Chemical and Biomolecular Engineering

Student Handbook

2020-2021
Introduction

Welcome to the Department of Chemical and Biomolecular Engineering at Clarkson University! Chemical engineering merges the application of chemistry and biology with mathematics and physics to create and develop new engineering platforms, theories and products. It is a versatile discipline offering opportunities for graduates in traditional and emerging markets, such as in the design of plastic parts for automobiles and aircraft, specialized fuels and biofuels, biomaterials, therapeutic proteins and other drugs, processed foods, computer chips, paints, fibers, batteries and solar cells. Example tasks that chemical engineers direct include product development, process design, manufacturing, quality control, pollution control, marketing, and technical sales. Why is Clarkson a great place to prepare for that career? Because we provide a challenging curriculum in a supportive environment and encourage the individual development of each student.

Upon graduation, some of our students seek employment directly, while others go on to graduate school or other professional programs (e.g., medical school, law school). Chemical engineering truly opens the door to many career choices! To prepare for these diverse career paths, your education will include fundamentals of chemistry, applied math, science and engineering with hands-on practical experience. In addition, the curriculum is well rounded with course requirements in the liberal arts, including history, ethics, and communications; these courses are vital towards your development as a professional engineer able to make significant, meaningful contributions to society.

This handbook has been written to answer questions that you might have upon entering Clarkson University in the Chemical and Biomolecular Engineering Department. I encourage you to use this handbook as a reference source throughout your career here. You will find information about academic advising, the curriculum, some Clarkson services, special programs, and advice about semester planning. If the information you need is not present, or you require more details, consult the references listed on page 18; they will lead you to the information you need. If these sources lack the answer you are looking for, see your advisor, he or she is always willing to help you. If you cannot locate your advisor, contact the department office (220 CAMP, Tel. (315) 268-6665).

Again, welcome to the Department of Chemical and Biomolecular Engineering, and I look forward to meeting you. All the best for the upcoming academic year!

Elizabeth J. Podlaha-Murphy
Department Chair
INTRODUCTION ... 1
CHEMICAL ENGINEERING PROGRAM EDUCATIONAL OBJECTIVES .. 4
BEING A STUDENT .. 4
 Introduction ... 4
 Self-reliance .. 4
 Professionalism .. 4
 Code of Ethics ... 5
ADVISORS .. 5
 Introduction ... 5
 Advisor – Student Relationship .. 5
 What is the Advisor’s Responsibility? 6
 What is the Student’s Responsibility? 6
CURRICULUM ... 6
 Introduction ... 6
 Chemical Engineering Curriculum 6
 Requirements of the Clarkson Common Experience 7
 Other Electives ... 9
SPECIAL PROGRAMS .. 10
 Certificate Programs .. 10
 Chemical Engineering Honors Program 10
 Biomolecular Engineering Concentration 10
 Materials Engineering Concentration 11
 Environmental Engineering Concentration 11
MINORS ... 10
 Biomedical Engineering Minor ... 11
 Business ... 11
 Chemistry ... 11
 Environmental Engineering .. 11
 Environmental Policy .. 11
 Environmental Science ... 11
 Liberal Arts .. 11
 Mathematics ... 11
 Physics .. 12
 Sustainable Energy Systems Engineering 12
OTHER AREAS OF STUDY .. 12
 Dual Degree ... 12
 Second Degree ... 12
 Double Majors .. 12
 Engineering MBA-MS 4 + 1 Program 12
STUDENT ACADEMIC RECORDS .. 13
CHANGING MAJORS .. 13
TRANSFER CREDIT .. 13
CROSS REGISTRATION

ENGLISH AS A SECOND LANGUAGE TEST

FUNDAMENTALS OF ENGINEERING EXAM (FE EXAM)

GRADUATE SCHOOL

CAREER PLANNING

Cooperative Education Program

Study Abroad Program

SOCIETIES AND ACTIVITIES

Professional Societies

Honor Societies

Awards

CLARKSON SERVICES

The Student Administrative Services Center

The Counseling Center

Student Success Center

The Student Health Center

The Writing Center

Career and International Center

Extracurricular Activities

REFERENCES

IMPORTANT PHONE NUMBERS

Chemical and Biomolecular Engineering Department:

Chair:

Executive Officer:

Department Secretaries:

Emergency:

DIAL “911” (OFF CAMPUS EMERGENCIES) POTSDAM POLICE AND RESCUE SQUAD

FACULTY

APPENDIX A

Chemical Engineering Curriculum

Typical Transfer Student Curriculum

Biomolecular Engineering Concentration

Biomedical and Rehabilitation Engineering (BRE) Minor

Sustainable Energy Systems Engineering Minor

Materials Engineering Concentration

Environmental Engineering Concentration

APPENDIX B

Forms

APPENDIX C

AIChe Code of Ethics
Chemical Engineering Program Educational Objectives (PEOs)

Chemical Engineering Program graduates are expected to:

1. practice chemical engineering* in continuing and emerging fields and/or
2. be successful in pursuing advanced degrees
3. be motivated to continually develop their knowledge and skills by, for example, taking continuing education or industry training course(s), and acquiring professional engineering certification
4. contribute to society and the engineering profession.

* Here we define chemical engineering as the discipline that requires a thorough grounding in chemistry and a working knowledge of advanced chemistry; material and energy balances applied to chemical processes; thermodynamics of physical and chemical equilibria; heat, mass and momentum transfer; chemical reaction engineering; continuous and stage-wise separation processes; process dynamics and control; process design and appropriate modern experimental and computing techniques

Being a Student

Introduction
You may have already heard from friends, family members, or guidance counselors that you will experience a different form of education when you enter college; it is not like high school. Now, that does not imply that you should be apprehensive about college, but it does mean that you should keep your eyes open to the new environment and learn to adjust.

Self-reliance
During the next four years, you will find yourself gaining more and more self-reliance. But self-reliance does not mean that you have to do everything yourself; it does mean that you ask for help when you need it and stand on your own two feet when you do not. Developing self-reliance should be one of your goals in college.

Professionalism
One adjustment to college is to think of yourself as a student-professional, a student who will be a professional engineer. In any professional position, there are certain expectations that you must fulfill. The best way to meet these expectations is to keep on top of things; do not let yourself fall behind.

Also, go to classes prepared; have all your work and reading done, and have questions ready. Participate in the discussions, practice the problems the professors assign, and push yourself to do your best. Make the best of every opportunity offered to you. You are building the base for your professional career; build a strong base.

The faculty may not always cover in class everything you need to know, so study beyond the lecture. You will find that the faculty are more like guides, and you have to be both the teacher
as well as the student more than you had to in high school. That is not saying they do not want to help or teach; they are just forcing you to take responsibility for your education. They are preparing you for the professional world where there are no obvious teachers. While you may feel some courses tax your abilities, the faculty are striving to give you the best opportunities for your career.

Near the end of the semester, you will fill out a "course evaluation form" for each of your courses. Your constructive comments regarding the course and the instructor are taken seriously. Your comments help your instructor to improve the course. In addition, the information on the course evaluation form is used in making salary, tenure, and promotion decisions.

Code of Ethics
Clarkson values personal integrity. Matriculation at Clarkson carries with it the obligation that a student will not claim as his or her own, the work of another, or any work that has not been honestly performed, will not take any examination by improper means, and will not aid and abet another in any dishonesty.

Advisors
Introduction
Guidance in selecting from the smorgasbord of career paths and course offerings is always available from your family, your roommate, your professors, and most importantly, from your faculty advisor. Each chemical engineering major has been assigned an advisor. All advisors are faculty members of the Chemical and Biomolecular Engineering Department and have offices in the CAMP building. Your advisor will be your primary link with the Chemical and Biomolecular Engineering Department, particularly in your freshman year when you take relatively few engineering courses. Try to get to know your advisor early and well.

