Clarkson University is a nationally-ranked research university and the institution of choice for more than 4,000 enterprising, high-ability scholars from diverse backgrounds who embrace challenge and thrive in a rigorous, highly collaborative learning environment. We add value to our students’ education by partnering with leading businesses, industries and thought leaders to bring relevance to the challenges and needs of a modern world in which the boundaries of knowledge, discipline, nations, and cultures blur. We encourage students to question the status quo, push the limits of what is known, and to apply their ingenuity to develop fresh solutions to real-world challenges. For more than 100 years, our graduates have achieved extraordinary professional success, risen to societal challenges, and advanced the global economy ethically and responsibly. Among our 38,000 alumni, one in five is a CEO, senior executive or owner of a company.

Founded in 1896 to honor Thomas S. Clarkson, the University’s main campus is located in the “college town” of Potsdam, NY on a historic 640-acre wooded homestead in the foothills of the Adirondack Park. With three other universities nearby, Clarkson community members enjoy a constantly changing social and intellectual quality of life largely influenced by our proximity to the north slope of the Adirondacks; easy drives to Lake Placid as well as Ottawa and Montreal, Canada; and a high level of regional camaraderie to encourage innovative partnerships in small business development, arts, tourism, recreation, agriculture and green energy.

The University also includes The Capital Region Campus for graduate education in Schenectady, New York, and The Beacon Institute for Rivers and Estuaries for environmental research and education in Beacon, New York.

Clarkson’s educational strengths include:
- rigorous professional preparation
- dynamic, real-world learning
- highly collaborative community
- teamwork that spans disciplines

Changes in Curricula
Information contained in this catalog is current at the time the catalog is posted on our Web site, but as courses and curricula undergo changes by official action of the University, occasionally such changes may supersede information found herein. The accuracy of any particular information can be checked through The Graduate School, Student Administrative Services, the Den of the appropriate School, or academic departments.
Please be aware that the information concerning academic requirements, courses, and programs of study in the catalog does not establish an irrevocable contract between the student and the University. The University can change, discontinue, or add academic requirements, courses, and programs of study at any time, without notice. Although every effort is made to provide timely notice to students in order to help in the planning process, it is the responsibility of the student to confirm that all appropriate degree requirements are met.

All students are encouraged to read the catalog thoroughly. Failure to be familiar with the contents does not excuse a student from the requirements and regulations described herein.

Courses
Typical courses for each department are listed in this catalog, but not all courses are offered each year. Descriptions of courses and terms in which specific course are offered are accessible in PeopleSoft. Viewing Clarkson’s searchable course catalog will give up-to-date course descriptions, pre- or co-requisites, course attributes, and other information pertaining to all courses offered. Clarkson’s browse course catalog can be viewed at www.clarkson.edu/sas/classes_schedules/index.html. There is no log-in required - just select the term and year that you are interested in viewing.

Course credit may also be available for Independent Study and Special Projects.

Accreditation
Clarkson is accredited by the Commission on Higher Education of the Middle States Association of Colleges and Schools, 3624 Market St., Philadelphia, PA 19104-2680, 215-662-5606. The School of Business is accredited by the Association to Advance Collegiate Schools of Business (AACSB), an internationally recognized accrediting agency for graduate and undergraduate programs in business administration. The Healthcare Management MBA is accredited by the Commission on the Accreditation of Healthcare Management Education (CAHME). The MAT program in the Education department is accredited by Council for Accreditation of Educator Preparation. The entry level doctor of physical therapy program is accredited by the Commission on Accreditation in Physical Therapy Education (CAPTE) of the American Physical Therapy Association (APTA). The Accreditation Review Committee (ARC-PA) on Education for the Physician Assistant has granted continuing Accreditation to the Physician Assistant Studies Program. The Occupational Therapy Program has been granted Candidacy Status by The Accreditation Council for Occupational Therapy Education (ACOTE) of the American Occupational Therapy Association (AOTA). In addition, the University is accredited by the United States Civil Service Commission, and its curricula are approved by the New York State Board of Regents. All Clarkson degree programs are approved by the New York State Division of Veterans Affairs for the training of veterans and other eligible persons.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>THE CLARKSON EDUCATION</td>
<td>6</td>
</tr>
<tr>
<td>ABOUT CLARKSON UNIVERSITY</td>
<td>7</td>
</tr>
<tr>
<td>A BRIEF HISTORY</td>
<td>8</td>
</tr>
<tr>
<td>GRADUATE DEGREE PROGRAMS</td>
<td>10</td>
</tr>
<tr>
<td>THE GRADUATE SCHOOL</td>
<td>11</td>
</tr>
<tr>
<td>Admission</td>
<td>11</td>
</tr>
<tr>
<td>Degree Requirements</td>
<td>13</td>
</tr>
<tr>
<td>Grading System</td>
<td>16</td>
</tr>
<tr>
<td>Academic Standing and Dismissal</td>
<td>18</td>
</tr>
<tr>
<td>Commencement Policy</td>
<td>19</td>
</tr>
<tr>
<td>Expenses, Financial Assistance, Student Status</td>
<td>20</td>
</tr>
<tr>
<td>THE ASSOCIATED COLLEGES CONSORTIUM</td>
<td>28</td>
</tr>
<tr>
<td>STUDENT AFFAIRS</td>
<td>29</td>
</tr>
<tr>
<td>INTERNATIONAL CENTER</td>
<td>35</td>
</tr>
<tr>
<td>ATHLETICS, INFORMATION TECHNOLOGY, & LIBRARIES</td>
<td>37</td>
</tr>
<tr>
<td>SCHOOL OF ARTS AND SCIENCES</td>
<td>40</td>
</tr>
<tr>
<td>SCHOOL OF BUSINESS PROGRAMS</td>
<td>56</td>
</tr>
<tr>
<td>WALLACE H. COULTER SCHOOL OF ENGINEERING</td>
<td>73</td>
</tr>
<tr>
<td>INSTITUTE FOR A SUSTAINABLE ENVIRONMENT</td>
<td>120</td>
</tr>
<tr>
<td>PROGRAMS IN HEALTH PROFESSIONS</td>
<td>123</td>
</tr>
<tr>
<td>INTERDISCIPLINARY PROGRAMS</td>
<td>144</td>
</tr>
<tr>
<td>DIVISION OF RESEARCH</td>
<td>157</td>
</tr>
<tr>
<td>ACADEMIC CENTERS</td>
<td>158</td>
</tr>
</tbody>
</table>
GRADUATE ADMISSIONS

Clarkson Potsdam Campus
315-268-6400

Capital Region Campus
518-631-9910

School of Arts & Sciences Programs
315-268-3802
E-mail sciencegrad@clarkson.edu

School of Business Programs
315-268-6613
E-mail busgrad@clarkson.edu

Wallace H. Coulter School of Engineering Programs
315-268-7929
E-mail enggrad@clarkson.edu

Institute for a Sustainable Environment (ISE) Programs
315-268-2315
E-mail ise@clarkson.edu

Physician Assistant Studies Program
315-268-7942
E-mail pa@clarkson.edu

Physical Therapy Program
315-268-3786
E-mail pthealth@clarkson.edu

Occupational Therapy Program
315-268-4412
E-mail ot@clarkson.edu
THE CLARKSON EDUCATION

Clarkson academic programs span boundaries and vary widely in content. However, at the heart of the institution’s educational process are fundamental goals and values that define a common learning experience and shape the growth of every Clarkson student. The University has articulated its mission, vision, and values as follows:

Mission of Clarkson University
Clarkson University is an independent, nationally recognized technological university whose faculty of teacher/scholars aspires to offer superior instruction and engage in high-quality research and scholarship in engineering, business, science, health, and liberal arts. Our primary mission is to educate talented and motivated men and women to become successful professionals through quality pre-collegiate, undergraduate, graduate, and professional continuing education programs. Our community and campus settings enhance the quality of student life and afford students access to and interaction with their faculty. We value the diversity of our University community, and we strive to attune ourselves and our programs to our global, pluralistic society. We share the belief that humane and environmentally sound economic and social development derive from the expansion, diffusion, and application of knowledge.

