05

Instructor Consent Required

An unpaid internship that is related to the student’s professional goals.

Prerequisite: Permission of the Instructor

Components: Independent Study

Attributes: Given When Needed

Req. Designation: Technology

Pre-MBA Module: Information Systems

Course ID: 010707
2018-05-01

Pre-MBA Module: Information Systems

This course provides students with a broad overview of information systems and their uses in organizations. The course will examine basic components of organizational IT infrastructure, such as standard hardware and software components, network and the Internet technologies, as well as databases and business applications. In addition, students will understand the roles these components play in an organizational information system.

Prerequisite: graduate standing (admitted to the MBA program).

Components: Lecture

Attributes: Offered Summer Term

Req. Designation: Technology

Pre-MBA Module: Macroeconomics

Course ID: 010708
2018-05-01

Pre-MBA Module: Macroeconomics

An introduction to macroeconomics including the analysis of national income determination, interest rate determination, and economic growth. Monetary and fiscal policy and selected issues in international macroeconomics are also covered.

Prerequisite: graduate standing (admitted to the MBA program).

Components: Lecture

Attributes: Offered Summer Term

Req. Designation: Technology

Pre-MBA Module: Microeconomics

Course ID: 010709
2018-05-01

Pre-MBA Module: Microeconomics

An introduction to microeconomics covering the role of the price system in, and public policies toward, the allocation of goods and resources. Topics include supply and demand, market structures, analysis of firm behavior, household behavior, and the gains from international trade.

Prerequisite: graduate standing (admitted to the MBA program).

Components: Lecture

Attributes: Offered Summer Term

Req. Designation: Technology
SB 530(0) - Pre-MBA Module: Accounting

Course ID: 010710
Semester: 2018-05-01

An introduction to accounting concepts necessary for an understanding of financial reporting, and managerial planning and control. Basic elements of the balance sheet, the income statement and the statement of cash flows are introduced. Cost concepts important for business decision making are also covered.

Prerequisite: graduate standing (admitted to the MBA program).

Components: Lecture

Attributes: Offered Summer Term

Req. Designation: Technology

SB 540(0) - Pre-MBA Module: Law and Society

Course ID: 010711
Semester: 2018-05-01

A course designed to provide a basic understanding of (1) the nature, functions and limitations of law and legal systems; (2) the basic relationship among justice, ethics, legal systems and social structure; and (3) the relationship among society, law and business activity. In addition, this course is designed to enlighten with respect to rules, principles, standards and doctrines of law fundamental to a free enterprise system. The course covers the substantive areas of constitutional law, torts and contracts.

Prerequisite: graduate standing (admitted to the MBA program).

Components: Lecture

Attributes: Offered Summer Term

Req. Designation: Technology

SB 550(0) - Pre-MBA Module: Statistics

Course ID: 010712
Semester: 2018-05-01

Introduction to statistical methodology. Topics include descriptive statistics, probability distributions, point and interval estimation, hypothesis testing, two-sample tests, comparisons, measuring and testing association, correlation, regression. Emphasis on business applications, intuitive development, and problem solving technique using a statistical software.

Prerequisite: graduate standing (admitted to the MBA program).

Components: Lecture

Attributes: Offered Summer Term

Req. Designation: Technology

SB 560(0) - Pre-MBA Module: Marketing

Course ID: 010713
Semester: 2018-05-01

This course provides a basic understanding of management of marketing activities in contemporary organizations. The course is based on the premise that the purpose of a firm is to satisfy the needs and desires of its customers. Topics covered include: segmentation and target market selection, buyer behavior, market research, and marketing strategy (including product planning, pricing, distribution, and promotion.) the changing nature of marketing and the trends in domestic and international marketing are also examined.

Prerequisite: graduate standing (admitted to the MBA program).

Components: Lecture

Attributes: Offered Summer Term

Req. Designation: Technology

SB 570(0) - Pre-MBA Module: Organizational Behavior

Course ID: 010714
Semester: 2018-05-01

An introduction of the fundamental theories and concepts required to manage contemporary organizations. This course focuses on individual behaviors as they relate to the functions of planning, organizing, controlling, and leading. Critical concepts and theories in behavioral science related to the practice of management are presented and discussed to assist the student in developing understanding of the pervasiveness of the discipline in all types of organizations and processes. Topics include motivation, leadership, perceptions, personality theory, team processes and group behavior, and decision making.

Prerequisite: graduate standing (admitted to the MBA program).

Components: Lecture

Attributes: Offered Summer Term

Req. Designation: Technology

SB 580(0) - Pre-MBA Module: Operations/Production Management

Course ID: 010715
Semester: 2018-05-01

An introduction to the planning, analysis and control of production systems. Topics include, inventory management models, materials requirements planning, manufacturing process types, supply chain management, lean concepts, and quality management tools including statistical process control.

Prerequisite: graduate standing (admitted to the MBA program).

Components: Lecture

Attributes: Offered Summer Term

Req. Designation: Technology
Business - School of Business - Subject: School of Business

SB 590(0) Course ID: 010716 2018-05-01
Pre-MBA Module: Finance
A study of the problems associated with the financial management of business organizations. Topics include: a review of time value of money, analysis of capital investments, valuation, capital structure, short and long term financing, and business failure.
Prerequisite: graduate standing (admitted to the MBA program).
Components: Lecture
Attributes: Offered Summer Term
Req. Designation: Technology

SB 609(2) Course ID: 010718 2014-11-19
Corporate Ethical Decision Making
(Cross-listed with SB 610) This course provides a basis for integrating the MBA curriculum, and enable students to develop the ethical awareness and understanding needed to cope with ongoing problems and challenges in corporate and industrial contexts. Students will acquire a basic understanding of moral theories and principles, become familiar with well known case studies, understand the role of business in society (including the influences of various macro-environmental forces, such as technological, social/cultural, political, that influence corporate decision making), and become adept at applying sound ethical reasoning and decision making in their daily professional lives.
Prerequisites: completion of all CUSB MBA foundation requirements and admission to the MBA program.
Components: Lecture
Course Equivalents: SB 610
Req. Designation: Technology
Corporate Ethical and Social Responsibility

The central goal of the course is to give students an intellectual foundation to frame a wide range of ethical/moral issues/dilemmas facing contemporary business organizations operating within a global environment. As the business environment grows increasingly complex, managers are confronted with important questions that have ethical ramifications. These questions include: Does a company have any obligation to help solve social problems such as poverty, corruption, pollution, unemployment, and income inequality? What are the ethical responsibilities of a multinational corporation operating in foreign countries, especially those characterized as corrupt? What obligation does a manufacturer have to the consumer with respect to product defects and safety? A wide selection of case studies provides students with the opportunity to hone their skills for applying ethical principles and decision making approaches to address complex, 'real-world' business problems within the context of an evolving political, economic,
Supply Chain Ethics

The main goal of this course is to give students an intellectual foundation to analyze and evaluate a variety of ethical issues involved in designing and implementing global supply chain systems. The course equips students with the knowledge and tools for identifying ethical dilemmas, discerning issues, and developing options for resolving those issues in order to build and manage socially and ethically responsible supply chain systems that accomplish triple bottom-line performance. Utilizing case studies, readings, and participants’ personal experience, this course will outline and apply various concepts and tools to develop and gain moral insights about ethical dilemmas in supply chain systems (including sourcing/purchasing, customer-supplier relationship management, relational governance, labor relations, and stakeholder management). A wide selection of case studies provide students the opportunity to hone their skills for applying ethical principles and decision making approaches to address complex, "real-world" supply-chain issues.

Components: Lecture
Attributes: Offered Each Term
Req. Designation: Technology

Entrepreneurship and New Venture Creation

In this course, students will execute the 'entrepreneurial process,' a sequence of activities related to the creation of a new business venture. As such, this course is intended for students whose personal and near-term objectives involve entrepreneurship. The major components of the entrepreneurial process include idea creation and opportunity assessment, industry research and analysis, strategic and operational planning, and resource mobilization and implementation. These process components will be discussed and implemented throughout the semester; as such, this course is very experiential in nature. Fulfillment of these activities will include extensive out-of-class research, in-class peer reviews and brainstorming sessions, and the development of formal business plan proposals. Students are required to sign non-disclosure agreements, and may elect to present their finished proposals to a panel of small business executives for review.

Prerequisite: consent of the instructor.

Components: Lecture
Attributes: Offered Spring Term
Req. Designation: Technology
Business Process Analysis

This course introduces the fundamentals of business process analysis and its role in driving efficient and innovative organizations. Students examine business process mapping, workflow, change initiatives, process improvements with particular emphasis on effective change initiatives, and adoption of IT solutions that solve specific business needs.

Components: Lecture
Attributes: Offered Spring Term
Requirement Group: Admission to the MGMTD-MBA program
Req. Designation: Technology

Advanced Topics in Supply Chain Management: Simulation & Analysis

(Cross-listed with SB 641) This course provides a theoretical and analytical framework for managing critical supply chain components. Topics include revenue management, dynamic pricing, supply chain risk and disruption management, supply chain agility and flexibility, supply chain network design under uncertainty, and supply chain contracts. Hands-on simulation provides an opportunity to gain experience dealing with complex strategic and tactical global supply chain issues.

Components: Lecture
Course Equivalents: SB 641
Attributes: Offered Fall Term
Req. Designation: Technology
Advanced Topics in Supply Chain Management: Simulation & Analysis

This course provides a theoretical and analytical framework for managing critical supply chain components. Topics include revenue management, dynamic pricing, supply chain risk and disruption management, supply chain agility and flexibility, supply chain network design under uncertainty, and supply chain contracts. Hands-on simulation provides an opportunity to gain experience dealing with complex strategic and tactical global supply chain issues.

