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Abstract 

Speaker recognition systems have been shown to work well 

when recordings are collected in conditions with relatively 

limited mismatch.  Thus, a significant focus of the current 

research is techniques for robust system performance when 

greater variability is present.  This study considers a diverse data 

set with recordings collected in multiple different rooms with 

different types of microphones.  A technique recently introduced 

to the speaker recognition community, called partial least squares 

(PLS), is considered for decomposing the features and mitigating 

the degradation in performance due to room and/or microphone 

mismatch.  Results of this study suggest that PLS decomposition 

can provide substantial improvements in performance in the 

presence of mismatched recording conditions.  The outcomes of 

this study provide further validation for the partial least squares 

decomposition and encourage further consideration of PLS for 

reducing session and environment variability in speaker 

recognition tasks.  

Index Terms: speaker recognition, partial least squares, 

subspace decomposition 

1. Introduction 

Speaker recognition techniques have long been capable of 

verifying a speaker’s identity when two speech recordings come 

from similar or identical environments.  A significant focus in 

recent years has been the development of methods for extending 

the performance of speaker recognition systems to scenarios 

where greater variation between the enrollment and test data may 

exist.  State of the art automatic speaker recognition systems 

perform relatively well on channel mismatch, but other 

environmental factors including room variability may still pose a 

significant challenge. The MultiRoom8 data set that was used in 

this study includes recordings from 51 speakers in four different 

room environments using multiple microphones.  The 

MultiRoom data set provides a significant level of diversity in 

room effects and noise type, confounded by the differences in 

microphone type as well.   

The most common approach for managing these sources of 

non-speaker variation is adoption of a model that assumes the 

captured recording is a superposition of two elements: the 

speaker-specific features useful for speaker recognition and an 

additive non-speaker component.  Several investigators have 

proposed linear subspace modeling techniques that can be used 

to estimate and factor out the non-speaker component in 

recorded audio.  Several techniques have been considered 

recently in speaker recognition, including Principal Component 

Analysis (PCA), Linear Discriminant Analysis (LDA), Joint 

Factor Analysis (JFA) and i-vectors. More recently, partial least 

squares (PLS) has been successfully applied in the speaker 

recognition community [1, 2].  This approach has a particular 

appeal for learning a supervised projection from a high-

dimensional to low-dimensional subspace that represents only 

the differences between individual speakers.    

The significance of this study is an assessment of the 

effectiveness of partial least squares as a subspace projection 

technique to improve performance of a speaker recognition 

system in the presence of environment-based variability.  The 

remainder of this paper is organized as follows.  Section 2 

describes the data set and experiment approach including partial 

least squares and the classification methods.  Section 3 contains 

results for several speaker recognition experiments, with 

conclusions presented in Section 4. 

2. Experiment method and approach 

This study utilized the MultiRoom8 data set, made available 

for this project by the sponsor. The MultiRoom8 data set consists 

of multi-session audio recordings with collection conditions 

designed to include a number of distinct environmental scenarios 

(e.g. noise and room acoustics). A total of 424 audio recordings 

were used in this study, each approximately three minutes in 

duration.  These three-minute recordings were divided into two 

recordings of equal length to allow training and testing in the 

same condition, since the provided data included only a single 

session in each recording condition.  The available data 

contained ten conditions (i.e. room-microphone combination) for 

analysis of the variability introduced by different room and 

microphone types.  The audio files used in this study were 

collected from a group of 51 speakers, with 35 speakers common 

to all ten of the conditions.  The conditions in MultiRoom8 

include four distinct rooms of various sizes: a conference room 

(unknown size), small (206 ft2, 19 m2), medium (430 ft2, 40 m2), 

and large (2013 ft2, 187 m2). There were five 

microphone/recording setups available, although not all were 

available in each environment. Directional microphones were 

placed at two distances: 3 feet facing towards the speaker, and 5 

feet facing away from the speaker.  Omnidirectional 

microphones were placed at three distances: close (1 foot), mid-

distance (1/3 across the room) and far (2/3 of distance across 

room). 

2.1. Baseline GMM-UBM and supervector 

construction 

The baseline classification technique utilized GMM 

supervectors constructed by concatenating mean vectors from 

each GMM component of a GMM-UBM model.  The audio 
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processing and feature extraction was performed using S-Pro 5.0 

and the ALIZE/SpkDet open-source software platform for 

speech and speaker recognition [3]. The 16-element MFCCs and 

first-order deltas, resulting in a 32-element feature vector, were 

generated for each 20 millisecond frame (frames overlapped by 

50%). After normalization and silence removal, the MFCC 

coefficients were used to estimate a universal background model 

(UBM) and Gaussian mixture models (GMM).  The UBM was 

generated using 100 separate speaker files containing more than 

five hours of speech. A 750-component diagonal covariance 

GMM was adapted from the UBM for each speaker recording. 