Vision of a Clarkson Education
The Clarkson University educational experience is designed to provide talented and ambitious students with the knowledge and skills necessary to achieve positions of leadership within their chosen profession. The combination of Clarkson’s strong technologically rich curricula and state-of-the-art teaching and research facilities, coupled with an unparalleled commitment to a friendly learning environment and to students’ personal development, uniquely prepares Clarkson graduates to excel in their chosen professions and to lead rewarding and creative lives.
ABOUT CLARKSON UNIVERSITY

Clarkson is recognized among the finest universities in the nation, according to such diverse measures as U.S. News & World Report, the Association for Independent Technological Universities, and corporate recruiters. Clarkson focuses on providing a rigorous professional experience, connecting discovery and engineering innovation with enterprise, and developing a collaborative community for students, faculty and staff.

Graduates are known for their innovative thinking and problem-solving skills as well as their ability to create, adapt and manage technology for the benefit of society. One Clarkson graduate in five is a president, CEO, vice president or senior executive of a company.

The University was founded in 1896 as a memorial to Thomas S. Clarkson, a northern New York businessman with a deep concern for humanity. Today, the University continues to reflect his fundamental values: a commitment to professional skill and competence coupled with personal integrity and human understanding. The University is known as a friendly school where students benefit from personal attention and close interaction with our distinguished faculty of teacher/scholars.

Clarkson is located on a 640-acre wooded campus in the historic village of Potsdam (pop. 9,500), where the rolling foothills of the Adirondack Mountains meet the St. Lawrence River Valley. The school attracts high-ability students who seek a rigorous comprehensive education in a scenic, friendly environment. Outdoor enthusiasts enjoy recreational opportunities in the nearby Adirondack Park (six million acres) and Thousand Islands region. Lake Placid and international attractions in Ottawa and Montreal are a short drive away.

Clarkson’s Capital Region Campus is located in Schenectady, New York. Centrally located to many of the University’s corporate partners for research, graduate education, talent development and alumni networking, the campus also affords convenient transportation via train, air and automobile interstates. The campus is less than 15 minutes from the state capital in Albany, and less than three hours from New York City, Syracuse and Boston. If you want to take in the real Empire State experience, you can also be in New York’s great Adirondack Park with world-class recreation, camping and international tourism venues in less than an hour.

Clarkson is recognized for both teaching and research. Placement rates are consistently high and an active alumni network fosters success.

The University offers degrees in traditional academic fields, along with majors that cut across and combine disciplines such as biomolecular science, environmental science and policy, information technology, and software engineering.
A BRIEF HISTORY OF CLARKSON
(The following summary has been excerpted largely from A Clarkson Mosaic, a history written by Professor Emeritus Bradford B. Broughton in conjunction with the institution’s 1996 Centennial.)

Two months after a highly successful Potsdam businessman, Thomas Streatfeild Clarkson, was crushed to death while trying to save one of his workers in his sandstone quarry on August 17, 1894, his family began planning a memorial to him: a school.

Choosing as their rationale a phrase which his sisters and nieces felt aptly described their brother — Thomas’ favorite Biblical quotation, A workman that needeth not to be ashamed — the family opened the Thomas S. Clarkson Memorial School of Technology in September 1896, in The Main Building (“Old Main”) which they commissioned to be built on Main Street.

To the five young men in the preparatory class, eight men and four women in the freshman class, six courses of instruction were offered: electrical engineering, domestic science, art, machine work and smithing, woodwork and pattern making, and normal manual training. By 1907 the school was offering additional bachelor’s degrees in mechanical, civil and chemical engineering.

Recognizing the need for a gymnasium, the students began a fund-raising campaign for the $11,000 needed to build one in town, spurred on by a $5,000 gift from the Clarkson family. By 1912, this second School building had been erected. That building became the library in 1956 after the new Alumni Gymnasium opened. When the library moved to the Educational Resources Center in 1978, the original building became the Liberal Studies Center.

When the New York State Board of Regents offered scholarships to qualified students attending college within the state in 1913, Clarkson’s Board of Trustees voted to change the school’s name to The Thomas S. Clarkson Memorial College of Technology; the head of the college became president instead of director; and John Pascal Brooks, a Dartmouth graduate, and one of the men on Walter Camp’s first All-American football team, became the first Clarkson director to bear the title of president.

Hockey began in 1921 on a rink behind Old Main, and soon moved to a bigger rink built by the students in Ives Park. Not until the hockey arena was completed on land across the river in 1938 did the team have a building in which to play. That facility was later named for the founding force behind Clarkson hockey, Murray Walker, owner of Weston’s Bookstore. Walker Arena provided home ice for Clarkson teams, which have frequently achieved national ranking, until Cheel Arena was completed in 1991.

Thomas Clarkson’s nieces, Miss Annie Clarkson and Miss Emily Moore, tried to have the entire school moved to a new campus on a hill outside of Potsdam (hence the nickname, the “hill campus”), with a gift of $1.5 million in 1929. However, because that money shrank to half a
million within a year due to the stock market crash, the plans for the move had to be shelved for over 30 years. Since then, the Potsdam Campus has moved almost entirely to the hill, although some administrative offices and the programs in health sciences remain on the original downtown Potsdam campus.

Responding to a plea from New York Governor Thomas Dewey after World War II, Clarkson admitted hundreds of returning veterans. Having no space to house or teach them by 1946, Clarkson rented the New York State School for the Deaf in Malone, N.Y., 40 miles east of Potsdam. For the next five years, freshmen and many sophomores spent their first two years in Malone before moving to the Potsdam campus for the remainder of their Clarkson education. That branch closed in 1951.

With that flood of veterans came the Trustees’ realization that the College would have to expand its facilities, and expand them it did over the next 20 years, adding not only facilities but graduate programs in engineering, science, and management, including PhD programs in most.

In the spring of 1999, Clarkson Hall was renovated and rededicated as the Center for Health Sciences. This downtown facility now houses the University’s programs in Occupational Therapy, Physical Therapy, and Physician Assistant Studies. The newest academic building, Bertrand H. Snell Hall, opened on the hill campus for the fall 2000 semester. A wing of biochemistry laboratories was added to the Cora and Bayard Clarkson Science Center and opened in fall 2005. The Technology Advancement Center (TAC), an 18,000-square-foot addition connecting the Schuler Educational Resources Center and the Cora and Bayard Clarkson Science Center, was completed in fall 2008. A new Student Center was completed in August 2010 and connects all academic buildings.