You may wish to change your advisor, perhaps because you have developed career interests that overlap those of another member of the ChBE faculty, or for other reasons. To make a change, go to the ChBE Department Office, 220 CAMP. Changing an advisor is not difficult; however, the department would like to be aware of any potential conflicts or problems that may have occurred.

Advisor – Student Relationship
Visit your advisor more frequently than once a semester so that he or she will become familiar with you, and you with your advisor. This will make the advising process easier and more productive. For example, your advisor will be able to write more effective employment or scholarship recommendations for you if he/she knows you well. Advisors want to help, but it is important to note that they also have many other things to do. Like you, their time is restricted. So, call ahead or email for an appointment. That way they are not caught off guard and can be prepared for the meeting with you.
What is the Advisor’s Responsibility?
The advisor is there to help you; help may include career advice, or help in choosing courses. All advisors meet with their advisees during course selection week. Your advisor will have a sign-up sheet posted outside of his/her office door prior to course selection week so that you can make an appointment. The advisor prepares for these meetings by knowing the curriculum well. That means knowing substitute courses, course options available, and the best courses for a certain area of interest. Finally, the advisor must know you, the student. Knowing your goals and interests will help him/her to suggest courses that suit you. After discussing your curriculum, the advisor will clear you for course selection using PeopleSoft.

Your course schedule can be changed through completion of an Add/Drop form. A copy of this form is found in Appendix B. Copies are also available in the department office and on-line off the SAS webpage. Your advisor needs to sign this form.

What is the Student’s Responsibility?
The student, not the advisor, is responsible for meeting Clarkson's graduation requirements. Therefore, begin now to plan your Clarkson career. Then you can go into the course selection meeting with your choices for classes pre-selected. Try to see your advisor early in the semester, as was mentioned above. That way many details and problems can be ironed out before the hectic course selection period. Course selection advising is held in March for the fall semester and in late October for the spring semester. Consult the ChBE curriculum sheet (Appendix A) to plan ahead. At course selection time, visit the SAS webpage to learn about course offerings for the next semester.

Planning ahead is often of particular importance to transfer students. Within the two and sometimes fewer years that transfer students need to complete degree requirements, a carefully planned sequence of courses is often necessary in order to take the prerequisite courses needed for more advanced courses of particular interest.

Curriculum

Introduction
Included in this section are the requirements for degree completion, the elective options, special interest concentrations, the Chemical Engineering Honors Program, information concerning the Clarkson Common Experience, and the Fundamentals of Engineering (FE) Exam. Academic options beyond the major include minors, concentrations, dual degrees, a second degree, and double majors. These are all explained below.

Course descriptions may be found on the SAS website just click on the Courses and Schedules link. Course information may also be obtained at the Student Administrative Services (SAS) Center, Graham Hall, or in the Chemical and Biomolecular Engineering Department office, 220 CAMP.
Chemical Engineering Curriculum
The Chemical Engineering curriculum for both traditional and transfer students is outlined in Appendix A. Any student can take 19 credit hours a semester. Beyond this, the student’s advisor must approve and must inform the Student Administrative Services in writing. An additional tuition fee will be charged per credit hour over 19 credit hours a semester. A student must be registered for 12 credits to be classified as a full-time student. This could be important in matters of financial aid and health insurance.

Requirements of the Clarkson Common Experience
All Clarkson students must satisfy the requirements of the Common Experience.

First Year Seminar (FY 100)
First Year Seminar treats personal and social adjustment topics as well as Clarkson values, ethics and diversity. [Fall semester] [Required only for first-year students, i.e. anyone entering Clarkson with fewer than 24 credit hours.]

The Clarkson Seminar (UNIV 190)
The Clarkson Seminar welcomes first year students into a world of cultures, histories, and the global forces that will shape their personal and professional lives beyond Clarkson. Students will learn to define issues within a broad cultural context and gain experience evaluating and interpreting literary and nonliterary texts. [Each Semester]

Knowledge Areas and University Courses
Students must achieve learning outcomes in six broad areas of knowledge listed below. The knowledge area requirement is met by completing five individual courses including at least one University Course that encompasses two areas of knowledge. Together, these courses must cover at least four of the following areas of knowledge:

- Cultures and Societies
- Contemporary and Global Issues
- Imaginative Arts
- Science, Technology, and Society
- Economics and Organizations,
- Individual and Group Behavior.

All students must take at least one University course. University Courses will address learning outcomes in two of the six areas of knowledge. University courses are multidisciplinary, and students observe and participate in the interaction of disciplines.
Mathematics, Science and Technology Courses
Students must achieve learning outcomes in basic mathematics, science and technology by completing five courses in these areas. Students develop quantitative literacy through the study of mathematics, including probability and statistics. Students must take two courses in mathematics as specified by the major. Students develop an understanding of the principles of science and technology through two natural science courses, at least one of which must have an integrated laboratory component. Students gain an understanding of how technology is developed through a course that addresses the theme of technology serving humanity. Chemical engineering students meet the requirements with their required courses.

Communications
Clarkson places a strong emphasis on developing students' abilities to communicate effectively in a variety of contexts using diverse forms of communication. Students must select coursework and possibly extra-curricular activities that carry a total of at least six communications points. Courses and activities with a communications component are identified as carrying either one or two points. At least two points must come from within the student's major discipline in a course at the 300 or 400 level. Chemical engineering students will earn one communication point in CH350 and two communication points each in CH410 and in CM244. Therefore, chemical engineering students must take at least one other course carrying one communication point.

Major Field of Study
A significant characteristic of the Common Experience is the integration of requirements from both outside and within a major field of study. Each student pursues a degree program in a major field and must complete a set of prescribed courses to demonstrate mastery of that field. As part of these courses, students achieve outcomes to meet requirements of the Common Experience as described below.

Information Technology Expertise
Students will gain expertise in using information technology and computational software appropriate to their major field of study.

Communications
Students must complete course work in the major field at the 300 or 400 level that includes discipline-specific communication for a total of at least two communications points, (i.e. CH410).
Professional Requirement

The Professional Requirement incorporates learning outcomes involving professionalism, ethics, and diversity. These outcomes include understanding the concepts of professionalism, professional responsibility, and professional ethics, and knowing how the student's professional community promotes, supports, and enforces these concepts. Students should develop an appreciation for the value of diversity in the workplace.

Professional Experience

All students participate in a project-based professional experience following the first-year such as co-op, internship, directed research, or community project clearly related to the student’s professional goals.

Bachelor’s Degree Graduation Requirements

1. At least 120 credit hours.
2. At least a 2.000 cumulative average.
3. At least a 2.000 cumulative average in the major field of study.
4. Meet the requirements of the Clarkson Common Experience.
5. Meet the requirements for a degree program as determined by the offering department or school.
6. A student entering as a first semester freshman must have been in residence for at least four semesters, including the final undergraduate semester; or, if entering with advanced standing, have completed at least half the remaining upper-level undergraduate work in residence at Clarkson. The program must include a minimum of two semesters (30 credit hours) including the final undergraduate semester.

ESL Requirement

Students for whom English is a second language must take an English language placement examination upon entering Clarkson. Based on the outcome of this examination, a student may be required to complete one or more EAP courses prior to enrolling in the Clarkson Seminar or any course assigned one or two communications points.