Prerequisite: OM606 or OM607.

Components:
- Lecture

Course Equivalents:
- SB 640

Attributes:
- Offered Spring Term

Req. Designation:
- Technology
Communicating Globally

[Formerly MBA 651] An increasingly global marketplace affords organizations all over the globe the opportunity to conduct business and distribute goods and services to new customer bases with unique needs and interests. At the same time, globalization presents company leaders, corporate communicators, and organizational gatekeepers with the challenges inherent in intercultural communication. The course: "Communicating Globally" introduces a way of thinking that enables students to acquire cultural competence and function effectively in diverse cultural situations. It presents essential concepts of corporate and national cultures and examines key differences in communication, decision making styles, and pattern of interactions in multi-cultural teams and cross-cultural negotiations - laying the foundation for necessary behavioral adaptations. The course begins with a discussion of the major facets of international business with the cultural aspect presented as the most challenging dimension. Students discover the reasons that cultures

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same As Offering:</td>
<td>SB 651</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SB 651(3)</th>
<th>Course ID: 012564</th>
<th>2018-08-22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communicating Globally</td>
<td>An increasingly global marketplace affords organizations all over the globe the opportunity to conduct business and distribute goods and services to new customer bases with unique needs and interests. At the same time, globalization presents company leaders, corporate communicators, and organizational gatekeepers with the challenges inherent in intercultural communication. The course: "Communicating Globally" introduces a way of thinking that enables students to acquire cultural competence and function effectively in diverse cultural situations. It presents essential concepts of corporate and national cultures and examines key differences in communication, decision making styles, and pattern of interactions in multi-cultural teams and cross-cultural negotiations - laying the foundation for necessary behavioral adaptations. The course begins with a discussion of the major facets of international business with the cultural aspect presented as the most challenging dimension. Students discover the reasons that cultures</td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Same As Offering:</td>
<td>SB 651</td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SB 651(3)</th>
<th>Course ID: 012564</th>
<th>2018-08-22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communicating Globally</td>
<td>An increasingly global marketplace affords organizations all over the globe the opportunity to conduct business and distribute goods and services to new customer bases with unique needs and interests. At the same time, globalization presents company leaders, corporate communicators, and organizational gatekeepers with the challenges inherent in intercultural communication. The course: "Communicating Globally" introduces a way of thinking that enables students to acquire cultural competence and function effectively in diverse cultural situations. It presents essential concepts of corporate and national cultures and examines key differences in communication, decision making styles, and pattern of interactions in multi-cultural teams and cross-cultural negotiations - laying the foundation for necessary behavioral adaptations. The course begins with a discussion of the major facets of international business with the cultural aspect presented as the most challenging dimension. Students discover the reasons that cultures</td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Same As Offering:</td>
<td>SB 651</td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
</tr>
</tbody>
</table>
Building and Managing Effective Teams

In today’s global workforce and “gig economy,” it is imperative that managers continually identify, organize, lead and assess the “intellectual capital” available for either short or long-term team commitments. The skillset needed to lead teams varies, depending upon organizational strengths and weaknesses. However, specific and agreed upon management behaviors assist managers in leading today’s diversified teams toward attaining – and exceeding – corporate goals. This course provides an examination of several important management KSA’s (Knowledge, Skills, and Abilities) for those responsible for team development and direction.

Components: Lecture

Attributes: Offered Summer Term

Requirement Group: Prerequisite: Admission to the MBA Program

Req. Designation: Technology

Bridging the Innovation Gap

"Bridging the Innovation Gap" is an MBA course for the Innovation and New Venture track. The "innovation gap" refers to the hard-to-navigate space between invention and innovation/commercialization. The course examines successful and unsuccessful "bridging the gap" practices across a range of industries, including communicating and translating inventions to diverse stakeholders, engaging stakeholders, gaining commitment, resourcing, and managing gaps over time and across different settings (e.g., solo startups, not-for-profits, and corporate environments). Students will become more adept at managing the various stakeholders and processes within a given invention-innovation space, and at choosing between bridging strategies for different settings. The course uses a studio-based, make-to-learn pedagogy, where learning happens through creative experimentation with live problems.

Components: Lecture

Attributes: Offered Spring Term

Req. Designation: Technology
International Business
[Formerly MBA 662] This course examines international business management as influenced by the important economic, political and cultural environment within which businesses must conduct international trade and investment. The problems and issues confronting international managers are evaluated related to a firm’s strategy, organizational structure, manufacturing, material management, marketing, R&D, human resources and finance. Competitive strategies are examined that have been successful in leading international companies. Case studies are used extensively to illustrate the relevance of these topics in the practice of international business.

Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology

Entrepreneurship
[Formerly MBA 664] The primary objective of this course is to develop an awareness of the process of new venture creation, whether it is an intrapreneurial or entrepreneurial event. The skills, knowledge and attitudes important for creating new ventures, and the complex tasks faced by individuals who start and manage new and growing businesses as well as corporate ventures and franchises will be addressed. The course is designed to provide a broad overview of management and financial issues. We will pay particular attention to: entrepreneurial decision-making, techniques entrepreneurs and investors use for evaluating and testing the feasibility of business opportunities, understanding the impact of market and industry forces on start up, performance and survival of new ventures, financing a business opportunity, etc.

Components: Lecture
Same As Offering: SB 664
Attributes: Offered Fall Term
Req. Designation: Technology

MBA Global Study
[Formerly MBA 668] This course includes intensive study of issues in a country or region outside of the United States followed by a one-to-two-week trip abroad to that location. Each section, centered on a unifying theme and geographic location, will include these components: case studies and research work prior to and following the trip, practitioner presentations, in-country university lectures and visits to companies, governmental agencies, and important cultural sites. Students successfully completing this course will gain a better perspective on the economic, political, cultural issues as well as the business practices prevalent in another region of the world. Students should develop cultural awareness, an understanding of economic, cultural, and political differences between the US and other countries, and the role cultural, historical and political factors play in the conduct of business in a global economy.

Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology
<table>
<thead>
<tr>
<th>SB 674(3)</th>
<th>Course ID:012578</th>
<th>2016-07-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growing an Entrepreneurial Business</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Formerly MBA 674] This course will focus on the challenges in growing a small to medium size business. The issues facing an entrepreneur when starting a new venture are very different than those he/she faces when growing an existing company or business. The course focuses on the unique issues an entrepreneurial leader faces as he/she looks to grow and scale their business. We will discuss and analyze the issues surrounding effectively scaling a business, and the impact that various decisions and initiatives have on the chance of success. How issues such as strategic marketing, team building and top-grading, financing, partnerships and leadership impact the growing business will be presented and discussed from the perspective of the business leader or entrepreneur. The course will include case studies, lectures, guest speakers, and discussions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Req. Designation:</td>
<td></td>
</tr>
<tr>
<td>Lecture</td>
<td>Technology</td>
<td></td>
</tr>
</tbody>
</table>
Graduate Interdisciplinary - School of Business - Subject: School of Business

Inventive Practices
This interdisciplinary graduate course focuses on 1) the practices of exemplary inventors around the world, 2) students' current invention practices, and 3) considers how student practices might be improved via applied, in-course projects and the use of exemplary inventor's practices. Students will gain a fine-grained understanding of the strengths and weaknesses of their invention practices, acquire new invention tools, and improve their abilities to inventively tackle and reframe difficult problems across a variety of disciplines. The course is deliberately open to graduate students throughout CU, particularly Master of Science and PhD students.

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Offered Spring Term</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>
Business - School of Business - Subject: School of Business

SB 681(3) Course ID:011983 2015-01-21
Logistics Strategies
This course will examine effective strategies to manage forward and reverse flow of goods in a supply chain. Students will develop the skills to perform logistical functions within an organization, as well as assess and design the overall logistics strategy of the organization. Primary topics covered include management and design of integrated logistics networks, supply chain distribution management, coordinating strategic alliances with distributive intermediaries, warehousing, transportation, international logistics and the current trends and impact of technology on contemporary supply chain channels. Case studies, articles, numerical assignments, and simulation exercises may be utilized.

Components: Lecture
Attributes: Offered Spring Term
Req. Designation: Technology

SB 682(3) Course ID:013080 2021-01-15
Logistics Strategies
Never in the history of business, customers have found it easier to order and suppliers have found it more difficult to fulfill the order than it is today. Logistics management aims to address this critical challenge in supply chains. Specifically, it concerns with cost-effective storage and movement of goods and information. Although logistics is one of the oldest commercial activity, today, it faces numerous challenges due to continuous changes in the market and technology. Effective and efficient planning, organizing, and execution of logistic activities involve appropriate material and information flows through a vast network of warehouses, transportation fleet and routes.

This course covers strategic, tactical, and operational aspects of logistics planning and execution. The topics aim to impart decision-making skills with respect to multiple logistical operations that impact the

Components: Lecture
Req. Designation: Technology

SB 684(3) Course ID:012765 2016-10-18
Venture Capital and Private Equity
The course will focus on the venture capital and private equity industries. The course will introduce students to the concepts of private equity and its various forms with a focus on venture capital. The course will explore the impact of Venture Capital and Private Equity on the US and global economy. The course will also cover the corporate and organizational structures, decision making processes, and the transactions common in the Venture Capital and Private Equity industry. The course will have examples of investment criteria, term sheets, due diligence, and investment agreements taking into account both the investor and the entrepreneurs.

Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID:</th>
<th>009543</th>
<th>Start Date:</th>
<th>2018-03-07</th>
<th>Instructor Consent Required</th>
</tr>
</thead>
</table>

Special Graduate Topics

An investigation of a problem undertaken by the student which is acceptable to and under the guidance of the faculty member and chairperson. The course provides an opportunity for the student to investigate and analyze a problem in depth on an independent study basis.