With continued recognition for the need to grow The Graduate School, on February 1, 2016, Clarkson University merged with Union Graduate College creating the Clarkson University Capital Region Campus (CRC) in Schenectady, NY. One building comprised of three floors, houses graduate professional programs and prepares students to make sense of complex systems, forge connections across people and fields, and find creative solutions to some of today’s vexing challenges.
Graduate Programs
The Higher Education General Information Survey (HEGIS) code designated by the New York State Education Department for classifying these academic programs can be found in the list of degree programs and HEGIS Codes near the end of the catalog. Clarkson University offers the following Graduate Degree and Certificate Programs:

Degree Programs
Adolescence Education 7-12 MAT
Basic Science MS
Bioethics MS
Business Administration MBA
Chemical Engineering MS, ME, PhD
Chemistry MS, PhD
Civil & Environmental Engineering MS, ME, PhD
Clinical Leadership in Healthcare Management MS
Computer Science MS, PhD
Data Analytics MS
Electrical and Computer Engineering PhD
Electrical Engineering ME, MS
Energy Systems, MS
Engineering and Management Systems, MS
Engineering Management MS
Engineering Science MS, PhD
Environmental Politics & Governance MS
Environmental Science & Engineering MS, PhD
Healthcare Management MBA – 8 Year Leadership in Medicine
Healthcare Data Analytics MS
Information Technology MS
Interdisciplinary Bioscience & Biotechnology PhD
Mathematics MS, PhD
Materials Science & Engineering PhD
Mechanical Engineering ME, MS, PhD
Occupational Therapy MS
Physical Therapy DPT
Physician Assistant Studies MS
Physics MS, PhD
Technology Education K-12 MAT

Advanced Certificate Programs
Bioethics
Business Fundamentals
Business of Energy
Global Supply Chain Management
Human Resource Management
Management and Leadership
Healthcare Management
THE GRADUATE SCHOOL
Kerop Janoyan, Interim Dean

Graduate Study
Clarkson offers programs of study during the regular academic year leading to the Master of Business Administration, Master of Engineering, Master of Science, Master of Arts in Teaching, Doctor of Philosophy, and Doctor of Physical Therapy degrees.

Graduate work during the entire year leading to the Master of Business Administration is available both on campus and online on a part-time basis for employed individuals.

Interdisciplinary programs leading to Master of Science and Doctoral degrees offer a unique perspective on graduate study and are a key element in many of our programs.

Admission
Admissions to graduate study is on a merit basis. The applicant must have received a bachelor’s degree from a college accredited by its regional association and must have achieved a record distinctly above average. Application materials may include: resume, personal statement, and letters of recommendation. Please contact the appropriate school for details on its own set of requirements.

Non-engineering majors may do engineering graduate work, but the degree they receive may not make them eligible to sit for the professional engineering licensing examinations immediately upon graduation.

Applicants for all graduate programs in science, engineering and interdisciplinary programs are required to take the Graduate Record Examinations; some programs including the School of Business will also accept the GMAT score.

All admission decisions must be approved by the applicant’s departmental graduate representative, by the director of the program and/or the dean of the appropriate school. While there is a rolling admission policy, and all applications will be reviewed up to a reasonable time prior to the beginning of classes, it is recommended that students requesting financial aid apply by January 30 for the fall term and September 1 for the spring term. Students are encouraged to apply no later than five (5) months prior to the preferred term of entry to allow time for admissions processes. For students applying to the one-year MAT program that begins in the summer, complete applications must be received no later than April 1st. For students applying for the two-year MAT program that begins in the Fall term, applications are due by June 1st.

For applications and other inquiries about the status of an application, contact the specific department of interest or see Clarkson’s Web site at www.clarkson.edu/admission/graduate/.
International Applicants: Language Verification Requirement

Clarkson University must verify all international students' English language proficiency when English is not a first language. This requirement, as part of the application process, must be completed prior to the issue of an I-20. Once the university has verified this requirement, and the applicant is accepted, the I-20 may be used to obtain a student visa.

Clarkson University requires one of the following language proficiency exams:
- TOEFL (Test of English as a Foreign Language: http://www.toefl.org)
- IELTS (International English Language Testing System: http://www.ielts.org)

Graduate admissions in the School of Business and the Coulter School of Engineering require a minimum IBT TOEFL score of 80 or minimum IELTS band score of 6.5. The School of Arts and Science (including Health Sciences) has no minimum requirement for TOEFL or IELTS exams, however a solid understanding of speaking/writing English is expected. A TOEFL/IELTS official score must be submitted as part of the application requirement.

Lastly, all matriculated international students for whom English is a second language are required to complete the ESL placement exam upon arrival to campus and complete any resulting requirements. Any language courses required as a result of the placement exam are not counted toward degree requirements. Applications to the MAT program may be required to complete an additional English language proficiency interview.

Accelerated Admission Graduate School Policy for current Clarkson students

This policy is intended to encourage early consideration and preparation for graduate work at Clarkson by highly qualified students. Such students would likely participate in undergraduate research experiences and would have identified a graduate advisor prior to baccalaureate graduation. These students may accelerate their undergraduate course of study to graduate early and begin their graduate work as soon as possible.

Any student who completes at least two years of residential study at the University and who has received a baccalaureate degree from Clarkson will automatically be accepted into any Clarkson graduate program for a master’s degree, at minimum, if he or she meets the conditions below at the time of entry to Graduate School. Eligible students must have:
- graduated in good standing from Clarkson within the previous year and have taken any necessary prerequisite courses for entrance to the graduate program in question;
- exhibited the quality of character expected of an entering graduate student of Clarkson University, as indicated by a letter from their academic advisor, department chair, or the dean of the school in which their baccalaureate degree resides;
- maintained a minimum grade-point average of 3.50 in their major;
- achieved a School-defined minimum score on a designated national exam; the CUSB requires the GMAT exam and all others, with the exception of Clarkson students, require the GRE.
Applications for graduate admission from students receiving a Clarkson University baccalaureate degree who have not met all conditions specified above will still be considered, but admission will no longer be automatic.

Superior Clarkson undergraduate students, with the permission of their department chair and the dean of the appropriate School, may enroll in engineering, science, and information technology graduate courses. When such courses are completed with a grade of C or better beyond the normal credit hour requirements for the bachelor’s degree, credit may be applied toward a graduate degree. Graduate-level courses in the School of Business are restricted to matriculated graduate students.

Degree Requirements and Academic Policies for Graduate Students

Requirements for the Master’s Degree
The minimum graduation requirements for students in all Master’s degree programs at Clarkson are listed below. Additional graduation requirements are set by each degree program. Consult the department office for details.

1. A minimum of 30 credit hours of graduate coursework, as follows.
 a. At least 20 credit hours of course and seminar work. The balance of coursework must be consistent with the research or professional experience component.
 b. Only courses numbered 500 and above are accepted for graduate credit.
 c. 10 credit hours of transfer credit (B grade or better) may be accepted.
2. Satisfactory completion of a research or comparable professional experience, as follows.
 a. A written thesis based on independent research;
 b. A comprehensive examination; or,
 c. An appropriate, professionally oriented special project.
3. At least one academic year of study beyond the B.S
4. A cumulative GPA of 3.0 in courses used to meet graduation requirements
5. All work must be completed in five calendar years. Former Union Graduate College students active in their respective programs prior to summer quarter 2016 must complete in six calendar years.
6. A thesis or project submitted in partial fulfillment of the requirements for the Master of Science degree will be examined by a committee of at least three Clarkson faculty appointed by the student’s department. After approval by the examining committee, a thesis requires signature approval by the dean of the Graduate School, and two copies of the thesis will be deposited in the University library.