The GMM supervector is generated by concatenating the means 

of each Gaussian component from the GMM-UBM for a 

corresponding .wav file.  In this study, there were 32 cepstral 

coefficients with 750 GMM components, resulting in a GMM 

supervector with length 24,000.  The GMM supervectors were 

the baseline feature set for the experiments conducted in this 

study. 

2.2. Partial least squares decomposition 

The GMM supervectors have been shown in previous studies 

to provide sufficient information for successful speaker 

discrimination; however, they are extremely high-dimensional, 

which introduces potential concerns about computational 

complexity and overfitting during the learning stages in the 

pattern recognition techniques.  More significantly, these 

supervectors contain non-speaker artifacts introduced by the 

channel, environment, and session-to-session variability.  These 

factors motivate the use of subspace decomposition techniques to 

find a lower-dimensional representation of the GMM supervector 

that represents only the speaker-specific attributes and will be 

robust to variability introduced by changes in channel, 

environment, and session.  In the high-dimensional supervector 

space, several speakers may be indistinguishable due to non-

speaker sources of variability.  The ideal subspace 

decomposition would project the supervectors into a lower-

dimensional space where all recordings from a single speaker 

cluster together, and different speakers are separable.   

Partial least squares performs a linear projection to a lower-

dimensional subspace, which allows use on high-dimensional 

data sets without running into the “large p, small n” problem (i.e. 

many feature dimensions and few data points).  One advantage 

of partial least squares over other linear subspaces projection 

methods (such as principal component analysis) is that partial 

least squares performs a supervised decomposition, making use 

of the labels for the development data.  Therefore, the resulting 

lower-dimensional subspace is more likely to maintain 

separability between classes, by using a criterion that seeks 

linear projections w and q that maximize the covariance between 

the independent and dependent variables X and Y, respectively, 

in the lower-dimensional projection space.  

 
1, 1

max cov ,
w q

Xw Yq
 

          (1)                                                        

This contrasts with PCA, which maximizes the variance of the 

data under the constraint of a unit-norm weight vector, ignoring 

any available class labels for the training data.   

The subspace projection from the high-dimensional 

supervector features to a lower-dimensional space requires a set 

of parameters which must be estimated from some data.  To 

provide a robust experiment result, the GMM supervector 

decompositions were learned using a separate development data 

set.  Given the available data, there are several options for how 

the development data set could be constructed: the speakers may 

be either the same or different from those in the training and test 

data sets, and the room-microphone combinations may either be 

the same and/or different from those in the training and test data 

sets.  Two development data sets were considered in this study, 

and are described in Table 1 for the example where Condition A 

is used for training and Condition B for testing (there are ten 

conditions, A through J, in total).  Note: the actual development 

data set is adjusted as necessary within the iterations of the cross-

condition training and testing as all ten available conditions are 

eventually used for both training and testing. Development data 

set #1 included all available speaker data in conditions excluding 

the train and test conditions.  Thus, the development data will 

contain recordings of the speakers in the test set.  Development 

data set #2 reflects the less optimistic, but more general, scenario 

where the development data set contains none of the speakers in 

the test set.   

2.3. Classification techniques 

Two classification techniques were considered in this study. 

The first technique, the nearest neighbor classifier, assigns labels 

to feature vectors in the test set based on distances calculated 

between the unlabeled test sample and all of the available labeled 

training data.  The label of the nearest training sample (i.e. 

nearest neighbor) is assigned to the test sample.  This 

classification rule is supported by theoretical results that relate it 

to nonparametric modeling of probability distribution functions 

and the likelihood ratio test [4].  For the present study, the 

negated value of the correlation coefficient was used as the 

measure of distance between two GMM supervectors.  

The second classification technique was the support vector 

machine, or SVM.  This technique was applied to the raw GMM 

supervector to establish baseline performance as the GSL-SVM 

method, as well as to the PLS-decomposed supervectors. In this 

research effort, the LIB-SVM [5] implementation was used with 

two kernel configurations: a linear kernel when operating on the 

GMM supervectors as features and a radial-basis function (RBF) 

kernel with unit variance when operating in a low-dimensional 

subspace generated by PLS projection of the GMM supervectors.  