Other Electives

The math, engineering science, technical, and undesignated electives should be carefully chosen to further career goals. It is recommended that students concentrate electives rather than make random selections. For example, if you are planning to attend medical school, you will probably fill your undesignated and technical electives with courses related to biology and biochemistry.

The two engineering science electives must be taken from two of three categories: electrical science, materials science, and mechanics. Technical electives are any science, engineering or math course. Engineering electives are any engineering course, i.e., courses with designator AE,
BR, CH, CE, EE, ES, ME or MP. Safety related courses such as EHS309, 406, and 416 also are considered engineering electives.

Undesignated electives and coursework beyond the 120 credits required for graduation can be taken as “Pass/No Entry”. A Pass/No Entry form is available at the SAS office.

You can use your electives to work towards a concentration, minor, dual degree, second degree, or double major. If you are planning to go to graduate school or want a deeper understanding of chemical engineering fundamentals, you should consider participating in the Chemical Engineering Honors Program. All these options are described in the next section.

Special Programs

Certificate Programs
A student may pursue a concentration, which is a group of classes related to a specific area of interest. There are several concentrations offered by various departments. Some are the Chemical Engineering Honors Program, Biomolecular Engineering, and Manufacturing Engineering. When the appropriate courses are completed, a certificate or letter from the Dean or Chair will be awarded. For further information contact the department office offering the concentration or consult the Clarkson Catalog. Completion of the concentration is indicated on a student’s official transcript. Several of the certificate programs are summarized below.

Chemical Engineering Honors Program
This program was developed to offer qualified students advanced and challenging material. Students having a cumulative GPA of 3.5 or higher and a 3.5 or better average in CH courses are invited during the summer following their sophomore year or in January of their junior year to enter the program. Additional course requirements include CH490 Elementary Transport Phenomena, one additional math elective, chosen from MA321, MA331, MA339, MA377, STAT383, CH561, ES405, and at least 3 credit hours of undergraduate research. Contact the Chemical Engineering Department for more information.

Biomolecular Engineering Concentration
Information and requirements for the Biomolecular Engineering Concentration can be found at https://www.clarkson.edu/minor-conc/concentration-biomolecular-engineering. A curriculum plan for this concentration is shown in Appendix A.

Minors

A minor is a group of courses that impart in-depth knowledge of an area distinct from that of a student’s major. Completion of the minor is indicated by notation on a student’s official transcript. Students wishing to pursue a minor should complete a Minor Form and submit the completed form to Student Administrative Services.
Several minors and their websites are listed below. See the Clarkson University Undergraduate Catalog for a complete listing of minors. Note that students must have a minimum GPA of 2.0 for all minor course requirements.

Biomedical Engineering Minor
Information and requirements for the Biomedical Engineering Minor can be found at https://www.clarkson.edu/minor-conc/minor-biomedical-engineering. A curriculum plan for this minor is shown in Appendix A. The official list of course requirements is available in the Center for Rehabilitation Engineering, Science & Technology in room 2206 CAMP.

Business
Information and requirements for the Business Minor can be found at https://www.clarkson.edu/minor-conc/minor-business.

Chemistry
Information and requirements for the Chemistry Minor can be found at https://www.clarkson.edu/department-chemistry-biomolecular-science/minor-chemistry.

Environmental Engineering
Information and requirements for the Environmental Engineering Minor can be found at https://www.clarkson.edu/minor-conc/minor-environmental-engineering. A curriculum plan for this concentration is shown in Appendix A.

Environmental Policy
Information and requirements for the Environmental Policy Minor can be found at https://www.clarkson.edu/minor-environmental-policy. See Prof. Alan Rossner for additional information.

Environmental Science
Information and requirements for the Environmental Science Minor can be found at https://www.clarkson.edu/minor-environmental-science. See Prof. Alan Rossner for additional information.

Liberal Arts
Requires a coherent set of five related courses. Contact Prof. Alastair Williams for information.

Materials Engineering Minor
Information and requirements for the Materials Engineering Concentration can be found at https://www.clarkson.edu/undergraduate/minors. A curriculum plan for this concentration is shown in Appendix A.

Mathematics
Information and requirements for the Math Minor can be found at https://www.clarkson.edu/department-mathematics/mathematics-minor-curriculum.
Physics
Information and requirements for the Physics Minor can be found at https://www.clarkson.edu/department-physics/minor-physics.

Sustainable Energy Systems Engineering
Information and requirements for the Sustainable Energy Systems Engineering Minor can be found at https://www.clarkson.edu/minor-sustainable-energy-systems-engineering.

Other Areas of Study
You are not limited to only one degree or one specific area of study. You may decide to obtain dual degrees, a double major, or a second degree. Clarkson also has an Engineering MBA-MS 4+1 program.

Dual Degree
Dual degrees are two different bachelor’s degrees at one commencement; for instance, a Chemistry Degree and a Chemical Engineering Degree. To do this you must complete at least 150 credit hours with at least 30 credit hours unique to each program. To obtain a dual degree you must complete a form that can be obtained from the department secretary or from Student Administrative Services Center. A copy of this form is shown in Appendix B.

Second Degree
A second degree means that you could receive two degrees at TWO different commencements. To do this, you need at least 150 credit hours with at least 30 credit hours unique to each program. Also, at least 12 credit hours (6 of which are upper level courses) toward the second degree must be completed in residence after the awarding of the first degree. To obtain a second degree you have to be readmitted to Clarkson through the Student Administrative Services Center.

Double Majors
You may decide to pursue two majors while at Clarkson. Your advisor should be able to direct you to a source that can tell you the courses needed to complete the second major. The form in Appendix B must be completed to establish your double major. A double major requires completion of all requirements for both programs prior to graduation.

Engineering MBA-MS 4 + 1 Program
The Schools of Business and Engineering have an option which allows a freshman undergraduate engineer who wants an MBA or Master of Science in Management Systems to plan required courses so that the graduate degree can be completed at Clarkson in one year beyond the baccalaureate. This may require taking more than fifteen credit hours in some semesters and will require careful planning.
Students in this option will be in a dual major (engineering and either MBA or MS). They will be classified as engineering students with engineering advisors. Their admission to the MBA/MS program is conditional until they meet traditional School of Business admission requirements (GMAT's, etc.). Contact the School of Business for more information.

Student Academic Records

Your academic record is kept by your assigned advisor and also by the Chemical and Biomolecular Engineering Department, 220 CAMP. This record will be used to determine if you have met Clarkson's graduation requirements. Take an interest in this record and make sure that it is up-to-date. You are entitled to a copy of this record at any time. You can also track your progress toward graduation in PeopleSoft.

Changing Majors

You may decide to change majors. This is accomplished by notifying the Department that you wish to enter and signing a “Change of Major” form prepared by that Department.

Transfer Credit

Advanced Placement Credit can be granted to you. See the Student Administrative Services Center for information and to get the credit applied to your transcript. It is best to do this as soon as possible or prior to arriving on campus for your first semester.

Transfer credit from another college or university is also dealt with through the Student Administrative Services Center. **Before** taking a course from another university, an Off-Campus Work Permission form is to be filled out and approved. (See Appendix B).

Cross Registration

The Associated Colleges of the St. Lawrence Valley (Clarkson University, SUNY at Potsdam, St. Lawrence University, and SUNY at Canton) allow students to cross register for up to two courses per year at any of the other member colleges. Information may be obtained from the Student Administrative Services Center.