The minimum graduation requirement for students in all Master of Engineering (ME) degree programs at Clarkson is 30 hours of graduate credit. Each semester, full-time ME students must register for 15 credits, possibly including required and elective coursework, a seminar, and project work. Each department has its own specific requirements, but the common element throughout is the practical orientation of the program.

Students failing to perform satisfactorily will be separated from the University upon the request of the department chair and with the concurrence of the dean of the respective School.
Any changes in the student’s degree program must be approved by the department chair and dean of the school.

Requirements for the Doctoral Degree

The minimum requirements for all students in Doctor of Philosophy (PhD) degree programs are described below. Please consult your departmental office for additional requirements. Requirements for students enrolled in the Doctor of Physical Therapy (DPT) program vary from those outlined here and are described in the General Requirements for DPT Curriculum.

1. A minimum of 90 credit hours, as follows.
 a. A minimum of 24 credit hours coursework.
 b. A minimum of nine course credit hours taken in residence (includes distance learning courses offered by Clarkson University).
 c. A minimum of six credit hours of seminar.
 d. A maximum of 30 credits transferred from an MS degree towards PhD degree requirements (B grade or better).

2. A minimum of three academic years of full-time graduate study or the equivalent in part-time study. Two years of study must be in residence at Clarkson. Students matriculated in the off-campus PhD program are exempt from this residency requirement (see below).

3. Satisfactory completion of the PhD comprehensive examination for admission to candidacy (“candidacy procedure”) within two years of full-time study after admission to the PhD program or, for part-time students, before completing 66 credits. (See below)
 a. After completion of the candidacy procedure, the student will be identified as a “PhD Candidate.”
 b. Students who fail the candidacy procedure may make a second attempt according to department guidelines.
 c. A student who does not successfully complete the candidacy procedure within the time allowed may be dropped from the graduate program.

4. A written dissertation must be submitted by each candidate and defended orally as part of the final examination (see below).

Any changes in the student’s degree program must be approved by the Department Chair and Dean of the school.

Off-Campus PhD Program Policy

The off-campus PhD program has been designed to allow Clarkson University doctoral degree candidates to conduct their dissertation research at their employer’s research facilities. A Clarkson faculty advisor directs the dissertation research with the assistance of a co-advisor at the student’s employer, and up to 50% of required coursework can be taken from Clarkson via online and distance learning.
1. The minimum-credit-hour requirement after the bachelor’s degree is 90 hours (current requirements). The normal course requirements for the student’s department and the University must be met. Students may take up to 50% of required coursework through distance learning. Students who enter the program with an MS degree may transfer up to 30 credits toward the PhD from their master’s program.

2. The student must satisfy all the entrance requirements of the academic department. This is beyond the basic University requirements already in place for admission to the PhD program. The experience and specialization of each candidate will be considered in the admission evaluation process.

3. It is essential that the dissertation committee includes one qualified representative from the student’s employer. The representative will act as a co-advisor within the organization. Each department will decide if the representative should be appointed as an external committee member of the student's PhD Committee.

4. The student must fulfill all degree requirements according to each department’s policy. It is considered essential that each candidate is carefully examined for both the depth and breadth of his/her knowledge in the chosen field of study.

5. The dissertation should be defended at Clarkson University in the normal manner and according to the University and department requirements and regulations. The candidate must demonstrate a sufficient fundamental knowledge in his/her field.

6. The department will specify the period of time the student spends on campus (at the department) and the number of visits (each semester).

7. The maximum duration of time allowed to finish the dissertation is eight years.

8. The relationship between the student’s employing organization and Clarkson University must conform to the Clarkson Conflict of Interest Policy.

A listing of courses available through distance learning is published each semester. Off Campus PhD students may choose from that list and enroll in those courses. These courses shall meet the matriculation requirements set forth in the University course catalog.

The courses for this program will be delivered using a video conference/classroom facility or through the Internet. Graduate classes that include off-campus students are scheduled at a video conference facility at Clarkson. An appropriate faculty member is assigned to oversee the courses, coordinate the examinations and evaluation of the student’s performance. Courses may also be given through other means of delivery, provided they meet the University and department requirements. These courses shall meet the matriculation requirements set forth in the University catalog.

Comprehensive Examination for Admission to Candidacy
A comprehensive examination based on general preparation in the major field must be taken within two years after admission to the PhD program. If the comprehensive examination is failed twice, the student will be dropped.

Length of Program
All work must be completed within seven years after the student is identified as a PhD candidate.
Final Examination
A final examination must be passed. This examination will include, as a minimum, an oral examination based on the dissertation. For the final oral examination, a committee will be selected by the faculty advisor and approved by the department chair and dean of the respective school. The committee will consist of a minimum of five members. The members should include at least four Clarkson faculty of assistant professor rank or higher and possessing an earned doctoral degree. At least one of the members must be from a department other than the candidate’s major department. With the approval of the Provost, an external examiner with appropriate credentials from another University or industry may also be appointed to serve as one of the five committee members. This committee will judge the technical competence of the dissertation and the oral presentation. Final completion paperwork and an electronic copy of the accepted dissertation (on CD) must be received in the student’s School office no later than 10 working days before commencement to confer degrees to qualify a student to receive a degree at the end of the spring semester. Before final submission of the PhD dissertation, each student will be responsible for submitting their dissertation for publication, and paying any associated fees.*

*For information and assistance, contact the Graduate Coordinator in your school's office.

Grading System
The grades A+, A, A-, B+, B, B-, C+, C, and P are acceptable for credit toward the degree. For graduation an average of B or better must be earned in nondissertation courses and seminar work. The grade of P will not affect the average.

Students failing to perform satisfactorily will be separated from the University upon the request of the department chair and with the concurrence of the dean of their School.

GRADUATE GRADE DEFINITIONS
Graduate grades at Clarkson are defined as follows:
A+ Passed with 4.000 quality points per credit hour
A Passed with a 4.000 quality points per credit hour
A- Passed with a 3.667 quality points per credit hour
B+ Passed with 3.334 quality points per credit hour
B Passed with 3.000 quality points per credit hour
B- Passed with 2.667 quality points per credit hour
C+ Passed with 2.334 quality points per credit hour
C Lowest passing grade with 2.000 quality points per credit hour
F Failed with 0.000 quality points per credit hour
P Passing: this grade may be employed for seminar courses and special projects, and under limited circumstances for MS thesis credits. Approval for a "P" grade for project or thesis credit requires the approval of the
department chair, (or comparable administrative unit), Dean of the school, and the Dean of the Graduate School/Provost.

S Satisfactory progress towards the completion of on-going project thesis, or dissertation work for the semester. The S grade is removed and replaced with a "P" grade when the final report, thesis or dissertation is accepted by the Graduate School.

U Current Unsatisfactory progress towards the completion of on-going project, thesis, or dissertation work for the semester. The U grade is removed and replaced with a "P" grade when the final report, thesis or dissertation is accepted by the Graduate School.

I Incomplete grade given only in cases described in the paragraph below. An I grade must be replaced by one of the above letter grades as required by the rules in the paragraph below.

Incomplete Grades

- A student who is unable to complete the requirements of a course because of extenuating circumstances may seek an Incomplete grade (I) for the course. Whether or not an "I" grade is given is entirely at the discretion of the faculty member for the course, although the faculty member may ask the Dean of Students' Office if it has relevant information regarding students' requests. The conferring of an "I" grade carries the presumption that it is possible for the course to be completed with a passing grade; in cases where the missing work is such that it cannot be completed after the end of the semester, or where completion of the missing work could not possibly result in a passing grade for the course, an "I" grade should not be given.