Requirement: Instructor and Program Chair permission

Components: Independent Study

Same As Offering: SB 687

Attributes: Given When Needed

Req. Designation: Technology
Business - School of Business - Subject: School of Business

SB 687(1 - 3) Course ID:009543 2018-03-07 Instructor Consent Required
Special Graduate Topics
An investigation of a problem undertaken by the student which is acceptable to and under the guidance of the faculty member and chairperson. The course provides an opportunity for the student to investigate and analyze a problem in depth on an independent study basis.
Requirement: Instructor and Program Chair permission
Components: Independent Study
Attributes: Given When Needed
Req. Designation: Technology

SB 690(6) Course ID:013022 2019-11-01
Business Analytics Capstone Project
This course is a capstone project for students who have completed a foundation business analytics education. The purpose of this course is to prepare students for a career in the quantitative analysis by developing their ability to solve complex analytical business problems in real-world settings. Primarily designed for the Master of Science in Business Analytics (MSBA) program, this course provides students with an experience that allows them to demonstrate the application of the business knowledge aimed at addressing a data-driven decision-making problem in students' chosen disciplines. This class requires both written reports and oral presentations.
Components: Independent Study
Attributes: Offered Fall and Summer
Requirement Group: Prerequisites: AC620, FN610, MK630, and OM620
Req. Designation: Technology

SB 691(6) Course ID:013021 2019-11-01
Business Analytics Thesis
This course is required for the Master of Science degree in Business Analytics (MSBA), as an alternative to the capstone project. The purpose of this course is to complete a research project in students' chosen disciplines, culminating their experiences in the MSBA Program and validating them as master practitioners. This course requires individual effort that is overseen by the course instructor, the Thesis Advisor. Weekly or bi-weekly meetings will be held to discuss progress and review submitted documents. Based upon the thesis proposal and with the approval of the Thesis Committee, students should undertake the writing of the thesis, which involves the literature review, data collection and analysis, result compilation and iterative thesis chapter revisions before the document is ready for submission to the Thesis Committee. With the approval of the Thesis Committee, a defense of the thesis will be held. Following successful completion of the Defense, the manuscript is revised a final time and once approved, can be submitted officially.
Components: Thesis Research
Attributes: Offered Fall and Summer
Requirement Group: Prerequisites: AC620, FN610, MK630, and OM620
Req. Designation: Technology

SB 693(3) Course ID:009547 2017-03-28
Seminar in International Business I
This course includes intensive study of business that represents an international experience for the students followed by a two-week trip to the area of study. Each section, centered on a unifying theme and geographic location, will include three components: structured classes, practitioner presentations, and visits to companies, governmental agencies, and important cultural sites. Students successfully completing this course will gain an understanding of the economic, political, cultural issues as well as the business practices prevalent in a region of the world that is foreign to them.
Components: Seminar
Attributes: Given When Needed
Req. Designation: Technology

SB 696(3) Course ID:009550 2015-08-19
Global Business Strategies
This course attempts to familiarize and sensitize students to current issues and practices relating to the globalization of markets. Topics include global manufacturing and international competitiveness, international marketing, international finance and international management strategies. The case study approach is used to introduce a diversity of perspectives into the classroom. This course is team-taught by faculty from the Production/Operations Management, Marketing, Finance and Organizational Studies areas.
Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology
SB 999(1 - 10) Course ID:011188 2015-01-19
Special Graduate Topics
A graduate level course for which there is no comparable Clarkson course. Used for transfer credit only.
Components: Lecture
Attributes: Transfer Credit Only
Req. Designation: Technology
School of Arts and Sciences - School of Science - Subject: School of Science

<table>
<thead>
<tr>
<th>SC</th>
<th>(2 - 4)</th>
<th>Course ID: 009551</th>
<th>2015-01-19</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC Elective</td>
<td></td>
<td>A college level course for which there is no comparable Clarkson course. Used for transfer credit only.</td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Transfer Credit Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SC</th>
<th>(2 - 4)</th>
<th>Course ID: 009552</th>
<th>2015-01-19</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC Elective</td>
<td></td>
<td>A college level course for which there is no comparable Clarkson course. Used for transfer credit only. This course may be used to satisfy a Science Foundation Curriculum Requirement.</td>
<td></td>
</tr>
<tr>
<td>Components:</td>
<td>Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>Transfer Credit Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Introduction to STEM

How do scientists and engineers think as they approach a problem? Biologists, chemists and physicists have unique approaches to problems in their respective fields and classes. Introduction to STEM provides students the basic skills and concepts they need to succeed in their first year science courses. The class is composed of three modules of Biology, Chemistry and Physics led by first year faculty in the sciences. Intended for HEOP SPREE students. Check with major department to determine whether credits count toward graduation.

Components: Lecture
Attributes: Offered Summer Term
Req. Designation: Technology
Environmental Science Elective with a Lab

Credit for this course is awarded only in the following cases: 1) receipt of a score of 4 or 5 on the AP Environmental Science Exam or 2) satisfactory completion of an approved college-level introductory environmental science course with a laboratory component. Biology, Bimolecular Science, and Environmental Science (EHS and ES&P) majors may not use credit for SC110 as one of their required biology or professional science electives.

Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID: 011632</th>
<th>SC 141(4)</th>
<th>2015-01-19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Physics I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>College-level non-calculus based physics course with lab that covers topics in mechanics. Transfer credit for this course is awarded only in the following cases: 1) receipt of a score of 4 or 5 on the AP Physics B Exam, 2) receipt of a score of 5, 6, or 7 on the International Baccalaureate Physics Higher-Level Examination, or 3) satisfactory completion of an approved college-level non-calculus based physics course.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components: Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes: Transfer Credit Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course ID: 011633</th>
<th>SC 142(4)</th>
<th>2015-01-19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intro to Physics II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>College-level non-calculus based physics course with lab that covers topics in electricity, magnetism, heat, and/or optics. Transfer credit for this course is awarded only in the following cases: 1) receipt of a score of 5 on the AP Physics B Exam, 2) receipt of a score of 7 on the International Baccalaureate Physics Higher-Level Examination, or 3) satisfactory completion of an approved college-level non-calculus based physics course.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components: Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes: Transfer Credit Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. Designation: Technology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
School of Arts and Sciences - Civil & Environmental Eng - Subject: School of Science

<table>
<thead>
<tr>
<th>Course ID</th>
<th>011428</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC 301(3)</td>
<td></td>
</tr>
</tbody>
</table>

Introduction to Geospatial Analysis and Geographic Information Systems

An introductory course in the concepts and uses of Geographic Information Systems (GIS) including analysis of GIS-based local and global geographic datasets. Provides basic knowledge of GIS theory and applications using existing state-of-the-art GIS software and current spatial data resources. Applications include: overlay analysis, spatial data query, map generation and terrain surface analysis. Students will also learn the basics of GPS data collection, remote sensing, 3D visualization, probability, statistics, and error analysis.

Components: Laboratory, Lecture

Course Equivalents: CE 301

Attributes: Offered Each Term

Req. Designation: Technology
Applications in Geospatial Analytics, Science, and Engineering

This course will use techniques in geospatial analytics, science, and engineering to address applied challenges in various contextual situations. Geotagging, network analysis, spatial visualization, geospatial data manipulation, cartographic presentations, and other similar methods will be studied and applied to real-world or research applications. Students will develop a set of tools that enable completion of projects in the major field using geospatial capabilities.

Prerequisites: Graduate standing, CE 301, or consent of the instructor

Components:
- Laboratory, Lecture

Course Equivalents:
- CE 502, EV 502

Attributes:
- Offered Spring Term

Req. Designation:
- Technology
Science Demonstrations

Science is more than just a body of knowledge, it is way of thinking and a process to be experienced. Students best learn science by engaging in its practices as they investigate observable phenomena. They must also think deeply about the concepts that cross science disciplines in order to explain those phenomena. This is the premise of the Next Generation Science Standards and the New York State Science Learning Standards modeled from them. Yet many traditional secondary science courses focus mainly on the topics or core ideas without adequately addressing the other dimensions of the course. The design of this 3-credit course is to meet the needs of students currently conducting their internship or anticipating an internship as they prepare to teach three dimensionally. Students will research publications and internet sites in order to compile a usable resource binder of activities that promote a deep understanding of science for themselves and for their adolescent students. The activities they investigate will relate to all conceptual

Components: Seminar
Attributes: Offered Spring Term

Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program

Req. Designation: Technology
Liberal Arts - Humanities & Social Sciences - Subject: Social Documentation

SD 200(3) Course ID:011481 2015-03-05

History of Social Documentation
This course will survey the history and ethics of photographic and time-based media in the representation of factual material commonly described as documentary media. From the earliest photographs of battles and other spectacles of the 19th century to the first documentary films of differing cultures of the early 20th century through the socially-charged and the propagandistic photography and films of the Soviet Union, the US Depression, and World War II and onto the networked and interactive social documentaries of today’s new media, this course will attempt to define the ever-moving boundaries of terms such as reality, nonfiction, documentary, and social action. Students will study the history of documentary media across cultures, view and analyze notable examples, do research on particular types and movements, present their findings to the class and develop documents that help explain the new, digitally-mediated documentaries.