English as a Second Language Test

All non-native English speaking undergraduates are required to take the English as a Second Language (ESL) Placement Test. Depending on the results, the foreign student must take up to two semesters of ESL. A student who is at the intermediate level must pass both the intermediate and advanced ESL courses (EAP250 and EAP350). Contact the Liberal Studies Center for further information.
Fundamentals of Engineering Exam (FE Exam)

To obtain registration as a Professional Engineer, an examination called the Professional Engineering Exam must first be passed. It is a two part exam. The first part, Fundamentals of Engineering (FE exam), is typically taken in the spring of the senior year, and the second part is taken after having at least four years of work experience satisfactory to the State Licensing Board. The School of Engineering offers review sessions for the FE exam. The various subjects are Electrical Science, Materials Science, Strength of Materials, Dynamics, Thermodynamics, Statics, Economics, and Fluid Mechanics. Dates and Times are announced at the beginning of the Spring semester or you can contact Carrie Hayes in CAMP 102 or at (315) 268-6446. Registration information for this exam can be found at https://ncees.org/engineering/#new-york.

Graduate School

Many of you should consider graduate school, particularly if you find you would like to become more focused within the broad spectrum of chemical engineering. As an undergraduate you may take a graduate-level course. To take a 500-level graduate course, you must have a 3.0 GPA and approval of the Chair. For taking a 600-level graduate course you must have a 3.5 GPA and approval of the Chair and Dean of Engineering. Your advisor or other faculty members can provide information.

The Chemical and Biomolecular Engineering Department offers the Master of Engineering, the Master of Science, and the Doctor of Philosophy degrees. Chemical engineering students also frequently pursue graduate degrees in chemistry, environmental engineering, or the School of Business. Consult the Clarkson Catalog, or contact the department office for more information.

Career Planning

There are many things that you can do to plan your career. The best place to start is to decide on your interests. Build a career on the aspects of engineering that you enjoy. Talking to your advisor is a good way to see what is out in the work world. Many faculty members have held industrial positions before entering teaching, or are working for industry or government as a researcher. Make contact with the staff of the Career Development Center in the Educational Resources Center (ERC), Suite 2300 or call (315) 268-6477 and find out what they can do for you. Also, attend the Career Fairs held each fall and spring. Many company representatives come to Clarkson for the fair; some of them are Clarkson graduates. This is a good opportunity to speak to them about opportunities in the world today.

After discovering your interests, your curriculum can be chosen. Consult the on-line Course Catalog for when courses are offered and what are their prerequisites. Discuss your plans with your faculty advisor.
Cooperative Education Program
The Cooperative Education Program (Co-op Program) is a good way to get practical experience by working in a company for one semester. To find out more about this program contact the Career Development Center located in the ERC.

Study Abroad Program
Some students, usually in their junior year, participate in exchange programs that Clarkson has with many overseas, technical universities. The total number of credits transferred to Clarkson should not exceed 15. Prior to departure, an Off-Campus Coursework Permission form must be completed and approved for each course. To find out more details contact the Career Development Center in the ERC.

Societies and Activities
There are many professional and honor societies on campus that relate to Chemical Engineering. These societies may give further information about what types of jobs are available and what kind of work is presently being done in the field. To learn more about these organizations check the Student Activities Office, 2nd floor of the Student Center, or call the presidents of the organizations (contact information on the Student Directory).

Professional Societies
- American Institute of Chemical Engineers (AIChE), Faculty Advisor is Prof. R. Taylor
- Electrochemical Society (ECS), Faculty Advisors are Profs. E. Podlaha-Murphy, S. Krishnan, T. Kim, E. Katz and S. Andreescu
- Society of Women Engineers (SWE), Faculty Advisor is Prof. J. DeWaters

Honor Societies
- Omega Chi Epsilon (Chemical Engineering), Advisor is Prof. E. Podlaha-Murphy
- Tau Beta Pi (Engineering) Advisor, Prof. S. Krishnan

Awards
The Department honors deserving students each year with the following awards:

- **The Outstanding Chemical Engineering Senior Award** is presented annually to an outstanding chemical engineering senior selected by the faculty of the Chemical and Biomolecular Engineering Department. The recipient receives a certificate and a three-year subscription to the magazine “Chemical Engineering”. The recipient’s name is also inscribed on a plaque in the department.

- **The Pablo Guttman Award** is presented annually to the most conscientious chemical engineering junior. The recipient receives a copy of Poling, Prausnitz, and O’Connell’s, “Properties of Gases and Liquids”. The recipient’s name is also inscribed on a plaque in the department.
• **R Shankar Subramanian Prize for Outstanding Scholarly Achievement in Chemical Engineering:** Established in 2011 by R. Shankar Subramanian to recognize and honor a Chemical Engineering junior at Clarkson each year who has best demonstrated a scholarly approach toward studies, and who shows promise for continuing accomplishments in the future. R. Shankar Subramanian is a faculty member in the Department of Chemical and Biomolecular Engineering, and a past Chair of the Department from 1986 to 1996. The recipient receives $1,000 from the endowment, and the recipient’s name is inscribed on a plaque in the Department.

Clarkson Services

The Student Administrative Services Center
This center is located in Graham Hall and provides information on enrollment, financial aid, course schedules, student employment, and many other topics. You can also pay bills, order transcripts, correct personal data, pick up and drop off various academic and financial aid forms, etc. Their phone number is (315) 268-6451.

The Counseling Center
The Counseling Center (located on the first floor of the ERC) offers counseling, workshops and seminars. Topics for the workshops and seminars include, for example: time management, understanding your personality, long-distance relationships, stress control, alcohol and drug awareness, and dealing with shyness. For appointments or further information on this service call (315) 268-6633.
Student Success Center
The Student Success Center (located in the first floor of the ERC) provides services including: tutoring, counseling related to time management, study skills and aids for students needing accommodative services. For appointments and information concerning student support services call (315) 268-2209. For Office of Accessibility Services (OAS) related to the American Disabilities Act, please call (315) 268-7643. They are located on the first floor of Price Hall.

The Student Health Center
This facility is located on the first floor of the ERC. It provides outpatient services, emergency care, health screening, and health counseling and education. For further information, see the Clarkson Catalog or call (315) 268-6633.

The Writing Center
Peer tutoring is provided for students who need help with writing assignments. The center is located in the Bertrand H. Snell Hall, Room 139 or by calling (315) 268-4439.

Career and International Center
Foreign Student Advising is available in room 2300 on the second floor of the ERC. The service includes orientation and special advising for such topics as visa, status requirements, and work regulations. For further information on this service or an appointment call Tess Casler at (315) 268-3943.

Extracurricular Activities
Potsdam offers many extracurricular activities: lectures, concerts, seminars, club meetings, professional societies, sports, movies, etc. Student organizations at Clarkson hold an Activities Fair each fall to gain publicity and recruit enthusiastic new members. Chemical engineering majors are urged to participate in student clubs both for relaxation and to gain leadership experience, especially the professional societies listed on page 15.

References
Clarkson Catalog. The Clarkson Catalog is available online at: https://www.clarkson.edu/sites/default/files/2020-06/Final%20Catalog%202020-2021.pdf.

Clarkson Regulations. The Clarkson Regulations are available online at: https://www.clarkson.edu/student-administrative-services-sas/clarkson-regulations.

Courses. This information is available online at: http://internal.clarkson.edu/sas/classes_schedules/index.html.