- Requests for an "I" grade shall be made on a form available from Student Administrative Services. Faculty members indicate on the form whether they approve or disapprove the "I" grade request for their course(s) and return the completed form to Student Administrative Services. If the faculty member approves the request, he or she lists on the form the work that must be completed to remove the "I" grade and the due date for this work and submits an "I" for the student on the course grade roster. If the faculty member disapproves the request, he or she submits a letter grade for the student on the course grade sheet. Unless otherwise stated on the form, or if no form is received, the work required to remove an "I" grade must be completed no later than the end of the 7th week of classes of the next semester in which the student registers at the University, otherwise a grade of "F" is recorded. All requests for "I" grades by a student in the same semester shall be made on a single form, and students seeking more than two "I" grades in the same semester must consult with the Dean of Students prior to seeking faculty approval for their requests.

- To remove an "I" grade, the instructor shall submit a completed Change of Grade form to the instructor's department chair (or comparable administrative officer), and upon approval, it is sent to Student Administrative Services. Then the specified grade shall replace the "I" grade in the semester(s) in which the student registered for the course.
Academic Standing and Dismissal
(See Health Science Programs section for further information)
Students, other than Health Science Professional students, with a cumulative or term GPA below 3.0 may be notified with an Academic Warning notification. At the discretion of each department, further academic standing assessment may be as follows:

A grade of “F” in one course or a grade of “C” or “C+” in two CRC graduate level School of Engineering/Computer Science, Bioethics/Clinical Leadership, School of Management MS Healthcare Data Analytics or Masters of Teaching courses or three on-line MBA program courses may indicate that the student is not of graduate caliber and may be dismissed from their program.

Departmental action may adopt the following actions for student notification:

1. **Academic Warning**: The student may remain in the program, but unless the record improves, the student will be subject to subsequent action.
2. **Suspension**: When in the judgement of the Dean/Chair, a student’s record makes it inadvisable to continue in the program, he or she may be suspended, normally for not less than two terms.
3. **Dismissal**: In certain cases, The Department may dismiss a student under reasonable academic and/or behavioral circumstances with the appropriate documentation.

Matriculated students may petition for readmission, in writing to the Dean/Chair of their program who will collaborate with the Academic Committee for full consideration.

Graduate Student Degree Conferral and Commencement Policies

In order for a graduate student to have their degree conferred:

- All coursework and seminar credits must be completed as specified by the degree requirements.
- Master’s theses or Doctoral dissertations must be approved by the student’s research committee, department, school, and dean of the Graduate School. All associated final and signed copies and paperwork must be submitted to the appropriate school office by the published deadline. This deadline is generally 10 working days before commencement.
- Projects for non-thesis Master’s students must be approved by the advisor and department. All associated paperwork must be submitted to the appropriate school office by the published deadline. This deadline is generally 2 working days before the faculty vote on degree candidates.

Students who do not meet these requirements and deadlines may be considered a conditional degree candidate if:
• They are in the CUSB MBA program at Clarkson and are registered for up to three hours of coursework in the Clarkson international summer program. OR
• They are enrolled in the Doctor of Physical Therapy program for the final three hours of coursework that is not complete at the time of the faculty vote.

Requests for conditional degree status must be approved by the dean of the appropriate school or comparable unit administrator and submitted to the dean of the Graduate School at least 10 working days before the faculty vote on degree candidates.

For students voted “on condition,” the degree will be conferred when the respective School receives a final grade for the remaining course(s), as appropriate. All conditions for graduation must be met prior to the reporting of graduates to the New York State Education Department; otherwise degrees will be conferred in the next semi-annual commencement ceremony.

Commencement Participation Policy
A student may participate in commencement if the student is in good academic standing and:

• The student has defended his or her dissertation, thesis or presented their project, yet has failed to meet the published deadline for the final signed copies and completed paperwork. OR
• The student is in a research based Master’s degree program, has submitted an approved and signed thesis or project report, and requires no more than six (6) additional credits of coursework. OR
• The student is in a course-based or project-based Master’s degree program and is within six (6) credits of completing their degree.

Student requests to participate in the graduation ceremony require explicit approval by their Dean or Institute Director, with the approved request submitted to the Dean of the Graduate school at least 10 working days before the faculty votes to confer degrees. In the case of an incomplete dissertation, thesis or project, the petition must be initiated by the thesis or project advisor and be approved by the department or program chair, and the Dean of the respective School or comparable unit administrator. This petition should (a) certify that a successful presentation or defense of thesis had occurred prior to the published deadlines, and (b) carry the signatures of the thesis or project advisor, and all other members of the thesis examining committee indicating that they are confident that the remaining corrections to the thesis or dissertation can be completed by the student. Students who are allowed to participate through the graduation ceremony under these conditions will be counted as graduates at the next graduation ceremony following the completion of their degree requirement.
Expenses, Financial Assistance, Student Status

Expenses
Tuition and other charges at Clarkson are set at the minimum permissible for financially responsible operation and are considerably less than actual costs. Gifts and grants received through the generosity of alumni, industry, foundations, and friends play an important part in reducing the difference. Although Clarkson will make every effort to maintain charges at current levels, the University reserves the right to revise or change financial requirements.

Tuition and Fees
Tuition for 2016-2017 graduate programs vary and are charged per credit hour. Residential program graduate students are subject to a facilities usage fee each semester and quarter based distance program students are subject to a resource fee for each quarter as defined below.

In order to remain a candidate for a graduate degree, a graduate student not on campus who has not completed all degree requirements must continue to register for one credit hour each semester until all degree requirements have been completed. These students are not required to pay an activity fee, but may be required to begin re-payment of outstanding loans. Exception from payment of the tuition for this credit hour may be granted to the student (when circumstances warrant) by the dean of the respective School upon written request or personal interview.

University Graduate Program Charges
The summary of annual fixed University charges for the 2016-2017 academic year follows:

Per Credit Hour/Program Type
- $1,504 Interdisciplinary
- $1,300 Dual Degree
- $1,300 School of Arts & Sciences
- $1,300 School of Engineering
- $1,300 Residential MBA
- $1,300 Institute for Sustainable Environment
- $1,100 Hybrid MBA, Healthcare MBA, On-line MBA
- $ 935 Bioethics
- $ 900 Education
- Varies Non-Degree (determined by plan)

Flat Rate Per Term/Program
- $14,460 Physician’s Assistant Program
- $19,566 Physical Therapy Program
- $14,460 Occupational Therapy Program
Other expenses, such as travel, books, and spending money, vary. An estimated figure is approximately $3,694 for one academic year.

Facilities Usage Fee
The $650 facilities usage fee is charged to each full-time residential program graduate student. The funds are nonrefundable and are applied toward expenses incurred in the operation of the Student Health Center and the recreational facilities available to students.

Graduate Student Resource Fee
The $75 resource fee is assessed to MSEM, MBA Distance, Capital Region Campus students, and other distance based programs to cover guest speakers, lecturers, computer lab resources, related software, free transcripts for life, and other like services. CRC students admitted prior to Spring 2016 Quarter, Union College undergraduates, and Leadership in Medicine (LIM) students are grandfathered into pre-merger regulation, and excluded from this fee. For further inquiries about the resource fee, contact Student Administrative Services at sas@clarkson.edu.