Components: Lecture
Attributes: One communication unit, Cultures and Societies, Imaginative Arts, University Course, Offered Odd Springs
Req. Designation: Technology
The course explores social movements in the United States after World War II and allows students to describe and interpret the complex nature of cultures and societies in historical context. The movements will focus on issues of racial civil rights, workers' rights, the women's movement, the gay rights movement, the American Indian Movement and the Students' Movements. Ranging from 1945 until the present day the course illustrates the process of social, cultural, and geopolitical change over time. This is a team taught course in which students will be required to create a documentary film. Therefore students will split their time between history lectures, seminar style discussion and documentary film production. The course has 3 hours of class and 3 hours of lab per week, and students should expect to do extensive out-of-class work. Limit of 20 students. Permission of one of the instructors required.

Components:
- Lecture

Attributes:
- One communication unit, Cultures and Societies, Imaginative Arts, University Course, Given When Needed

Req. Designation: Technology

SD 480 (3)

Course ID: 011514

2015-02-09

Instructor Consent Required

Major Research Seminar

Student will confer with the client to pick a topic and direction for her/his research, and coordinate this with the instructors for SD 480 and SD 490; students will do research and complete bibliographic assignments, working with both the instructor and client; each will produce a written proposal beginning with a review of research, and then outlining the project's theoretical perspective and rhetorical strategy, concluding with an outline of how this project will translate into images (if relevant) as well as words; produce a practical plan of action for the project and present it to both client and instructor; and present the developing project in a professional context to faculty and majors from both departments.

Components:
- Seminar

Attributes:
- Two communication units, Offered Each Term

Requirement Group: Prerequisites: Must be a social documentation major, and at least junior standing

Req. Designation: Technology

SD 490 (3)

Course ID: 011677

2015-02-09

Department Consent Required

Major Research Project

Using the proposal and plan of action developed in SD 480, student will work with her/his client and the course instructor to complete the project. As part of this process, student will document her/his ongoing work to keep both client and instructor informed of her/his progress, filing periodic reports and drafts of the project as required by the instructor. The semester should conclude with a presentation of the completed project to the client and to the instructor.

Components:
- Independent Study

Attributes:
- Two communication units, Offered Each Term

Req. Designation: Technology
Other - Student Affairs - Subject: Semester in Industry

SI 300 (1 - 9)
Course ID: 010530
2018-01-16
Instructor Consent Required

Professional Internship
Practical, hands-on experience that focuses on an area directly related to the student's field of study, the internship course is an integral part of the curriculum. The student must develop all details for the internship under the supervision of the instructor and within the established course objectives; the latter will include a project that carries the course credit and is due after completion of the internship.

Prerequisites: Permission from the course instructor/student's academic advisor, the Career Center, and the International Student Advisor (if applicable.)

Components: Independent Study
Attributes: Given When Needed

Req. Designation: Technology

SI 333 (0)
Course ID: 011665
2015-05-05
Department Consent Required

Research for International Students
Practical, hands-on experience that focuses on an area directly related to the student's field of study. The student must develop all details for the research under the supervision of the instructor. Consent by the International Education Office is required.

Components: Independent Study
Course Equivalents: SI 533

Req. Designation: Technology

SI 500 (1 - 9)
Course ID: 010531
2018-01-16
Instructor Consent Required

Professional Internship
Practical, hands-on experience that focuses on an area directly related to the student's field of study, the internship course is an integral part of the curriculum. The student must develop all details for the internship under the supervision of the instructor and within the established course objectives; the latter will include a project that carries the course credit and is due after completion of the internship.

Prerequisites: Permission from the course instructor/student's academic advisor, the Career Center, and the International Student Advisor (if applicable.)

Components: Independent Study
Attributes: Given When Needed

Req. Designation: Technology

SI 533 (0)
Course ID: 011666
2014-11-20
Department Consent Required

Research for International Students
Practical, hands-on experience that focuses on an area directly related to the student's field of study. The student must develop all details for the research under the supervision of the instructor. Consent by the International Education Office is required.

Components: Independent Study
Course Equivalents: SI 333

Req. Designation: Technology
School of Arts and Sciences - Humanities & Social Sciences - Subject: Sociology

SOC 1(2 - 4)
Course ID:010822
2015-01-19
SOC Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

SOC 2(2 - 4)
Course ID:010818
2015-01-19
SOC Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.
This course may be used to satisfy a Humanities or Social Science Foundation Curriculum Requirement, depending on the specific designator.
Components: Independent Study
Attributes: Transfer Credit Only
Req. Designation: Technology

SOC 201(3)
Course ID:011801
2016-09-12
Introduction to Society
This course is intended to introduce students to the basic principles, concepts, and perspectives used as 'tools' in sociology to develop a more scientific approach to understanding human society. Major theoretical perspectives and concepts are presented, including sociological imagination, culture, social inequality, social change, and social structure. Students also explore the influence of social class and social institutions, such as churches, education, healthcare, government, economy, and environment. The family as a social structure is also examined. Students will investigate the origin and design of political, economic and social institutions, such as religion, the family, class and caste, education, urban and rural life styles, values, norms, roles, and sociocultural change. Students will learn to analyze, evaluate and critique social structures.
Components: Lecture
Attributes: Cultures and Societies, Individual and Group Behavior, University Course, Offered Fall and Spring
Req. Designation: Technology

SOC 210(3)
Course ID:012833
2022-02-11
Sociology of the Family
This course will provide an opportunity to look at something familiar (the family) in a new way. We will focus on the family as a social institution—a set of structured social arrangements for meeting certain human needs—and we will examine the larger social forces that shape those structures. We will use a comparative approach to families, emphasizing their diversity both across time and space and within present-day U.S. society—paying particular attention to how social inequality shapes family experiences. By the end of the semester, you should be able to place your own personal experience of families in a larger social, cultural, and historical context
STUDENT LEARNING OUTCOMES: 1. Understand the causes of social inequities in family experiences. Students will learn how systems of privilege organized around gender, race, class, and sexual orientation structure family life. 2. Think critically about how family shapes social life at both individual and structural levels. 3.
Components: Lecture
Attributes: One communication unit, Individual and Group Behavior, Offered Even Springs
Req. Designation: Technology
Introduction to Race and Ethnicity

Variations in phenotype—skin color—have always existed, but has 'race'? What are the bases of racial identity in the contemporary United States? How have they changed? How are 'race' and 'ethnicity' related? In this course we will address broader questions about race by focusing on contemporary racial and ethnic divisions and by examining the history of these concepts in the Western Hemisphere.

Components: Lecture
Attributes: One communication unit, Contemporary and Global Issues, Individual and Group Behavior, University Course, Given When Needed
Req. Designation: Technology
Women and Religion
This course will examine the position of women in the major religious traditions of the world, with a special concentration on Christianity. Historically and cross-culturally women have largely been relegated to the status of the profane and passive other in the domain of the religious. This religious alienation has profound implications not only for the spiritual lives of women but for the personal, social, political, and economic aspects of their existence as well. This course will explore andocentric patterns of domination as they are grounded in and legitimated by religious systems of meaning. We will also explore transformative alternatives that exit within the worlds' religious traditions themselves in an effort to identify sources of empowerment, mutuality and justice for women and men.

Components:
- Lecture

Attributes:
- One communication unit, Contemporary and Global Issues, Cultures and Societies,
- University Course, Offered Odd Falls

Req. Designation:
- Technology

Medical Sociology
This course provides an introduction to the sociological study of health and the institution of medicine. This includes exploring questions such as: How is social inequality connected to our health? Is healthcare enough to remedy any health inequalities that might exist? Why is it that so many things are being classified as diseases these days, when we used to just think of them as eccentricities? Nowadays, people often think of themselves as customers as well as patients—how is this change related to broader social changes about the role of medicine? Through this course, you will develop a strong understanding of the contributions that sociology has made to the study of health and illness, as well as a mature perspective on many of our society's pressing health issues.

NOTE: SOC201 (intro to society) or pre-health focus are recommended, but not required.

Components:
- Lecture

Attributes:
- One communication unit, Individual and Group Behavior, Given When Needed

Req. Designation:
- Technology

Health, Wealth, Inequality and the Environment
(Cross-listed with SOC530/EV530) This course will examine how social inequality impacts the relationship of people to their environment and how it affects their physical well being. We will look at how social and political structures perpetuate conditions of injustice for low-income communities and communities of color. One emphasis of this course will be on how social inequality impacts environmental factors involved in transmission of communicable diseases and hazards due to exposure to chemical and physical materials in our environment. We will examine sociological and public health literature pertaining to environmental health on a global level and also address public policies that may affect health and environmental justice.

Components:
- Lecture

Course Equivalents:
SOCE530

Attributes:
- One communication unit, Contemporary and Global Issues, Science, Technology and Society, University Course, Offered Odd Springs

Req. Designation:
- Technology
SOC 351(3)
Course ID: 011222
2020-09-22
Globalization
[Cross-listed with POL 351] [Formerly LP371] This seminar style class addresses the economic, political and social change collectively referred to as 'globalization.' The concept of globalization will be analyzed from a number of perspectives. Macro-level changes are addressed as are local adaptation strategies of individuals, communities and organized groups. Special attention is paid to the role of institutions, such as corporations, national and subnational governments and non-governmental and multilateral organizations, in the globalization process. The class will work through and discuss books critical of, and sympathetic to, the globalization process.