University Directory. The University Directory is available online at: https://intranet.clarkson.edu/directory/.
Important Phone Numbers

Chemical and Biomolecular Engineering Department:

Chair:
Professor Elizabeth Podlaha-Murphy, 222A CAMP, (315) 268-6650

Executive Officer:
Professor Sitaraman Krishnan, 220 CAMP, (315) 268-2303

Department Secretaries:
Ms. Jean Gang, 220 CAMP, (315) 268-6665

Emergency:
- Campus Safety, Educational Resource Center (ERC), (315) 268-6666

Dial “911” (off campus emergencies) Potsdam police and rescue squad
Faculty

<table>
<thead>
<tr>
<th>Name</th>
<th>Title/Position</th>
<th>Department</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.V. Babu</td>
<td>Distinguished University Professor</td>
<td></td>
<td>babu@clarkson.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>350 CAMP, (315) 268-2336, 315-268-2336, babu@clarkson.edu</td>
<td></td>
</tr>
<tr>
<td>Dr. Babu's research interests are in the areas of chemical-mechanical planarization of metal and dielectric films and thin films for photovoltaic applications.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ian McCrum</td>
<td>Assistant Professor</td>
<td></td>
<td>imccrum@clarkson.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>227 CAMP, (315) 268-4471, imccrum@clarkson.edu</td>
<td></td>
</tr>
<tr>
<td>Dr. McCrum’s research interests combine detailed electrochemical experiments with atomistic scale computational modeling to study the electrochemical interface to both improve our fundamental understanding of electrochemistry as well as to develop high performance, low-cost energy storage and conversion devices, including batteries and fuel cells.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joshua Bennett</td>
<td>Director and Manager of the Chemical Engineering undergraduate lab.</td>
<td></td>
<td>jbennett@clarkson.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>236 CAMP, (315) 268-1567, jbennett@clarkson.edu</td>
<td></td>
</tr>
<tr>
<td>Dr. Bennett expertise lies in chemical engineering education.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eunsu Paek</td>
<td>Assistant Professor</td>
<td></td>
<td>epaek@clarkson.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>233 CAMP, (315) 268-6621, epaek@clarkson.edu</td>
<td></td>
</tr>
<tr>
<td>Dr. Paek’s research focuses on developing theoretical foundations for guiding the rational design and synthesis of novel nanomaterials for energy and environmental applications.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yuncheng Du</td>
<td>Assistant Professor</td>
<td></td>
<td>ydu@clarkson.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>238 CAMP, (315) 268-2284, ydu@clarkson.edu</td>
<td></td>
</tr>
<tr>
<td>Dr. Du's research is in uncertainty quantification, control theory and their applications in process systems engineering and biomedical engineering. Some specific applications include: (i) Design of computationally efficient algorithms for optimal process control and improved fault diagnosis of chemical processes; (ii) Multi-scale modeling and control systems development for optimal clinical decision-making and advanced healthcare service.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elizabeth Podlaha-Murphy</td>
<td>Professor and Chair</td>
<td></td>
<td>epodlaha@clarkson.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>222A CAMP, (315) 268-4167, epodlaha@clarkson.edu</td>
<td></td>
</tr>
<tr>
<td>Dr. Podlaha-Murphy’s electrochemical research focuses on the electrodeposition of alloys and composites of different length scales for the advancement of nano and micro devices, and catalytic materials for water splitting reactions, fuel cells and batteries. Experimental examination together with theoretical modeling are used to gain fundamental understanding of these electrochemical processes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taeyoung Kim</td>
<td>Assistant Professor</td>
<td></td>
<td>tkim@clarkson.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>230 CAMP, (315) 268-4166, tkim@clarkson.edu</td>
<td></td>
</tr>
<tr>
<td>Dr. Kim's current research focuses on the use of electrochemical separation to address sustainability and environmental challenges in the water-energy nexus. Specific examples include water desalination, solar desalination, and nutrient recovery.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ross Taylor</td>
<td>Liya Regel and Bill Wilcox Distinguished Professor of Engineering</td>
<td></td>
<td>taylor@clarkson.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>244 CAMP, (315) 268-6652, taylor@clarkson.edu</td>
<td></td>
</tr>
<tr>
<td>Transfer student advisor. Dr. Taylor's research interests are in the areas of multi-component mass transfer, separation process simulation and applications of computer algebra in engineering.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simona Ligouri</td>
<td>Assistant Professor</td>
<td></td>
<td>sligouri@clarkson.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>226 CAMP, (315) 268-2368, sligouri@clarkson.edu</td>
<td></td>
</tr>
<tr>
<td>Her research combines classical and new experimental techniques to uncover fundamental understanding in the fields of catalysis, membranes and reaction engineering for energy and environmental science. Utilizing new catalytic membrane reactors and alternative membrane systems for gas separation, her research aims to generate carbon-neutral energy to mitigate and minimize negative climate impacts associated with fossil fuels include water.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitaraman Krishnan</td>
<td>Professor and Executive Officer</td>
<td></td>
<td>skrishna@clarkson.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>220 CAMP, (315) 268-6661, skrishna@clarkson.edu</td>
<td></td>
</tr>
<tr>
<td>Dr. Krishnan’s research interests are in materials science of complex fluids and solids, primarily polymeric materials: their synthesis, structure-property correlations, blends and composites, and molecular modeling. Material behaviors are understood using a range of characterization techniques and tailored for specific chemical, mechanical, electrical, or environmental applications.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selma Mededovic Thagard</td>
<td>Professor</td>
<td></td>
<td>smededov@clarkson.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>243 CAMP, (315) 268-4423, smededov@clarkson.edu</td>
<td></td>
</tr>
<tr>
<td>Dr. Thagard's research interests are in the areas of non-thermal plasma for pollution control and material synthesis, plasma chemistry, reactor design, transport phenomena, chemical kinetics, advanced oxidation technologies, mathematical modeling of plasma etching and electrical discharges.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX A

CHEMICAL ENGINEERING CURRICULUM
The Chemical Engineering Curriculum
For Class of 2019 and Later

<table>
<thead>
<tr>
<th>Freshman Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>CM131 (or CM103/105) Gen. Chemistry I</td>
</tr>
<tr>
<td>PH131 Physics I or ES110 Eng. and Society*</td>
</tr>
<tr>
<td>MA131 Calculus I</td>
</tr>
<tr>
<td>UNIV190 Clarkson Seminar</td>
</tr>
<tr>
<td>FY100 First Year Seminar (1cr)</td>
</tr>
<tr>
<td>Spring</td>
</tr>
<tr>
<td>CM132 (or CM104) Gen. Chemistry II</td>
</tr>
<tr>
<td>PH132 Physics II or PH131 Physics I</td>
</tr>
<tr>
<td>MA132 Calculus II</td>
</tr>
<tr>
<td>ES100 Intro to Use of the Computer (2cr)</td>
</tr>
<tr>
<td>Knowledge Area Elective*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>CH210 Molecular Properties</td>
</tr>
<tr>
<td>CH220 Material Balances</td>
</tr>
<tr>
<td>CM241 Organic Chemistry I</td>
</tr>
<tr>
<td>MA231 Calculus III</td>
</tr>
<tr>
<td>ES Elective or PH132 Physics II</td>
</tr>
<tr>
<td>Spring</td>
</tr>
<tr>
<td>BY160 Bio II: Cellular and Molecular Biology</td>
</tr>
<tr>
<td>CH260 Thermodynamics & Energy Balances</td>
</tr>
<tr>
<td>CM242 Organic Chemistry II</td>
</tr>
<tr>
<td>MA232 Differential Equations</td>
</tr>
<tr>
<td>Knowledge Area Elective or ES Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>CH320 Phase Equilibria</td>
</tr>
<tr>
<td>CH330 Transfer Process Fundamentals</td>
</tr>
<tr>
<td>CM244 Organic Chemistry Lab</td>
</tr>
<tr>
<td>EC350 Econ. Prin. & Engr. Econ**</td>
</tr>
<tr>
<td>Technical Elective</td>
</tr>
<tr>
<td>Spring</td>
</tr>
<tr>
<td>CH350 Chemical Eng. Lab I (1 cr)</td>
</tr>
<tr>
<td>CH360 Chemical Reactor Analysis I</td>
</tr>
<tr>
<td>CH370 Design of Transfer Process Equipment</td>
</tr>
<tr>
<td>ES Elective</td>
</tr>
<tr>
<td>Math Elective</td>
</tr>
<tr>
<td>Knowledge Area Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Experience</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>CH410 Chemical Eng Lab II (2 cr)</td>
</tr>
<tr>
<td>CH420 Process Econ. & Conceptual Design</td>
</tr>
<tr>
<td>ES499 Professional Experience (0 cr)</td>
</tr>
<tr>
<td>Engineering Elective***</td>
</tr>
<tr>
<td>Knowledge Area Elective</td>
</tr>
<tr>
<td>Undesignated Elective</td>
</tr>
<tr>
<td>Spring</td>
</tr>
<tr>
<td>CH460 Process Dynamics & Control</td>
</tr>
<tr>
<td>Technical Elective</td>
</tr>
<tr>
<td>Engineering Elective***</td>
</tr>
<tr>
<td>Engineering Elective</td>
</tr>
<tr>
<td>Undesignated Elective</td>
</tr>
</tbody>
</table>