Health Insurance
Health insurance is mandatory at Clarkson University. You will not be cleared for the term unless a Health Insurance Form is on file in Student Administrative Services. A new form must be submitted each academic year. All students must either have health insurance coverage under their own policy, be covered by their parents’ policy or enroll in Clarkson’s contracted insurance. The rate for 2016-2017 is $2,125 for coverage from 8/1/16 – 8/1/17.

Payment
Payment in full for all tuition, fees, residence and dining expenses must be made on or before the financial clearance deadline published at the beginning of each term in the pamphlet of Financial Information, which is sent to students with the first tuition invoice for the term. Check-in cannot be completed and the student cannot be admitted to class unless satisfactory payment is made. All accounts will be assessed a late fee charge of 1% of the unpaid balance at the end of each month. Enrollment indicates that the student agrees to pay all attorneys’ fees and other reasonable collection costs necessary for the collection of any amount not paid when due and will be added to the unpaid balance. It is the University’s policy to withhold transcripts and diplomas until the balance of the account is paid in full.

Tuition and Fees Refund Policy
If a student withdraws from the University, all refunds will be based on the last recorded day of attendance determined by and attested to by the Registrar. A student who withdraws within the first four weeks of the term period is eligible to receive a refund as follows:

Semester/Trimester Program Refund Policy

<table>
<thead>
<tr>
<th>Days in Term</th>
<th>Refund</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>100%</td>
</tr>
<tr>
<td>6-10</td>
<td>90%</td>
</tr>
<tr>
<td></td>
<td>75%</td>
</tr>
</tbody>
</table>
Quarter Program Refund Policy

If the student withdraws before the first day of the term 100% refund
1-5 days in term 90% refund
6-10 days in term 65% refund
11 days to end of term 0% refund

Refunds will be applied to:
1. **Tuition, Activity Fee, Facilities Usage Fee:** All fees are included in the refund calculations. There will be no refund of the student health insurance premium if coverage is in force.
2. **Meals:** Refunded on the same schedule (consumption will not be considered in refund calculation).
3. **Room:** Refunded on same schedule.

Official Date of Withdrawal
The official date of withdrawal is established upon receipt of written notice of withdrawal from the student by the Office of the Vice President for Enrollment Management & Student Advancement.

Financial Assistance
Various types of financial assistance are available to full-time graduate students including Assistantships, Fellowships, and Scholarships. These awards are granted by each graduate school. US students enrolled at least half-time are eligible to apply for Federal Direct Unsubsidized and Graduate PLUS Loans. Students must file a FAFSA annually. Refer to www.clarkson.edu/sas/financial/graduate for more information on Federal Loan Programs and application procedures. The schedule for student eligibility for New York State financial assistance can be found in the Clarkson Regulations.

The programs currently available include the following:

Teaching Assistantships
During 2016-2017 these assistantships carry stipends of $25,000 plus tuition. Instructional requirements are up to 20 hours of service per week in laboratory or other designated work for the University during the academic year, or 12 hours of service per week in the above designations during the calendar year. (Not available in all graduate programs.)

Research Assistantships
These assistantships permit concentration in the student’s research field during the period of
study. Stipends for 2016-2017 are $25,000 or more per year plus full tuition. Forty hours of service per week, inclusive of classroom work and research duties, are required. (Not available in all graduate programs.)

Industrial and Governmental Fellowships
These permit concentration on the student’s research problem during the entire period of study. Stipends for 2016-2017 range from $25,000 to $30,000 per year plus full tuition.

Graduate Assistant
Funding may cover full or partial tuition and/or a stipend. The stipend must be at least minimum wage and duties may not exceed 40 hours per week including time to attend classes.

Partial Tuition Scholarships/Assistantships
A number of partial tuition scholarships/assistantships are made available each year. These scholarships may be awarded to deserving students on a merit basis, and may be in addition to other types of financial assistance.

Vacation
All graduate students, appointed for one year under a Research Assistantship, Teaching Assistantship, or Fellowship are entitled to receive two weeks’ vacation plus all holidays when the University is officially closed.

Satisfactory Academic Progress for Federal Financial Aid
Federal regulations require that schools monitor the academic progress of every federal financial aid recipient and certify that the student is making satisfactory academic progress towards earning his/her degree. This policy governs federal financial aid only. Institutional awards, scholarships and assistantships may have other requirements. Students may only receive federal aid for courses that are required for degree completion.

Satisfactory academic progress is evaluated at the conclusion of each term and include, per federal regulation both quantitative and qualitative measures. These measures include:

1. **Cumulative Grade Point Average** - a cumulative 3.0 is required. Students with a cumulative GPA less than 2.7 are not eligible for federal aid. (See Financial Aid Warning section below for more information for a student’s whose cumulative GPA is between 2.700 and 2.999)

2. **PACE** - A minimum percentage of attempted credits hours must be earned every semester.

PACE is determined by:

- **Cumulative # of Earned Hours**
- **Cumulative # of Attempted Hours**

Students must maintain a minimum PACE of 50%.
3. The maximum time frame for meeting degree requirements.

Student must complete their degree within 150% of the published length of the program. All graduate credits attempted at Clarkson are applied to the maximum time frame. There is no appeal of the maximum time frame standard.

Attempted Credits for PACE and the Maximum Time Frame include:
Earned hours – Passed (A-C), Pass (P)

Repeated Courses – all attempts – refer to the REPEATED COURSE section for detailed information.

Withdrawal (LW) and (W) - Maximum time frame regulations do not allow for the exclusion of courses in which a student has remained past the drop period and earned a grade of ‘W’.

Failure (F)
Incomplete (I)

All accepted transfer credits (including consortium agreements & Study-Abroad courses) & test credit (T)

All graduate courses attempted at Clarkson, even if they are not used to meet degree requirements.

Earned credit hours for PACE include:
Grades of A, B, C or P (with credit)
All accepted transfer credits (T)

Financial Aid Warning
A student whose cumulative GPA is between 2.700 and 2.999 and/or whose PACE is less than 50% is not making Satisfactory Academic Progress for Federal Financial Aid. The student is notified by the Financial Aid Office via email to the student’s Clarkson email address that he/she is on Financial Aid Warning for the subsequent term of attendance. During the Financial Aid Warning term, the student retains eligibility for federal financial aid.

A student who meets both the PACE and GPA standards at the conclusion of the Financial Aid Warning term is again meeting Satisfactory Academic Progress for Federal Financial Aid and is eligible for federal aid for the subsequent term of attendance.

A student who does not meet both the PACE and GPA standards at the conclusion of the Financial Aid Warning term is notified by the Financial Aid Office via email to the student’s Clarkson email address that he/she is not making Satisfactory Academic Progress for Federal
Financial Aid and is ineligible for federal aid for subsequent terms. A student may not have two consecutive Financial Aid Warning terms.

Financial Aid Appeal Process
A student who does not meet the federal financial aid satisfactory academic progress standards at the conclusion of the warning term or a student whose GPA is less than 2.7 may file an appeal based on catastrophic or extraordinary circumstances “beyond the student’s control,” such as personal illness or injury, or the death, illness or injury of a family member, relative or close personal friend or other situations specific to the individual student.

There are 4 required elements of an appeal:

1. A completed and signed appeal form.
2. A written statement from the student - Federal regulations require a student who is requesting an appeal to submit a written statement explaining:

 Why the student was not able to meet the satisfactory academic progress standards.

 What has changed that will allow the student to meet the standards at the conclusion of the academic plan (see #3 below).