Components: Lecture
Course Equivalents: POL 351
Attributes: One communication unit, Contemporary and Global Issues, Given When Needed
Req. Designation: Technology

SOC 490(1 - 10)
Course ID: 010745
2015-02-09
Department Consent Required
Independent Study
Designed primarily for an advanced student who wishes to pursue special interests in sociology for one or more semesters, this series allows students to design and conduct independent study projects under faculty guidance.
Prerequisite: consent of the instructor.
Components: Independent Study
Attributes: Offered Each Term
Req. Designation: Technology

SOC 498(1 - 3)
Course ID: 010761
2020-01-15
Undergraduate TA
A student assists a faculty member in teaching a course. The student engages in substantial pedagogical work beyond mastery of the course material. Such activities may include mentoring students in course work, leading class discussions, designing and presenting course modules, etc. The primary objective is for the students to work with a faculty member to learn and practice pedagogical approaches in the discipline.
Components: Independent Study
Attributes: Given When Needed
Req. Designation: Technology

SOC 530(3)
Course ID: 011857
2020-01-15
Health, Wealth, Inequality and the Environment
[Cross-listed with SOC330/EV530] This course will examine how social inequality impacts the relationship of people to their environment and how it affects their physical well being. We will look at how social and political structures perpetuate conditions of injustice for low-income communities and communities of color. One emphasis of this course will be on how social inequality impacts environmental factors involved in transmission of communicable diseases and hazards due to exposure to chemical and physical materials in our environment. We will examine sociological and public health literature pertaining to environmental health on a global level and also address public policies that may affect health and environmental justice. Graduate students will have additional work as stated on syllabus.
Components: Lecture
Course Equivalents: SOC 330
Attributes: Offered Spring Term
Req. Designation: Technology
MAT Project in Spanish (Content Area)
The MAT Project is a one-term research project whose purpose is to allow students time and supervision to develop breadth and/or depth of knowledge to become a better teacher in their certification field. What the project will entail varies greatly from student to student. The course is intended to be custom-tailored to meet the specific needs of an individual intern. MAT projects are well-grounded in research and theory, but also include a strong and extensive applied aspect, directly addressing the question: What would this look like in the classroom?
Components: Seminar
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program (or by instructor consent)
Req. Designation: Technology

Independent Study in Spanish
A graduate level course for which there is no comparable Clarkson course. This course may be used to satisfy course requirements for a graduate degree.
Components: Independent Study
Attributes: Given When Needed
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program (or by instructor consent)
Req. Designation: Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Components</th>
<th>Attributes</th>
<th>Req. Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>010087</td>
<td>Lecture</td>
<td>Transfer Credit Only</td>
<td>Technology</td>
</tr>
<tr>
<td>010088</td>
<td>Lecture</td>
<td>Transfer Credit Only</td>
<td>Technology</td>
</tr>
<tr>
<td>012944</td>
<td>Lecture</td>
<td>Transfer Credit Only</td>
<td>Technology</td>
</tr>
<tr>
<td>012945</td>
<td>Lecture</td>
<td>Transfer Credit Only</td>
<td>Technology</td>
</tr>
</tbody>
</table>
SS 220(3) Course ID:011259 2022-02-11
Introduction to Gender
This introductory course examines how being male or female translates into the social relationships of
gender. It explores the ways gender roles, identities and institutions are constructed in relation to race,
ethnicity, class, and sexuality. This course provides a general introduction to the wide array of
historical, cultural, social, political, economic, and philosophical topics usually included within the
boundaries of gender studies.
Instructors for this course come from various disciplinary backgrounds. Course content will vary among the
sections as instructors draw on their diverse disciplinary backgrounds in order to instruct students in
critical thought, intellectual empathy and global perspectives.
Components: Lecture
Attributes: One communication unit, Contemporary and Global Issues, Individual and Group Behavior,
University Course, Given When Needed
Req. Designation: Technology

SS 221(3) Course ID:011797 2022-02-11
Introduction to Sexuality
This introductory course examines how sexuality is constructed from a social perspective. It explores the
ways sex acts, sexual roles, identities, relationships and institutions are constructed in relation to race,
ethnicity, class, and sexuality. This course provides a general introduction to the wide array of
historical, cultural, social, political, economic, and philosophical topics usually included within the
boundaries of sexuality studies. Students will learn how the study of sexual intercourse and sexuality
differ among disciplines and how the interdisciplinary approach differs from a singular disciplinary focus.
Components: Lecture
Attributes: One communication unit, Cultures and Societies, Individual and Group Behavior,
University Course, Given When Needed
Req. Designation: Technology
Social and Political Issues in the Adirondacks

[Cross-listed with EV 320] The historical, social, political, and environmental factors contributing to the fabric of the Adirondack Park is an evolving social experiment. The course readings will focus upon the New York State constitutional provisions that engendered the park, the policies that shaped the park, along with the political actions that influence the park today. The Adirondack State Park is extraordinary for its history and because it is a place where human residents live and recreate in sustainable ways that conserve resources and 'forever wild' regions of the park.

Enrollment is limited to those students participating in the Adirondack Semester Program.

Components: Lecture
Course Equivalents: EV 320
Attributes: Two communication units, Cultures and Societies, Given When Needed
Req. Designation: Technology
Research Methods
This course provides an introductory survey of social science research methods. The course covers a variety of quantitative and qualitative methods. Course topics include sampling strategies, use of basic population statistics, testing differences between groups, conducting in-depth interviews and participate and non-participant observation. Students will understand different approaches to conducting research in the social sciences and which approaches to utilize to maximize the effectiveness and accuracy of social inquiry.

Components:
Lecture

Course Equivalents:
SS 580

Req. Designation:
Technology
SS 490 (1 - 10)
Course ID: 011226
2015-02-09
Department Consent Required

Independent Study
- Designed primarily for an advanced student who wishes to pursue special interests in social sciences for one or more semesters, this series allows students to design and conduct independent study projects under faculty guidance.
- **Prerequisite:** consent of the instructor.
- **Components:** Independent Study
- **Attributes:** Offered Each Term
- **Req. Designation:** Technology

SS 499 (0)
Course ID: 011228
2008-09-23

Minor Portfolio
- In this course, students complete their Liberal Arts Minor Portfolios under the direction of their minor advisor. The course is graded on a Pass-No Entry Basis.
- **Components:** Independent Study
- **Req. Designation:** Technology

SS 580 (3)
Course ID: 011925
2014-11-20

Graduate Research Methods in the Social Sciences
- In addition to all of the requirements of SS 380, graduate students will engage in additional readings and techniques determined by the instructor to enrich the specific research agenda and/or project of those students. These materials may include survey design, additional statistical training for Stata or other software packages, embedded approaches for mixed method design, implementation of semi-structured interviews, etc.
- **Components:** Lecture
- **Course Equivalents:** SS 380
- **Req. Designation:** Technology
School of Arts and Sciences - Mathematics - Subject: Statistics and Probability

STAT 1 (2 - 4)
Course ID: 011885
2015-01-19

STAT Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.

- **Components:** Independent Study
- **Attributes:** Transfer Credit Only
- **Req. Designation:** Technology

STAT 2 (2 - 4)
Course ID: 012751
2017-03-23

STAT Elective
A college level course for which there is no comparable Clarkson course. Used for transfer credit only.

- **Components:** Independent Study
- **Attributes:** Transfer Credit Only
- **Req. Designation:** Technology

STAT 282 (3)
Course ID: 008747
2017-01-11

General Statistics
(May be used to satisfy a CUSB MBA or MS foundation requirement.) Introduction to statistical methodology. Topics include descriptive statistics, probability distributions, use of computer packages for statistical data analysis, point and interval estimation, hypothesis testing, two-sample tests, comparisons, measuring and testing association, correlation, regression, and analysis of variance (ANOVA). Emphasis on applications to life sciences, social sciences, business.

- **Components:** Discussion, Lecture
- **Attributes:** Offered Each Term
- **Requirement Group:** Restriction: Not open to mathematics, applied math and statistics, or computer science majors; not open to students who have taken or are taking MA 132.
- **Req. Designation:** Technology

STAT 301 (3 - 4)
Course ID: 012832
2017-09-28

Statistics Elective
An upper-division statistics or probability course for which there is no comparable Clarkson course. Used for transfer credit only. This course may be used to satisfy the requirements of the Mathematics or Applied Mathematics and Statistics major or the Statistics minor.

- **Components:** Independent Study
- **Attributes:** Transfer Credit Only
- **Req. Designation:** Technology

STAT 318 (4)
Course ID: 011398
2015-03-05

Biostatistics
(Cross-listed with BY 318) This course introduces students to descriptive statistics, fundamentals of probability, probability distributions, and methods of statistical inference. Topics include correlation, regression, Bayes theorem, estimation, hypothesis testing, nonparametric methods, and categorical data analysis. A required 2 hour lab practicum will enable students to apply statistical concepts and analytical methods to data from a wide range of biology-related fields, such as ecology, evolution, environmental science, psychology, biotechnology, and biomedical sciences. The use of statistical software is required and data interpretation is emphasized.

- **Components:** Laboratory, Lecture
- **Requirement Group:** Prerequisites: BY140 or BY160 or equivalent; MA181 or equivalent; or consent of the instructor
- **Req. Designation:** Technology

STAT 381 (3)
Course ID: 011182
2016-08-15

Probability
(Cross-listed with MA 381) Sample spaces; axioms of probability; basic theorems; random variables (discrete and continuous); combinatorial methods; Bayes' Theorem and conditional probability; expected values and variances; distribution functions, including: binomial and multinomial, Poisson, normal and bivariate normal distributions, and others such as geometric, hypergeometric, negative binomial, exponential, gamma and beta; joint distributions; covariance and correlation; central limit theorem; geometric probability; method of transformations; introduction to stochastic processes.