*Engineering majors must take ES110, BR200 or ES238. Each is an STS knowledge area course.

** Satisfies the Knowledge Area “Economics and Organizations” requirement.

***A safety related course such as CH430, EHS309, EHS406, or EHS416 is recommended as one engineering elective.
A Typical Chemical Engineering Transfer Student Course Schedule

<table>
<thead>
<tr>
<th>Junior Year</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>CH210 Molecular Properties</td>
<td>BY160 Bio II: Cellular and Molecular Biology</td>
<td></td>
</tr>
<tr>
<td>CH220 Material Balances</td>
<td>CH260 Thermodynamics & Energy Balances</td>
<td></td>
</tr>
<tr>
<td>CH330 Transfer Process Fundamentals</td>
<td>CH350 Chemical Eng. Lab I (1 cr)</td>
<td></td>
</tr>
<tr>
<td>Elective (ES)</td>
<td>CH360 Chemical Reactor Analysis I</td>
<td></td>
</tr>
<tr>
<td>EC350 Econ. Prin. & Engr. Econ**</td>
<td>Engineering Elective***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Knowledge Area Elective</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Experience</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>CH320 Phase Equilibria</td>
<td>CH370 Design of Transfer Process Equipment</td>
<td></td>
</tr>
<tr>
<td>CH410 Chemical Engineering Lab II (2 cr)</td>
<td>CH460 Process Dynamics & Control</td>
<td></td>
</tr>
<tr>
<td>CH420 Process Economics & Conceptual Design</td>
<td>Elective (ES)</td>
<td></td>
</tr>
<tr>
<td>ES499 Professional Experience (0 cr)</td>
<td>Engineering Elective***</td>
<td></td>
</tr>
<tr>
<td>Elective (Math)</td>
<td>Engineering Elective</td>
<td></td>
</tr>
<tr>
<td>Knowledge Area Elective</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** Satisfies the Knowledge Area “Economics and Organizations” requirement.

***A safety related course such as CH430, EHS309, EHS406, or EHS416 is recommended as one engineering elective.
BS in Chemical Engineering with Biomolecular Engineering

Concentration

Freshman Year

Fall
- CM131 (or CM103/105) Gen. Chemistry I
- PH131 Physics I or ES110 Eng. and Society*
- MA131 Calculus I
- UNIV190 Clarkson Seminar
- FY100 First Year Seminar (1 cr)

Spring
- CM132 (or CM104) Gen. Chemistry II
- PH132 Physics II or PH131 Physics I
- MA132 Calculus II
- ES100 Intro to Use of the Computer (2 cr)
- Knowledge Area Elective

Sophomore Year

Fall
- CH210 Molecular Properties
- CH220 Materials Balances
- CM241 Organic Chemistry I
- MA231 Calculus III
- ES Elective or PH132 Physics II

Spring
- CH260 Thermodynamics & Energy Balances
- CM242 Organic Chemistry II
- BY160/162 Cellular & Molecular Biology/Lab
- MA232 Differential Equations
- Knowledge Area Elective or ES Elective

Junior Year

Fall
- CH320 Phase Equilibria
- CH330 Transfer Process Fundamentals
- CM244 Organic Chemistry Lab
- ++Restricted Elective or STAT383
- EC350 Econ. Prin. & Engr. Econ**

Spring
- CH350 Chemical Eng. Lab I (1 cr)
- CH360 Chemical Reactor Analysis I
- CH370 Design of Transfer Process Equipment
- CH465 Biochemical Eng. or ES Elective
- Technical Elective
- STAT383 Prob. & Stat. or Restricted Elective++

Summer

Professional Experience

Senior Year

Fall
- CH410 Chemical Engineering Lab II (2 cr)
- CH420 Process Econ. & Conceptual Design
- CM460 Biochemistry I
- Undesignated Elective
- ES499 Professional Experience (0 cr)
- Knowledge Area Elective

Spring
- CH460 Process Dynamics & Control
- CH465 Biochemical Engineering or
- ES Elective
- Engineering Elective
- Engineering Elective
- Knowledge Area Elective

++selected from: BR200; BY214; BY310; BY320/2; BY330; BY360/2; BY412; BY419; BY/CM452; BY460; BY471/3;
CM453; EE485; EHS416; ES380; ES452.

* Satisfies the Knowledge Area “Science, Technology, and Society” requirement.

** Satisfies the Knowledge Area “Economics and Organizations” requirement.
BS in Chemical Engineering with Biomedical and Rehabilitation Engineering (BRE) Minor

Freshman Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM131 (or CM103/105) Gen. Chemistry I</td>
<td>CM132 (or CM104) Gen. Chemistry II</td>
</tr>
<tr>
<td>PH131 Physics I or ES110 Eng. and Society*</td>
<td>PH132 Physics II or PH131 Physics I</td>
</tr>
<tr>
<td>MA131 Calculus I</td>
<td>MA132 Calculus II</td>
</tr>
<tr>
<td>UNIV190 Clarkson Seminar</td>
<td>ES100 Intro to Use of the Computer (2 cr)</td>
</tr>
<tr>
<td>FY100 First Year Seminar (1cr)</td>
<td>Knowledge Area Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>CH210 Molecular Properties</td>
</tr>
<tr>
<td>CH220 Material Balances</td>
</tr>
<tr>
<td>MA231 Calculus III</td>
</tr>
<tr>
<td>BR200 Intro. To Biomed. & Rehabilitation</td>
</tr>
<tr>
<td>Eng., Science & Technology*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>CH320 Phase Equilibria</td>
</tr>
<tr>
<td>CH330 Transfer Process Fundamentals</td>
</tr>
<tr>
<td>CM244 Organic Chemistry Lab</td>
</tr>
<tr>
<td>EC350 Econ. Prin. & Engr. Econ**</td>
</tr>
<tr>
<td>BY471/473 Anatomy and Physiology (5 cr)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Experience</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>CH410 Chemical Engineering Lab II (2 cr)</td>
</tr>
<tr>
<td>CH420 Process Economics & Conceptual Design</td>
</tr>
<tr>
<td>ES499 Professional Experience (0 cr)</td>
</tr>
<tr>
<td>BR450 Biomedical Engineering Capstone Design</td>
</tr>
<tr>
<td>BME Breadth or Depth Elective or ES Elective***</td>
</tr>
<tr>
<td>Undesignated Elective (1 cr)</td>
</tr>
</tbody>
</table>