3. Supporting documentation - A student requesting an appeal must submit supporting documentation such as a physician’s written statement to substantiate illness or accident, a copy of a death certificate or newspaper obituary, a written statement from clergy, family member(s), or other third party familiar with the student’s situation, or a written statement from an academic advisor, professor or counselor.

4. Development of an Academic Plan - As part of the appeal, the student must work with a Program Administrator to develop an academic plan. The academic plan is designed to enable the student to meet both PACE and GPA standards at the conclusion of the plan. An academic plan may entail one to four terms and includes specific requirements the student must achieve. Although the student is not making satisfactory academic progress, federal aid is reinstated on a term by term basis.

A student interested in filing an appeal must begin the process by contacting the Associate Director of Financial Aid at the CRC Campus or the Graduate Student Service Representative at the Potsdam Campus at least two weeks prior to the beginning of the term he/she wishes to receive federal financial aid.

A student filing an appeal must authorize the release of pertinent information as part of an investigation of the facts concerning the failure to meet satisfactory academic progress standards.

Each appeal will be investigated and reviewed by the Financial Aid Office Appeals Committee in conjunction with faculty members and advisors from the student’s program of study as well as other Clarkson University personnel as necessary.
The Office of Financial Aid will notify the student by e-mail of the final decision. If the appeal is approved the Associate Director of Financial Aid at the CRC Campus or the Graduate Student Administrative Representative at the Clarkson Campus will begin the Academic Plan process. Once the Academic Plan has been designed and required signatures have been obtained the student will be placed on Financial Aid Probation and federal aid eligibility will be reinstated for the term.

At the end of the Financial Aid Probationary term, the student will be evaluated according to the requirements specified in the academic plan. Provided that the student is successfully meeting the conditions of the plan, the student may continue to receive federal aid for the subsequent term. In cases in which an academic plan includes more than one term, the student will be evaluated at the end of each term. If the student continues to meet the requirements of the plan, the student remains eligible for federal financial aid.

A student who does not meet the conditions of the academic plan or whose appeal is denied is no longer eligible for federal and aid at Clarkson until both standards are met. Students who are ineligible for aid may regain eligibility by taking courses at Clarkson without receiving federal aid that raises their GPA to the minimum standards and/or increases earned hours to the minimum PACE requirements.

Financial Aid with Repeated Courses
Courses in which a grade of F or W is recorded on a student’s transcript may be repeated a maximum of 2 times. The earned hours are counted once. The attempted hours are counted each time and may be used to establish full-time enrollment status. The student may receive financial aid for these course repeats.

Additionally, federal regulations allow a student to repeat a course once if the student previously earned credit for the course (A, B, or C). The repeated course(s) will be used toward full-time enrollment status and are eligible for financial aid. Courses repeated more than once will not count toward enrollment status and are ineligible for financial aid. More than one course may be repeated per term. The attempted hours are counted each time. The earned hours are counted once. The grade from the prior completion(s) is excluded from the GPA calculation.

Academic Grade Changes and Incompletes for Federal Financial Aid
For purposes of determining SAP for federal and institutional financial aid, all grade changes including incompletes must be submitted to SAS prior to the 10th day of the subsequent term. This deadline may differ from academic departmental guidelines.

Readmitted Students and Financial Aid
A student who has left the University for one or more terms and has been readmitted will have Satisfactory Academic Progress for Financial Aid reviewed at the time of readmission. Transfer credits must be received prior to the 10th day of the term in order to be included in the SAP determination.
If the student is determined to be meeting SAP, federal aid will be offered provided the student meets all other eligibility requirements.

If it is determined that the student is not meeting SAP, the student will be notified by email to the student’s Clarkson email address of his/her status and the appeal process.

Full–Time Status
A graduate student will be classified as full-time in any term in which he or she is registered for at least nine credit hours per semester or six credit hours per quarter. When such degree requirements have been met, the student will be required to register for at least one credit hour of project/thesis, be in residence, and be actively engaged full-time in completing the project/thesis in order to be classified as a full-time student. Graduate students (other than MBA candidates) may not register for more than 15 credit hours per semester.

Student Leave
Graduate students planning to exit the University, whether permanently or for a leave of absence, must initiate the process in the appropriate academic school.

A leave of absence for a graduate student is permitted at the discretion of the graduate coordinator, department chair, or dean of the school. A leave of absence can only be granted to a graduate student in good academic standing, who has not yet completed credit-hour requirements for the degree.

If a student’s intent is to permanently leave the University or the student is not in good academic standing, the student will be withdrawn from the University. The effect of a withdrawal on a student’s transcript and finances is based on the date of the withdrawal. For information on grading policies relating to withdrawal, contact the SAS office or refer to the Clarkson Regulations. Refund policies for withdrawals may be located in this catalog and can also be found in the Clarkson Regulations.
The Associated Colleges Consortium

The Associated Colleges of the St. Lawrence Valley was chartered in 1970 to stimulate a variety of cooperative activities among Clarkson University, St. Lawrence University, SUNY Canton, and SUNY Potsdam. With only 10 miles separating the four campuses, a significant amount of social, cultural and academic cooperation is possible.

Clarkson students have ready access to most resources at the other colleges. Special events are publicized through joint calendars and other means. Each of the four libraries permits students from all of the colleges to draw upon the total holdings of approximately one million volumes.

Students may cross-register for courses within the consortium, and some sharing of faculty takes place. To be eligible to cross-register, graduate students must be considered full-time based on their program of study. Eligible students can take up to two courses per academic year totaling no more than 8 credits on a space-available basis at one or another of the campuses. An academic year for cross-registration includes the fall and spring semesters. Students enrolled in quarter-based term programs are not eligible to cross-register.

There is a special form and instructions for cross-registration available online at http://associatedcolleges.org/services/crossregistration.htm, or from the Associated Colleges office (267-3331 or acslv@potsdam.edu). The completed form is returned to Student Administrative Services.

Students will be enrolled as non-matriculated students at the host institution and the courses(s) will be transcribed at the host institution. At the end of the semester, an official transcript will be sent to the student's home institution and credit will be posted as transfer credit on their Clarkson transcript. Graduate students must receive a grade equivalent to a B (3.000) or higher at Clarkson. Grades in such courses are not used in computing a student’s GPA.

If cross-registration credits result in a course load requiring additional tuition charges, the student is responsible for those additional charges. Students are responsible for any special fees, such as lab fees, fees for registration, or transcript fees.
STUDENT AFFAIRS

Mission
- Student Affairs is a catalyst for bridging diverse academic, cultural, professional and social experiences, empowering students to achieve their full potential.
- We promote intellectual, personal and professional growth through the delivery of developmental opportunities in a collaborative and respectful campus community.
- We enhance campus community interaction and facilitate co-curricular educational activities as well as provide global, pre-professional and leadership experiences.

Graduate Housing and Dining
A wide range of housing accommodations are available near Clarkson campuses. For detailed information or for copies of the listings of off-campus private rentals of rooms, apartments, or houses, contact the graduate coordinators for each program.

Residence halls at the Potsdam campus are primarily for single undergraduate students. Potsdam campus graduate students may contract for meals in any of the University dining halls on a term basis even though they do not reside in a residence hall. They may also eat on a cash basis in cafeterias in dining halls, the Student Center or in the Cheel Campus Center.

Campus Safety & Security
The Office of Campus Safety & Security consists of a team of people working with the campus community to meet the specialized safety and security needs of the University. Responsibilities include the maintenance of public order, vehicle registration, emergency first aid treatment, issuing I.D. cards, room key distribution, educational programs (including crime prevention and fire safety), and other related programs.