- **Components:** Lecture
- **Course Equivalents:** MA 381, MA 581, STAT 581
- **Requirement Group:** Prerequisite: MA231 or MA230 (MA211 Recommended)
- **Req. Designation:** Technology
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Components</th>
<th>Requirement Group</th>
<th>Prerequisites</th>
<th>Req. Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>011184</td>
<td>Mathematical Statistics</td>
<td>Lecture</td>
<td></td>
<td>Lecture</td>
<td>MA/STAT381</td>
<td>Technology</td>
</tr>
<tr>
<td>008779</td>
<td>Probability and Statistics</td>
<td>Lecture</td>
<td></td>
<td>Offered Fall, Spring, and Summer</td>
<td>MA132</td>
<td>Technology</td>
</tr>
<tr>
<td>008780</td>
<td>Advanced Applied Statistics</td>
<td>Lecture</td>
<td></td>
<td>MA230 or MA231, and STAT383 or STAT389</td>
<td>Technology</td>
<td></td>
</tr>
<tr>
<td>011982</td>
<td>Bayesian Data Analysis</td>
<td>Lecture</td>
<td>Given When Needed</td>
<td>Prerequisites: STAT 383 or MA/STAT 381</td>
<td>Technology</td>
<td></td>
</tr>
<tr>
<td>012934</td>
<td>Probability and Statistics with Multivariate Analysis</td>
<td>Lecture</td>
<td></td>
<td>MA230 or MA231. Students may not enroll in STAT389 if they have credit for STAT383.</td>
<td>Technology</td>
<td></td>
</tr>
</tbody>
</table>
School of Arts and Sciences - Mathematics - Subject: Statistics and Probability

Directed Study in Probability and Statistics

<table>
<thead>
<tr>
<th>Course</th>
<th>ID</th>
<th>Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT</td>
<td>409(1 - 10)</td>
<td>2014-12-04</td>
<td>Instructor Consent Required</td>
</tr>
</tbody>
</table>

(Cross-listed with MA 409) A directed study in Probability and Statistics, intended to give a student the opportunity to further explore an area of interest to them under the supervision of a faculty member.

- **Components:** Independent Study
- **Course Equivalents:** MA 409
- **Req. Designation:** Technology

Statistics Projects

<table>
<thead>
<tr>
<th>Course</th>
<th>ID</th>
<th>Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT</td>
<td>488(1 - 3)</td>
<td>2015-01-29</td>
<td>Instructor Consent Required</td>
</tr>
</tbody>
</table>

Students engage in statistical projects under the supervision of a faculty member. The topic will be determined by student interest and faculty research programs. This course may be repeated for a maximum total of three credits.

- **Prerequisite:** consent of the instructor.
- **Components:** Independent Study
- **Attributes:** One communication unit, Given When Needed
- **Req. Designation:** Technology

Probability

<table>
<thead>
<tr>
<th>Course</th>
<th>ID</th>
<th>Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT</td>
<td>581(3)</td>
<td>2016-08-15</td>
<td>Lecture</td>
</tr>
</tbody>
</table>

(Cross-listed with MA 581) Sample spaces; axioms of probability; basic theorems; random variables (discrete and continuous); combinatorial methods; Bayes' Theorem and conditional probability; expected values and variances; distribution functions, including: binomial and multinomial, Poisson, normal and bivariate normal distributions, and others such as geometric, hypergeometric, negative binomial, exponential, gamma and beta; joint distributions; covariance and correlation; central limit theorem; geometric probability; method of transformations; introduction to stochastic processes.

- **Components:** Lecture
- **Course Equivalents:** MA 381, MA 581, STAT 381
- **Req. Designation:** Technology

Mathematical Statistics I

<table>
<thead>
<tr>
<th>Course</th>
<th>ID</th>
<th>Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT</td>
<td>582(3)</td>
<td>2014-11-18</td>
<td>Lecture</td>
</tr>
</tbody>
</table>

(Cross-listed with MA 582) A rigorous course in statistics. Topics include random variables and their distributions, data reduction, estimation, sampling distributions, testing, optimal tests, analysis of variance and nonparametric statistics. A large project is required.

- **Components:** Lecture
- **Req. Designation:** Technology

Advanced Applied Statistics

<table>
<thead>
<tr>
<th>Course</th>
<th>ID</th>
<th>Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT</td>
<td>584(3)</td>
<td>2014-12-05</td>
<td>Lecture</td>
</tr>
</tbody>
</table>

Review of basic concepts (estimation, testing and simple linear regression). Multiple regression, analysis of variance and experimental design. Additional topics may include nonparametric statistics, goodness of fit tests, analysis of covariance and quality control. This course will require use of statistical software. Interpretation of computer output and applications will be emphasized throughout.

- **Prerequisites:** STAT383 or equivalent.
- **Components:** Lecture
- **Req. Designation:** Technology

Bayesian Data Analysis

<table>
<thead>
<tr>
<th>Course</th>
<th>ID</th>
<th>Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT</td>
<td>585(3)</td>
<td>2022-05-05</td>
<td>Lecture</td>
</tr>
</tbody>
</table>

(Cross-listed MAS85) This course will introduce both the principles and practice of Bayesian methods for data analysis. This is a hands-on course that will use MATLAB software. Students will learn to write their own Bayesian computer programs to solve problems relevant to engineering, biology, chemistry, physics, earth science, ecology, economics, signal processing and machine learning. Topics that will be included are parameter estimation, model selection, time series and error analysis.

- **Components:** Lecture
- **Course Equivalents:** MA 585
- **Req. Designation:** Technology

Directed Study in Probability and Statistics

<table>
<thead>
<tr>
<th>Course</th>
<th>ID</th>
<th>Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT</td>
<td>709(1 - 10)</td>
<td>2015-01-29</td>
<td>Instructor Consent Required</td>
</tr>
</tbody>
</table>

A directed study in Probability and Statistics, intended to give a student the opportunity to further explore an area of interest to them under the supervision of a faculty member.

- **Components:** Independent Study
- **Req. Designation:** Technology
History and Philosophy of Science and Math

This course looks at teaching STEM-related content from historical and philosophical perspectives, as its title suggests. In this course you will not only assimilate the concepts presented but will also evaluate and create instructional strategies and materials that can infuse these concepts into your own secondary courses. This expectation is in many respects more demanding and time-consuming than expecting you to learn an abundance of historical detail and philosophical argument and regurgitate it back on an examination. This course will argue that historical and philosophical content can be used to enhance secondary students' understanding of the STEM concepts and methods they are expected to attain and ask you to develop or restructure lessons and materials to illustrate that enhancement. Ideally, having science, mathematics, and technology students in the course this year will enhance the general knowledge of all participants and help them distinguish between the unique elements of each enterprise.

Components:
Lecture

Attributes:
Offered Fall Term

Req. Designation:
Technology
STEM Pedagogy and Professionalism

STEM Pedagogy and Professionalism is designed to help graduate students, particularly graduate TAs, develop the skills necessary to be successful in their graduate programs as instructors and in their future roles as academics. The course will highlight methods for developing and enhancing the pedagogical content knowledge and instructional skill set of graduate STEM teaching assistants. Within the context of STEM learning; audience, environment, nature of science, formative assessment, models of instruction, learning theory, and reflective practice will be studied. A focus on STEM literacy, will help TAs think critically about multiple data sources in order to promote higher-order thinking skills among their students. The course also addresses intercultural communication in the classroom; providing an opportunity for students to improve their cultural and sociolinguistic competence. In particular, students will work on developing their professional communication skill set including oral comprehensibility, impromptu speaking skills and

<table>
<thead>
<tr>
<th>Components:</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
<td>Offered Summer Term</td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
</tr>
</tbody>
</table>
Analyzing Scientific and Math Theories from Philosophical & Historical Perspectives

This 3-credit course is neither a history of STEM disciplines course nor a philosophy of STEM disciplines course. Rather, it is a course that looks at teaching STEM-related content from historical and philosophical perspectives, as its title suggests. This is an important distinction for several reasons. First, we believe that you will be best served by an introduction to history and philosophy of STEM disciplines and nature of STEM core concepts which are taught in a manner and at a level that models effective teaching. Modeling the teaching of these concepts in the course will provide you with strategies you might use with your own middle and high school students. Second, we are hoping that you will not only assimilate the concepts presented but will also evaluate and create instructional strategies and materials that can infuse these concepts into your own secondary courses. This expectation is in many respects more demanding and time-consuming than expecting you to learn an abundance of historical detail and philosophical argument and

Components: Seminar
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program

Req. Designation: Technology
Science, Technology & Society Elective

A college level course for which there is no comparable Clarkson course. Used for transfer credit only. This course may be used to satisfy the Science, Technology & Society Knowledge Area requirement.

Components: Independent Study
Attributes: Science, Technology and Society, Transfer Credit Only
Req. Designation: Technology
HEOP Perspectives on Science & Technology

This course is designed to be used in the HEOP Summer Program for incoming students. It helps students develop their critical thinking and writing skills in preparation for their college courses. Offered Pass/No Credit.

<table>
<thead>
<tr>
<th>Course ID: 008616</th>
<th>2020-05-17</th>
<th>Instructor Consent Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components:</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Attributes:</td>
<td>One communication unit, Science, Technology and Society, Offered Summer Term</td>
<td></td>
</tr>
<tr>
<td>Requirement Group:</td>
<td>Prerequisite: For HEOP students only.</td>
<td></td>
</tr>
<tr>
<td>Req. Designation:</td>
<td>Technology</td>
<td></td>
</tr>
</tbody>
</table>
Institute for STEM Education - CRC Education Program - Subject: Teaching English

TE 501(1)
Course ID: 012814
2021-10-08

CAS Residency
The TESOL Teaching Practicum course provides an opportunity for students to apply the skills learned concurrently in Foundations of Teaching TESOL (TE540), and English Grammar (TE530) in a classroom setting. The practicum provides TESOL students with an opportunity to observe TESOL instruction and practice instructional techniques in preparations for the Fall Teaching Internship. TESOL students will be placed in local settings and will participate in this online course to share and reflect upon classroom experiences. Students will be placed in summer school ENL classes, community-based English language classes, or local community college/university English language classes as a volunteer, first observing and then assisting in instruction. The goal of the practicum is to give the TESOL student practical experience in all areas of teaching ELLs through observation and participation.