The SVM is natively configured for binary classification (where 

only two classes of data are present).  To extend the SVM to the 

current application where many speakers are present, a set of 

(N(N+1))/2 SVMs was constructed, with each SVM 

 

Table 1: Development data sets for estimating PLS projections.  

Note that different subjects are present in each development 

data set.   

 

Training 

Data Set 

Condition A, 

Speakers 1 to 10 

Condition A, 

Speakers 1 to 10 

Testing Data 
Condition B, 

Speakers 1 to 10 

Condition B, 

Speakers 1 to 10 

Development 

Data Set 

Conditions C to J, 

Subjects 1 to 51 

Conditions C to J, 

Subjects 11 to 51 

Development 

Data Set 

includes: 

All speakers, different 

conditions (i.e. 

excludes train/test) 

Different speakers, 

different conditions 

(exclude train/test) 
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discriminating between a pair of the N total speakers in the data 

set. The (N(N+1))/2 classifiers then vote on the final 

classification of a test sample.  

2.4. Experiment setup 

Results for the MultiRoom8 data were generated using five 

approaches.  The baseline technique is the support vector 

machine applied to supervectors constructed from the GMM-

UBM.  Alternatively, rather than utilizing the raw, high-

dimensional GMM supervectors as inputs to pattern 

classification algorithms, the GMM supervectors were 

decomposed using partial least squares. The PLS projections 

were learned using each of the two development data sets 

described in Table 1.  After reducing the dimensionality of the 

feature vectors using PLS, the SVM and nearest neighbor 

classifier using a correlation-based distance metric were each 

used for speaker identification.   

To partition the data into separate training, testing, and 

development data sets, only the first ten speakers (organized by 

speaker ID) were used for training and testing.  This preserved 

the higher-numbered speakers for development data set #2, 

which contains a different set of speakers than are present in 

training and testing.  Another common element of the 

experiment setup was the use of cross-condition testing.  Each of 

the ten room/microphone conditions (A through J) was used both 

for training and testing against all of the other ten conditions.  

Thus, results in the form of 100 detection-error trade-off (DET) 

curves can be generated and equal-error rates (EER) can be 

calculated.  These 10x10 matrices of equal-error rates were the 

common basis in this study for comparison of the five speaker 

recognition techniques. 

3. Results 

The common approach for evaluating each of the five 

techniques included a set of 100 experiment configurations, 

systematically using each of the available ten recording 

conditions for training and/or testing.  The equal-error rates 

(EER) for all 100 experiment configurations can be calculated, 

and a distribution can be generated.  Table 2 lists statistics (20th 

percentile, median, and 80th percentile) of the distribution of 

EERs for each of the five methods: baseline SVM applied to the 

raw GMM supervector (GSL-SVM), the SVM applied to PLS-

decomposed supervectors using two different development data 

sets, and the distance-based neighborhood classifier applied to 

PLS-decomposed supervectors using the same two development 

data sets.  The statistics shown in Table 2 indicate a consistent 

improvement in overall performance through the use of PLS 

supervector decomposition.  All four approaches that use the 

PLS-decomposition outperform the baseline GSL-SVM.  Table 2 

also suggests improved performance across the distribution of 

EERs when using development data set #1, which reflects the 

more optimistic scenario where recordings (from different 

recording conditions) for speakers in the test set are available for 

inclusion in the development set. 

An additional observation from Table 2 is that there appears 

to be a greater range of scores when using the SVM versus 

nearest neighbor on the PLS-decomposed supervectors.  A 

follow-up to the results presented in Table 2 examined the 

consistency of results across the four methods that included PLS 

decomposition in an effort to identify advantages in certain 

train/test conditions when using a particular classifier or 

development data set.  Correlation coefficients were calculated 

between the length-100 vectors of EERs for each of the four 

methods.  Higher correlations are indicative of more consistent 

ordering of conditions in the distribution of EERs across the 100 

experiment configurations.  The correlation coefficients indicate 

that the order of conditions from “easiest” to “most difficult”, in 

terms of EER, was relatively consistent when the same 

development data set was used.   The EERs for the SVM and 

neighborhood classifier has correlation coefficients of 0.87 and 

0.77 for development data set #1 and #2, respectively.  Thus, the 

differences in the classifiers may have resulted in different levels 

of performance, but did not significantly change the ordering of 

conditions when sorted by difficulty.   