* Satisfies the Knowledge Area “Science, Technology, and Society” requirement
** Satisfies the Knowledge Area “Economics and Organizations” requirement.
*** ME380 or ES452 can satisfy Engineering Depth Elective as well as ES Elective

BS in Chemical Engineering with Sustainable Energy Systems Engineering Minor

(See website: https://www.clarkson.edu/minor-sustainable-energy-systems-engineering)

Freshman Year

Handbook 2020-2021 24
Freshman Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM131 (or CM103/105) Gen. Chemistry I</td>
<td>CM132 (or CM104) Gen. Chemistry II</td>
</tr>
<tr>
<td>PH131 Physics I or ES110 Eng. and Society^</td>
<td>PH132 Physics II or PH131 Physics I</td>
</tr>
<tr>
<td>MA131 Calculus I</td>
<td>MA132 Calculus II</td>
</tr>
<tr>
<td>UNIV190 Clarkson Seminar</td>
<td>ES100 Intro to Use of the Computer (2 cr)</td>
</tr>
<tr>
<td>FY100 First Year Seminar (1 cr)</td>
<td>Knowledge Area Elective</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH210 Molecular Properties</td>
<td>BY160 Bio II: Cellular and Molecular Biology</td>
</tr>
<tr>
<td>CH220 Material Balances</td>
<td>CH260 Thermodynamics and Energy Balances</td>
</tr>
<tr>
<td>CM241 Organic Chemistry I</td>
<td>CM242 Organic Chemistry II</td>
</tr>
<tr>
<td>MA231 Calculus III</td>
<td>MA232 Differential Equations</td>
</tr>
<tr>
<td>Knowledge Area Elective* or PH132 Physics II</td>
<td>ES238 Intro to Energy Systems^</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH320 Phase Equilibria</td>
<td>CH350 Chemical Eng. Lab I (1 cr)</td>
</tr>
<tr>
<td>CH330 Transfer Process Fundamentals</td>
<td>CH360 Chemical Reactor Analysis I</td>
</tr>
<tr>
<td>CM244 Organic Chemistry Lab</td>
<td>CH370 Design of Transfer Process Equipment</td>
</tr>
<tr>
<td>EC350 Econ. Prin. & Engr. Econ**</td>
<td>ES Elective</td>
</tr>
<tr>
<td>Knowledge Area Elective* or ES250 Elec. Sci.</td>
<td>Math Elective</td>
</tr>
<tr>
<td></td>
<td>Knowledge Area Elective or ES250 Elec. Sci.</td>
</tr>
</tbody>
</table>

Summer

Professional Experience

Senior Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH410 Chemical Eng Lab II (2 cr)</td>
<td>CH460 Process Dynamics & Control</td>
</tr>
<tr>
<td>CH420 Process Econ. & Conceptual Design***</td>
<td>Technical Elective</td>
</tr>
<tr>
<td>ES499 Professional Experience (0 cr)</td>
<td>Engineering Elective****</td>
</tr>
<tr>
<td>Engineering Elective****</td>
<td>Engineering Elective****</td>
</tr>
<tr>
<td>Knowledge Area Elective or Undesignated</td>
<td>Undesignated Elective</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
</tbody>
</table>

*One Knowledge Area course must be one of the following: EC360 (EC,IG), PHIL370 (STS), PHIL405 (STS), POL372 (EC,STS), POL375 (CGI), POL470 (STS), or POL471 (EC, STS).

**Satisfies the Knowledge Area “Economics and Organizations” requirement.

***Design course project must have an energy focus

****Engineering electives should be CE486 OR ES436, and any two of: (CE409 or CH434), EE331, EE438, ES443 EV305 or ME310

^Satisfies the Knowledge Area “Science, Technology, and Society” requirement.

BS in Chemical Engineering with Materials Engineering Minor

<table>
<thead>
<tr>
<th>Freshman Year</th>
</tr>
</thead>
</table>

Handbook 2020-2021 25
CM131 (or CM103/105) Gen. Chemistry I
PH131 Physics I or ES110 Eng. and Society*
MA131 Calculus I
UNIV190 Clarkson Seminar
FY100 First Year Seminar (1cr)

CM132 (or CM104) Gen. Chemistry I
PH132 Physics II or PH131 Physics I
MA132 Calculus II
ES100 Intro to Use of the Computer (2 cr)
Knowledge Area Elective *

Sophomore Year

Fall
CH210 Molecular Properties
CH220 Material Balances
CM241 Organic Chemistry I
MA231 Calculus III

ES260 Materials Science & Eng I

Spring
BY160 Bio II: Cellular and Molecular Biology or PH132 Physics II
CH260 Thermodynamics and Energy Balances
CM242 Organic Chemistry II
MA232 Differential Equations
ES360 Materials Science & Eng II

Junior Year

Fall
CH320 Phase Equilibria
CH330 Transfer Process Fundamentals
CM244 Organic Chemistry Lab
Materials+ or Math Elective
EC350 Econ. Prin. & Engr. Econ**

Spring
CH350 Chemical Eng. Lab I (1 cr)
CH360 Chemical Reactor Analysis I
CH370 Design of Transfer Process Equipment
Math or Materials Elective+
Knowledge Area Elective or BY160 Bio II Materials Elective+

Summer
Professional Experience

Senior Year

Fall
CH410 Chemical Eng. Lab II (2 cr)
CH420 Process Economics & Conceptual Design
ES499 Professional Experience (0 cr)
ES or Materials Elective+
Engineering Elective
Knowledge Area Elective

Spring
CH460 Process Dynamics & Control Engineering Elective
ES or Materials Elective+
Knowledge Area Elective
Undesignated Elective

*Engineering majors must take ES110, BR200 or ES238. Each is an STS knowledge area course. Students have considerable freedom as to when electives are taken. Any engineering course taken as a “materials elective” will satisfy an engineering elective requirement. +Mat’ls Electives must be: Any three of CE411, CM430, CM450, EE439, ES357, ES361, ES452, ES464, ME390, ME457, ME492, ME591, PH341 or PH442.

BS in Chemical Engineering with Environmental Engineering Minor

Freshman Year

Fall
CM131 (or CM103/105) Gen. Chemistry I
PH131 Physics I or ES110 Eng and Society*

Spring
CM132 (or CM104) Gen. Chemistry II
PH132 Physics II or PH131 Physics I
MA131 Calculus I
UNIV190 Clarkson Seminar
FY100 First Year Seminar (1 cr)

MA132 Calculus II
ES100 Intro to Use of the Computer (2 cr)
Knowledge Area Elective

Sophomore Year

Fall

CH210 Molecular Properties
CH220 Material Balances
CM241 Organic Chemistry I
MA231 Calculus III
ES Elective or PH132 Physics II

Spring

BY160 Bio II: Cellular and Molecular Biology
CH260 Thermodynamics & Energy Balances
CM242 Organic Chemistry II
MA232 Differential Equations
Knowledge Area Elective or ES Elective

Junior Year

Fall

CH320 Phase Equilibria
CH330 Transfer Process Fundamentals
CM244 Organic Chemistry Lab
EC350 Econ. Prin. & Engr. Econ**
Or BY222 and BY244^
Knowledge Area Elective

Spring

CH350 Chemical Engr. Lab I (1 cr)
CH360 Chemical Reactor Analysis I
CH370 Design of Transfer Process Equipment
Math Elective
ES Elective
EC350 Econ. Prin. & Engr. Econ.** or BY320^

Summer

Professional Experience

Senior Year

Fall

CH410 Chemical Eng Lab II (2 cr)
CH420 Proc. Econ. & Conc. Design
ES499 Professional Experience (0 cr)
Environmental Engineering Elective***
Undesignated Elective
Engineering Elective

Spring

CH460 Process Dynamics & Control
CE491 or MP401 or ES443
Environmental Engineering Elective***
Knowledge Area Elective
Undesignated Elective

* Satisfies the Knowledge Area “Science, Technology, and Society” requirement.