Components:
Field Studies

Attributes:
Given When Needed

Req. Designation: Technology

TE 502(2)
Course ID: 013011
2020-01-08

MAT ESOL Practicum
The TESOL Teaching Practicum course (1 credit) provides an opportunity for students to apply the skills learned concurrently in Foundations of Teaching TESOL (TE540), and Curriculum and Methods of Teaching ESOL (TE513) in a classroom setting. The practicum provides TESOL students with an opportunity to observe ESOL instruction and practice instructional techniques in preparation for the first ENL Residency. TESOL students will be placed in local settings for at least 6 hours a week and will participate in this online course to share and reflect upon classroom experiences. Students will be placed in summer school ENL classes, community-based English language classes, or local community college/university English language classes as a volunteer, first observing and then assisting in instruction. The goal of the practicum is to give the TESOL student practical experience in all areas of teaching ELLs through observation and participation. 35 hours of filed experience in K-12 ENL are required in this 6 week course (6 hours per week).

Components:
Practicum

Attributes:
Offered Each Term

Req. Designation: Technology

TE 513(3)
Course ID: 012937
2019-03-27

Curriculum and Methods of Teaching ESOL
This course serves as an introduction to the theory and practice of ESOL teaching. We will examine key aspects of current theories, methods of instruction, and assessment in TESOL education. This course is based on a view of teaching and learning as facilitated by social interaction and that each individual brings unique background knowledge and beliefs to their learning.

Components:
Lecture

Attributes:
Given When Needed

Req. Designation: Technology
Language and Identity in the Multicultural Classroom

This asynchronous course provides a conceptual framework to examine the roles of language, culture, and identity in the multicultural classroom. We will consider the perception of language as an asset and source of conflict at home, in schools, and across communities. Candidates will study different linguistic and cultural groups representative of those across NYS, paying particular attention to attributes of collectivistic cultures that inform teaching within the local context. Additionally, we will explore classroom dynamics in a multilingual environment, including the intersectionality of race, gender, socioeconomics, and immigrant status. Candidates will develop a deeper understanding of sociolinguistic factors that contribute to a culturally responsive classroom that yields equitable achievement outcomes for linguistically diverse students. (15 hours field work required)

Components:
- Lecture

Attributes:
- Given When Needed

Req. Designation:
- Technology
Teaching & Assessment Methods for TESOL

TESOL Teaching Methods will introduce students to the NYS New Language Arts Progressions (part of the Bilingual Common Core Initiative), TESOL and WIDA National Standards, formative and summative assessments (including NYSITELL and NYSESLAT), and methodology for integrated, stand-alone, and content-based instruction for ELLs. Students will gain expertise in lesson planning, delivery and assessment; collaboration and co-teaching; state regulations; culturally relevant instruction; advocating for ELLs; and practical pedagogy for English Language Learners, pre k-12.

Components: Seminar
Attributes: Given When Needed
Req. Designation: Technology
TE 519(3) Course ID:013157 2022-03-18
Methods and Materials for Bilingual Instruction and Assessment
This asynchronous course prepares candidates to teach and assess literacy in students’ home and new languages. We will approach biliteracy and translinguaging practices with the view of language as an asset, and we will analyze and evaluate course content through a lens of equity. Specifically, we will explore effective methods of instruction and assessment of ELLs’ skills in English and their native language in the bilingual classroom. As we discuss theories and components of reading, candidates will deepen their knowledge of reading processes in learners’ first and new languages. Through a comparative analysis of English and the native language, we will survey and evaluate texts and instructional materials to promote native language literacy development. As we consider strategies and tools for instruction and assessment, candidates will create an annotated bibliography of resources to support native language arts and bilingual instruction. Additionally, candidates will create a series of

Components:	Lecture
Attributes:	Given When Needed
Req. Designation:	Technology

TE 521(3) Course ID:013158 2022-03-18
Teaching Content in a Bilingual Context
The asynchronous course explores the role of academic language across the curriculum and the power of the native language in the bilingual classroom to increase access to grade-level content for English language learners. Through text, discussion, observation, and application, we will identify opportunities to leverage the role of ELLs’ native languages to promote transfer of knowledge and skills while increasing students’ membership and agency in the classroom.

As we study and apply the principles of content-based instruction for ELLs, we will consider effective strategies and practical techniques for assessment in core curricular areas. Guided by the NYSED Culturally Responsive Sustaining Framework, we will approach this work with a shared vision of yielding equitable academic outcomes for ELLs.

Throughout the course, candidates will describe and evaluate culturally responsive pedagogy and materials to advance ELLs’ content knowledge while differentiating instruction and assessment for diverse learners.

Components:	Lecture
Attributes:	Given When Needed
Requirement Group:	Prerequisites: TE513 or TE517
Req. Designation:	Technology
Institute for STEM Education - CRC Education Program - Subject: Teaching English

TE 530(3)
Course ID: 012816
2018-08-02

English Grammar for the ENL Teacher

English Grammar is a course on the structure, analysis, and methods of teaching American English grammar to English language learners. The dual purpose of this course is to develop a thorough understanding of the forms and use of English grammar systems as well as develop instructional strategies for teaching English grammar to speakers of other languages in a communicative and meaningful way.

Components:
- Lecture

Attributes:
- Offered Summer Term

Req. Designation: Technology

TE 531(3)
Course ID: 012818
2022-04-08

TESOL English Linguistics

English Linguistics is an introduction to linguistics for Teachers of English to Speakers of Other Languages. It presupposes little or no formal linguistic knowledge. We will study the rudiments of phonetics, phonology, syntax, morphology, semantics, sociolinguistics and language acquisition. We will study linguistics both as an end in itself and as it informs classroom teaching. This course will prepare students to teach English as a New/Second Language, with a firm knowledge of the linguistic challenges English presents to language learners. Discussions and connections between theory and practice are a significant component of this course.

Components:
- Seminar

Attributes:
- Given When Needed

Req. Designation: Technology

TE 540(3)
Course ID: 012817
2019-04-12

Foundations of Teaching TESOL

Foundation of Teaching TESOL serves as an introduction to the theory and practice of second language (SL) teaching. In an intensive 6 week online format, students will be immersed in activities to create a strong foundation of knowledge on language development, standards and policy, and pedagogy. We will examine key aspects of historical and current theories of second language acquisition, as well as methods of instruction and assessment in SL education. Language modalities, language functions, content and context-based instruction will be introduced. This course is based on a view of teaching and learning as facilitated by social interaction in which each individual brings unique background knowledge and beliefs to their learning. It is expected that students will make connections between the readings and learning activities of the Foundations course to their experiences in the Teaching Practicum (TESOL501).

Components:
- Lecture

Attributes:
- Offered Summer Term

Req. Designation: Technology

TE 542(3)
Course ID: 012819
2021-10-08

TESOL Literacy (Online and In School Settings)

TESOL Literacy introduces students to issues in reading, writing and new literacies for students who are learning a new or second language. We will review current instructional practices in light of theoretical foundations, educational policy, and culture forces that shape acquisition and development of a new/second language. In addition, we will dissect practical strategies for teaching English language learners. Your understanding of course ideas and issues will be assessed frequently through a variety of on-line discussions, assignments, activities, and a final project. This course includes 20 hours of required field experience.

Components:
- Seminar

Attributes:
- Given When Needed

Req. Designation: Technology

TE 552(5)
Course ID: 012820
2021-07-22

TESOL Teaching Residency I

The 5-credit Residency I begins after the resident completes the New York State required Field Practicum, TE 501, during the summer semester. The Resident will first observe and co-teach with his/her Mentor at the beginning of the school year. The Resident is expected to gradually assume responsibility for two of the mentor's classes, at first co-teaching with the Mentor, but independently teaching within 5 weeks, if prepared to do so. After successful completion of the first teaching residency in the fall (either K-6 or 7-12), the Resident will complete a second residency in the spring semester to fulfill the K-12 residency requirement. A full-year intern is in school for a minimum of half of the school day. Which half of the day depends on the schedule assigned to the Mentor by the school district. During the spring semester, the resident will complete the requirements of edTPA.

Components:
- Field Studies

Attributes:
- Offered Each Term

Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program.

Req. Designation: Technology
TE 552(5)
Course ID: 012821
2021-07-22

TESOL Teaching Residency II

The 5-credit residency (either grade K-6 or 7-12) begins in the second semester. The Resident is expected to gradually assume responsibility for two of the mentor's classes, at first co-teaching with the Mentor, but independently within 6 weeks, if prepared to do so. Teaching Residency II fulfills the second half of a full year K-12 experience and follows the successful completion of a fall semester residency. A full-year resident is in school for a minimum of half of the school day. Which half of the day depends on the schedule assigned to the Mentor by the school district. During the spring semester the Resident will complete the requirements of edTPA.

Components: Field Studies
Attributes: Offered Each Term
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program
Req. Designation: Technology

TE 553(5)
Course ID: 013031
2020-08-25

TESOL: Teaching Residency for Initially Certified Teachers I

This course is open only to students matriculated in the Master of Arts in Teaching ESOL program who have been initially certified as teachers in NYS. The 5-credit residency begins after the resident student completes the New York State required Field Practicum, TE 501. The resident will first observe and co-teach with his/her mentor teacher. The resident is expected to gradually assume responsibility for some of the mentor's classes, at first co-teaching with the mentor, and then independently teaching when prepared to do so. After successful completion of the first teaching residency (TE 553), the resident will complete a second residency (TE 554). Students will complete a minimum of 20 full days at the elementary level and 20 full days at the secondary level to reflect the NYS requirement.