Comparing the effect of the different development data sets 

on performance, the SVM and neighborhood classifier had 

correlation coefficients of 0.74 and 0.56, respectively.  Thus, the 

most variation in ranking conditions by performance occurs 

when comparing the neighborhood classifier performance across 

the two different development data sets.  For the neighborhood 

classifier, the difference in performance for individual conditions 

when comparing development data sets #1 and #2 appears 

largely arbitrary.  The most consistent attribute is that 

experiment configurations involving the Large, Far Omni 

recording condition perform poorest with either development 

data set.  Another exception observed in the results is that, while 

development data set #1 typically provided improved 

performance, the experiment that paired “Large, Far Omni” and 

“Large, Dir@3ft” for train/test was substantially better (9.4%) 

using development data set #2.   

An additional avenue of investigation examined the effect of 

PLS subspace dimensionality on performance, and potential 

improvement in EER, for the speaker recognition system.   The 

results reported in Table 2 were calculated with PLS projections 

into a 25-dimensional subspace.  In Figure 1, results are shown 

for the PLS neighborhood classifier as a function of the number 

of PLS subspace dimensions.  The boxplots in each subplot 

represent the distribution of EERs within a single cross-condition 

EER matrix.  Center lines in each box are the median of the 

distribution, upper and lower edges of the box identify the 75th 

and 25th percentile (N = 100), and the hash symbols indicate 

outliers that are more than 1.5 standard deviations beyond the 

edge of the box.  Cross-condition EER matrices were generated 

as the number of PLS subspace dimensions was varied from D = 

5 to D = 30, with the upper limit imposed by the amount of 

Table 2: Statistics from the distribution of equal-error rates for 

each of the five classification approaches when evaluated on the 

entire suite of 100 cross-condition experiment configurations. 

 

 20th 

percentile 
Median 

80th 

percentile 

GSL-SVM 11.7% 23.3% 28.6% 

PLS SVM, 

Dev. Set #1 
6.8% 10.2% 18.0% 

PLS Distance, 

Dev. Set #1 
5.1% 8.2% 13.4% 

PLS SVM, 

Dev. Set #2 
4.7% 14.1% 25.0% 

PLS Distance, 

Dev. Set #2 
5.0% 12.5% 22.7% 
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available data.  The right side of each subplot also shows 

distributions of EERs for the baseline GLS-SVM. 

 Figure 1 reveals a clear and consistent trend between the 

median EER and the dimensionality of the PLS subspace.  For 

all classifiers, the median value of the EER distribution using a 

PLS subspace with at least 10 dimensions is lower than the value 

attained using the GLS-SVM.  The study of this trend was 

limited by the size of the available development data set.  Further 

investigation with a larger development data set might provide a 

clearer understanding of the relationship between characteristics 

of the data set and improvements observed with increasing 

dimensionality of the PLS subspace.  

4. Conclusions 

This paper describes a study of subspace decomposition 

techniques to improve performance of a speaker recognition 

system in data conditions that contain both room and 

microphone variability.  Consistent with recent trends in the 

research community, the primary focus was on dimensionality 

reduction techniques applied to the GMM supervector, which 

attempt to find a lower-dimensional subspace that only 

represents individual speakers and removes the variability 

introduced by the room and environment.  The results of this 

study indicated that the partial least squares (PLS) subspace 

consistently provided an improved feature set for discrimination 

between speakers.  A combination of partial least squares 

decomposition of the GMM supervector and nearest neighbor 

classification using a correlation-based distance metric provided 

the overall best performance for 100 different experiment 

configurations created by using each of the ten conditions in the 

MultiRoom8 data.  The combination of these techniques 

provided significant improvements in equal-error rate when 

compared to the SVM applied to the GMM supervector, and 

consistently outperformed the SVM applied to the PLS-

decomposed supervector. 

The results of this study provide further evidence to support 

the validity of partial least squares decomposition for mitigating 

certain sources of variability in speaker recognition tasks.  

Previous studies have also shown that partial least squares 

decomposition provides a lower-dimensional subspace that is 

appropriate for discriminating between speakers.  The outcomes 

of this research effort encourage further consideration of 

supervised subspace decomposition techniques (e.g. partial least 

squares) to address scenarios where speaker recognition must be 

performed in the presence of significant room and microphone 

variability. 
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Figure 1: Effect of PLS subspace dimensionality on the distribution of EERs generated using the neighborhood classifier for all 100 

MultiRoom8 cross-condition experiment configurations. Also shown are the distributions of EERs using the baseline GSL-SVM.   
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