** Satisfies the Knowledge Area “Economics and Organizations” requirement.

^ Students must take either BY214 or (BY222 and BY224) or BY320 or BY330

***Students must take one of the following: CE479, CE481, CE482, CE486, ES432
Students must take one of the following: A second from the above list or one of CE430, CE434, CE477, CE478, CH434, ES436, EHS309, EHS416
APPENDIX B

FORMS
ADVISING FORM FOR CHEMICAL ENGINEERING MAJORS

CLASS of 2022+

<table>
<thead>
<tr>
<th>Freshman Engineering [ES]</th>
<th>100</th>
<th>ES499 Prof. Exp.²³⁴⁵</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY – First Year Seminar/ UNIV190</td>
<td>100</td>
<td>UNIV190</td>
</tr>
<tr>
<td>Chemistry [CM]</td>
<td>(5)</td>
<td>131¹</td>
</tr>
<tr>
<td>Physics [PH] & Biology [BY] (2)/(1)</td>
<td>131</td>
<td>132</td>
</tr>
<tr>
<td>Mathematics [MA]</td>
<td>(5)</td>
<td>131</td>
</tr>
<tr>
<td>Knowledge Area Electives²</td>
<td>(5)</td>
<td>UC</td>
</tr>
<tr>
<td>Chemical Engineering [CH]</td>
<td>(11)</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>360</td>
</tr>
<tr>
<td>Mechanics/Electrical Sci/Materials Sci [ES]³</td>
<td>(2)</td>
<td>ES</td>
</tr>
<tr>
<td>Engineering Electives</td>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td>Technical (Science/Engineering/Mathematics)</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>Undesignated Electives⁴</td>
<td>(2)</td>
<td></td>
</tr>
</tbody>
</table>

() = Number of courses needed.

¹ CM103 & CM105 may be substituted for CM131: CM104 for CM132. The laboratory course CM106 (2 credit hours) may be used toward a technical elective.

² Six Knowledge Area courses, including UNIV190 and EC350, are required. Four of each Knowledge Area designators must be covered: CGI-Contemporary & Global Issues, CSO-Cultures & Societies, EC-Economics & Organizations, IA-Imaginative Arts, IG-Individual & Group Behavior, STS-Science, Technology, & Society. One UC course must cover two areas. Contact Dr. McCluskey about the suitability of transfer or cross-registration courses. Eng. Majors should take one of the following STS courses: ES110, BR200, or ES238.

³ One course in each of two of these areas, as listed on the back of this sheet.

⁴ Six credits of advanced Military Science or Aerospace Studies can be substituted for two undesignated electives.

⁵ Students typically complete an ES499 Pre-Approval Worksheet late in their junior year and enroll in ES499 (0 cr) in fall of their senior year.

For the Biomolecular Engineering Concentration-BY162 is required, and the MA elective must be STAT383. The following required courses replace an engineering and a technical elective-CH465 & CM460. Finally, one course must be selected from: BR200, BY214, BY320/322, BY330, BY360/2, BY419, BY452, BY460, BY471/473, CM425, CM444, CM453, EHS416, ES380 or ES452.
Permissible ES Electives

<table>
<thead>
<tr>
<th>Electrical Science</th>
<th>Material Science</th>
<th>Mechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td>*ES250-Electrical Science</td>
<td>ES260-Materials Science</td>
<td>ES220-Statics</td>
</tr>
<tr>
<td></td>
<td>ES360-Materials Science II</td>
<td>ES380-Biomechanics</td>
</tr>
<tr>
<td>*ES452-Biomaterials Engr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*ES464-Corrosion of Metals</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Suggested Technical Electives

Biology
BY162-Cellular & Molec. Bio. II Lab (2 cr.)
BY320-Microbiology
BY471 Anatomy & Physiology I /BY473 Lab

Chemical Engineering
CH430-Chemical Process Safety
CH434-Air Pollution Control
CH465-Biochemical Engineering
CH490-Transport Phenomena

Chemistry
CM221-Spectroscopy
CM312-Survey of Inorganic Chemistry
CM460-Biochemistry I

Civil Engineering
CE479-Water and Wastewater Treatment
CE480-Chemical Fate & Trans. in the Env.
CE481-Hazardous Waste Mgmt. Engr.

Electrical Engineering
EE264-Intro to Digital Design
EE341-Microelectronics

Engineering Science
ES222-Strength of Materials
ES238-Intro. To Energy Systems

Engineering Science (Continued)
ES360-Materials Science II
ES452-Biomaterials Engr.
*ES464-Corrosion of Metals

Industrial Hygiene
*EHS309-Industrial Hygiene
EHS406-Industrial Hygiene Control Methods
EHS416-Toxicology & Epidemiology

Mathematics
MA330-Advanced Engineering Math
MA331-Fourier Series & BV Problems
MA339-Applied Linear Algebra
MA363-Mathematical Modeling
MA377-Numerical Methods
*MA381-Probability
*STAT383-Probability and Statistics
STAT384-Applied Statistics II

Mechanical Engineering
ME390-Manufacturing Processes
ME444-Computer Aided Engineering
ME492-Welding Metallurgy

Physics
PH231-Fundamentals of Modern Physics

Undesignated Electives
Undesignated electives are selected by the student based on his/her career interests.

*Highly recommended
Revised 6/27/19
Please refer to http://internal.clarkson.edu/sas/forms/index.html for the following forms:

Add/Drop Form
Off-Campus Coursework Permission Form

Please refer to http://internal.clarkson.edu/sas/cusasforms/index.html for instructions for completing the following processes in PeopleSoft:

Undergraduate Change of Major Form
Concentration Declaration Form
Undergraduate Double Major Declaration Form
Undergraduate Dual Degree Declaration Form
Undergraduate Minor Declaration Form
AIChE

Code of Ethics

The Board of Directors of the American Institute of Chemical Engineers adopted this Code of Ethics to which it expects that the professional conduct of its members shall conform, and to which every applicant attests by signing his or her membership application.

Members of the American Institute of Chemical Engineers shall uphold and advance the integrity, honor, and dignity of the engineering profession by: being honest and impartial and serving with fidelity their employers, their clients, and the public; striving to increase the competence and prestige of the engineering profession; and using their knowledge and skill for the enhancement of human welfare. To achieve these goals, members shall:

- Hold paramount the safety, health, and welfare of the public in performance of their professional duties
- Formally advise their employers or clients (and consider further disclosure, if warranted) if they perceive that a consequence of their duties will adversely affect the present or future health or safety of their colleagues or the public.
- Accept responsibility for their actions and recognize the contributions of others; seek critical review of their work and offer objective criticism of the work of others.
- Issue statements or present information only in an objective and truthful manner.
- Act in professional matters for each employer or client as faithful agents or trustees, and avoid conflicts of interest.
- Treat fairly and respectfully all colleagues and co-workers, recognizing their unique contributions and capabilities.
- Perform professional services only in areas of their competence.
- Build their professional reputations on the merits of their services.
- Continue their professional development throughout their careers, and provide opportunities for the professional development of those under their supervision.
- Never tolerate harassment.
- Conduct themselves in a fair, honorable and respectful manner.