Components: Field Studies
Attributes: Given When Needed
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program
Req. Designation: Technology

TE 554(5)
Course ID: 013030
2021-12-31

TESOL: Teaching Residency for Initially Certified Teachers II

This course is open only to students matriculated in the Master of Arts in Teaching ESOL program who have been initially certified as teachers in NYS. The 5-credit residency begins after the resident student completes TE 553 - TESOL Teaching Residency for Initially Certified Teachers I. The resident is expected to gradually assume responsibility for two of the mentor teacher's classes, at first co-teaching with the mentor, and then independently teaching when prepared to do so. This ENL residency fulfills the second half of the residency experience. Students will complete a minimum of 20 full days at the elementary level and 20 full days at the secondary level to reflect the NYS requirement.

Components: Field Studies
Attributes: Given When Needed
Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program
Req. Designation: Technology

TE 580(3)
Course ID: 012822
2021-12-28

TESOL Project

The TESOL Project is a one semester, online research project class whose purpose is to allow students time and supervision to develop breadth and/or depth of knowledge to become a better teacher in the field of TESOL. What the project will entail varies greatly from student to student. The course is intended to be custom-tailored to meet the specific needs of an individual intern and their teaching setting. TESOL projects are well-grounded in research and theory, but also include a strong and extensive applied aspect, directly addressing the question: What would this look like in the classroom?

Components: Seminar
Requirement Group: Corequisites: ED550, TE517, TE531, ED502, TE551 OR TE553
Req. Designation: Technology
Liberal Arts – Humanities & Social Sciences – Subject: Technology

TECH 100(3) Course ID:011458 2015-01-19
Design Technology
Credit for this course is awarded only in the following cases: 1) receipt of a score of 5 through 7 on the International Baccalaureate Design Technology Higher-Level Examination or 2) satisfactory completion of a college-level course that meets the criteria for a Technology Course but for which there is not an appropriate Clarkson course prefix.

Attributes: Transfer Credit Only
 Req. Designation: Technology
Institute for STEM Education - CRC Education Program - Subject: Technology

TECH 575(3) Course ID:013146 2021-12-03
Manufacturing Processes and Design for Manufacturing
This course will introduce the student to the fundamentals of manufacturing processes and design for manufacturing. The course will begin by examining the history and evolution of modern manufacturing technology. This section will include an examination of scientific management and modern industrial management. Modern manufacturing operations will then be examined including machining, casting, forging, welding, brazing, soldering, finishing, heat treating, assembly, and plastic materials processing. This section will also include electronics manufacturing, covering both through-hole technology and surface mount devices. For each manufacturing process, capabilities and limitations will be discussed and how they relate to part design and cost. Design for manufacturing principles will be examined, including how the designer affects manufacturing cost, lean manufacturing, six sigma, value stream analysis, manufacturing rate, the cost of quality, process flexibility, process simulation, and process economics.

Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology

TECH 580(3) Course ID:012712 2021-10-08
MAT Project in Technology (Content Area)
[Formerly TEC 580] The MAT Project is a one-term research project whose purpose is to allow students time and supervision to develop breadth and/or depth of knowledge to become a better teacher in their certification field. What the project will entail varies greatly from student to student. The course is intended to be custom-tailored to meet the specific needs of an individual intern. MAT projects are well-grounded in research and theory, but also include a strong and extensive applied aspect, directly addressing the question: What would this look like in the classroom?

Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program (or by instructor consent)

Req. Designation: Technology

TECH 988(3) Course ID:012713 2018-06-13
Independent Study in Technology
[Formerly TEC 988] A graduate level course for which there is no comparable Clarkson course. This course may be used to satisfy course requirements for a graduate degree.

Components: Independent Study
Attributes: Given When Needed

Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program (or by instructor consent)

Req. Designation: Technology

TECH 989(3) Course ID:012714 2018-06-13
Independent Study in Technology
[Formerly TEC 989] A graduate level course for which there is no comparable Clarkson course. This course may be used to satisfy course requirements for a graduate degree.

Components: Independent Study
Attributes: Given When Needed

Requirement Group: Restriction: This course is open only to students matriculated in the Master of Arts in Teaching program (or by instructor consent)

Req. Designation: Technology
UNIV 100(0)
Course ID: 011564
2022-01-21
Department Consent Required

The Success Seminar
This course is designed to provide strategies to help students succeed in classes and empower them to become active, responsible learners. During this course, students will learn several useful strategies regarding self-awareness, establishing goals, developing supportive relationships, identifying preferred learning styles, managing time, taking notes, and developing strategies for more effective reading of texts.

- **Components:** Lecture
- **Course Equivalents:** FY 100
- **Attributes:** Offered Spring Term
- **Requirement Group:** Restriction: Freshman &/or Sophomore Standing
- **Req. Designation:** Technology

UNIV 102(0)
Course ID: 012952
2020-12-15

Strategies for Becoming your Best-Balanced Self
This seminar-style course is an intentional and integrated effort to promote whole person wellness to maximize academic, professional and personal success. By exploring the areas of physical, financial, spiritual, professional, and emotional wellness, students will begin to develop an individualized definition of success. Students will learn about creating a work-life balance as their academic career becomes more rigorous with the goal of becoming better prepared for their professional job search, make confident academic major choices, and develop a greater understanding of post-graduate career options. Students will be encouraged to engage in decision making regarding curricular and co-curricular experiences from a wellness perspective. The course is a collaborative effort across multiple Clarkson University departments designed to provide a supportive mechanism, in addition to academic advising, for further soft-skill development and resilience habits.

- **Components:** Seminar
- **Attributes:** Offered Fall Term
- **Req. Designation:** Technology
The Clarkson Seminar welcomes first year students into a world of cultures, histories, and the global forces that will shape their personal and professional lives beyond Clarkson. Students will learn to define issues within a broad cultural context and gain experience evaluating and interpreting literary and nonliterary texts. Seminar classes will be a small and thematically structured, with an emphasis on discussion, critical reading and thinking, extensive writing, and collaborative work.

Components: Lecture
Attributes: Offered Fall Term
Req. Designation: Technology
Business - School of Business - Subject: University

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course ID</th>
<th>Semester</th>
<th>Instructor Consent Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIV 267(3)</td>
<td>011271</td>
<td>2022-02-10</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Introduction to Canada

This course will introduce students to Canada and the US-Canada relationship. In particular, the course will cover a broad swath of topics across academic disciplines including: geography, history, sociology, politics/government, economics, and the arts. Particular emphasis will be placed on comparing and contrasting Canada and the United States, but will also cover important current events and other issues unique to Canada, including the Quebec question and the future of Canada. The course will be a blend of classroom lectures/discussions and experiential trips to major Canadian cities/regions, including Ottawa, Montreal, Quebec, and Toronto.

Components: Lecture

Attributes: Contemporary and Global Issues, Cultures and Societies, University Course, Given When Needed

Req. Designation: Technology
Global Service

The focus of this course is a one-to-two week trip abroad for a service learning experience. Each section, centered on a unifying theme and geographic location, will include three components: experience, reflection and action. Through community connections and hands-on experience, students develop deeper global awareness and stronger critical thinking and problem solving skills. Students will return empowered to make positive change in their community and beyond. The travel group will spend quality time in a community, getting to know the people and their way of life. The course instructor works directly with the community to assure each group has a valuable, impactful visit. UNIV 299 is a repeatable course allowing a student to receive credit on completing two or more different Global Service experiences.

Components: Independent Study

Attributes: Offered Spring Term

Req. Designation: Technology
UNIV 349(3) Course ID:012035 2017-01-27

International Service Learning
This course involves collaboration with non-governmental organization to develop appropriate technology and improve quality of life in a target community overseas. During a semester-long class that meets weekly, students develop an appreciation of the issues involved in international development and an understanding of the context of their project, while at the same time working in teams to solve technological problems according to the NGO’s specifications and community’s needs. Following the end of the semester, students will visit the community to present their solutions, provide necessary training, and assist in implementation of the technology. Through a combination of classroom and experiential learning in the community, students will gain global awareness, improve critical thinking and problem solving skills, and get to know a foreign place and people

Components: Lecture
Attributes: Cultures and Societies, Offered Spring Term
Req. Designation: Technology
UNIV 359(1) Course ID:013012 2020-01-09

Doctors Without Borders Global Experience
This one-credit pass/fail course is designed for students chosen for the CU Doctors Without Borders out-of-country trip that occurs each summer. This course will provide an in-depth review of ethical volunteering practices, culture of the chosen country to prepare students for competency in language, values, beliefs/religions, clothing, and food. Preparation for medical volunteering will also be incorporated into this course through training on how to take vitals, as well as through the discussion of medical terminology and medical practices of the chosen country.

Components: Lecture
Attributes: Given When Needed
Req. Designation: Technology
Global Experience
This course includes intensive study of issues in a country or region outside of the United States followed by a two- to three-week trip abroad to that location. Each section, centered on a unifying theme and geographic location, will include three components: structured classes, practitioner presentations, and visits to companies, governmental agencies, and important cultural sites. Students successfully completing this course will gain a better perspective on the economic, political, cultural issues as well as the business practices prevalent in another region of the world. Students should develop cultural awareness, an understanding of economic, cultural, and political differences between the US and other countries, and the role cultural, historical and political factors play in the conduct of business in a global economy. UNIV399 is a repeatable course allowing a student to receive credit on completing two or more different Global Study experiences. On approval from the Dean of the School of Business, this course can satisfy global business

Components:
- Lecture

Attributes:
- Contemporary and Global Issues, Cultures and Societies, University Course, Offered
- Spring Term

Req. Designation:
- Technology