Campus Safety & Security officers are responsible for the enforcement of the rules and regulations of the University. Officers do not have police jurisdiction over public streets, public property, or private property. Arrests and apprehension are referred to the Village Police. Statistics concerning campus safety and campus crime are available upon request from the Office of Campus Safety & Security or can be accessed at http://www.clarkson.edu/campussafety/.

The department’s ability to function as an independent agency enables it to preserve the tradition of Clarkson in which security, safety, and adherence to the Code of Student Conduct are both an individual responsibility and a collective behavior. In emergencies, Village Police are called as first-line, back-up support, along with appropriate University officials and the University Emergency Response Team.

Clarkson Regulations
Each student is responsible for knowing the contents of Clarkson Regulations. This document, in its entirety, for Institutional policy and regulations including student conduct and conditions for
unsatisfactory conduct can be found at www.clarkson.edu/studentaffairs/regulations (non-modifiable document updated by the start of each fall term).

Extracurricular Activities and Student Life
There are many opportunities to enhance the educational experience through participation in a range of extracurricular activities. The University recognizes the importance of these activities in developing qualities of leadership and personal growth. To find out when student groups are meeting and what activities are happening on campus go to http://KnightLife.clarkson.edu and check your e-mail every Thursday to see what is happening that weekend and the following week. Your college experience will be richer if you are an active participant in it.

Community Service
Each year, a Volunteer Fair is held on the first day of semester classes at the Potsdam campus. Volunteering and community service can be one of the most fulfilling opportunities you'll find at Clarkson. By reaching out and offering your energy, talent and compassion, you can make a real difference in people's lives. Through service to others, you will gain a better understanding of yourself, demonstrate classroom learning, and increase leadership, teambuilding and management skills. That's why service is a core value of Clarkson; it benefits both the students and the community. Service helps develop a sense of social responsibility and civic pride. Potsdam has a number of service institutions, agencies and organizations that welcome volunteer assistance. Some members of the Clarkson faculty are building opportunities for service learning into the structure of their courses. This enables students to receive partial academic credit for working on community needs and problems relevant to their academic fields. One of Clarkson’s fundamental values is to develop the kinds of skills in students that will enable them to make contributions toward the betterment of the local and global community. For information about volunteer opportunities on campus and information about local organizations that are seeking volunteers in Potsdam, visit http://clarkson.edu/campus_life/clubs/volunteering.html.

Cultural and Recreational Opportunities
The Clarkson community has easy access to many cultural and recreational facilities throughout New York state, New England, and Canada, as well as on each campus.

Professional Societies
Numerous national professional societies maintain student chapters at Clarkson. These include Alpha Kappa Psi (national professional business fraternity-coed); American Indian Science and Engineering Society; American Institute of Astronautics and Aeronautics; American Institute of Chemical Engineers; American Product and Inventory Control Society; American Society of Civil Engineers; American Society of Mechanical Engineers; Arnold Air Society; Association of General Contractors; Association for Computing Machinery; Association for Women in Mathematics; Engineering and Management Society; Institute of Electrical and Electronics Engineers; National Society of Black Engineers; New York Water Environment Association (NYWEA); Society of Hispanic Professional Engineers; Society for Industrial and Applied Mathematics; and Society of Women Engineers; Society of Human Resource Management;
American Chemical Society; American Academy of Physician Assistants.

Religious and Spiritual Life
Although it is not a church-affiliated university, Clarkson is interested in the moral and spiritual development of its students. Some students pursue their spiritual development in personalized ways, while others attend services of organized religious groups.

Special Interest Clubs
Find a current listing of student organizations at: http://knightlife.clarkson.edu.

Student Center
The Student Center is the focal point of activities on the Potsdam Hill campus. Similarly, the Capital Region Campus offers the student atrium at the entrance of the Main Building. The Student Center and the atrium are places where students can come to spend time between classes, study, and hold meetings and late night events. There are a variety of lounges and spaces with comfortable chairs and tables for studying and relaxing. In addition, meeting rooms are available for group meetings and other activities. Also available to students in the Student Center is the Forum, an innovative auditorium in the form of a stairwell equipped with a massive video wall. The space is often used for large events such as lectures, showcases, comedians, pre-released movie showings, and dances.

Besides being a great place to connect with your classmates, the Student Center is the home of many departments and services on campus. On the lowest level you can access the Mail Room and your student mailbox. You can also head over to the POD Store to pick up convenience items, listen to and watch the campus radio and TV station or write an article for the school newspaper (all of which have offices on this level). Our virtual game room is also on this level where you can play all of the newest video game hits.

On the ground level of the Student Center you will be able to visit the Student Center Info Desk, the Clarkson University Student Association (CUSA) and Student Organizations office, JAVA City, Bar 9, and even get money through our North Country Savings Bank ATM. On this level you will find the traditional game room with Pool, Darts, Foosball, Bubble Hockey and Ping Pong games all free for student usage.

The top floor of the Student Center houses our largest dining facility on campus as well as our Multipurpose Rooms (MPRs).

Cheel Arena on the Potsdam Campus
Cheel Campus Center boasts a 3,000 seat multipurpose arena. The Arena, home of men’s and women’s Golden Knights Hockey, is also the place to attend University Convocation, University Recognition Day, Commencement, and other large-scale events.

STUDENT DIVERSITY AND INCLUSION
Cathy McNamara, Associate VP of Student Success, Diversity, & Inclusion
The office of Student Success, Diversity and Inclusion (SS, D & I) was created in April, 2015 as part of the university’s vision to create a community whose organizational units would support initiatives focusing on inclusion, employee development, and an enhanced culture. Changes that were announced by President Collins were:

SS, D & I collectively houses units that are leading campus-wide efforts to strengthen and develop key initiatives to support diversity objectives related to student access, academic success, campus involvement, and leadership development that will ultimately lead to career success and lifelong engagement with Clarkson.

The mission of the Student Success, Diversity and Inclusion organization is to serve and embrace all students. We are committed to providing access and opportunity programming for student success. Using a collaborative approach, we provide academic monitoring and advisement, student engagement, professional development opportunities and support retention initiatives to graduate culturally competent students.

HEALTH & COUNSELING CENTER
Counseling Services
Personal counseling is provided by full-time professional counselors who are prepared to deal with a variety of concerns including stress, alcohol abuse, eating disorders, depression and sexual issues. However, students not only seek help for specific problems, but make use of counseling to explore feelings, values and life directions. Counselors also offer a variety of personality and vocational interest tests that can help increase self-awareness and clarify goals. In addition to counseling, the staff is prepared to make appropriate medical referrals.

Alcohol and Drug Education
Clarkson’s alcohol and drug educational efforts are focused on two important messages. The first emphasizes the legal obligations of students with regard to the use of alcohol or any other substance. The University’s alcohol and drug policies are stated clearly in the Clarkson Regulations and are guided by law. A civil community is built on respect for others and respect for the law. A second major emphasis is the complicated concept of responsible and moderate use of alcohol. The use of alcohol is interwoven in many everyday settings and activities in our culture. Education and policy at Clarkson are designed to insist on legal and moderate usage among those choosing to drink, and to discourage dangerous or harmful practices involving alcohol or other substances.

Campus programming is designed to convey the messages highlighted above. Students who are interested in participating in prevention efforts can contact the counseling staff on the ground floor of the ERC. Students with special concerns or problems with alcohol or drug abuse should also contact Counseling Services at the same location.

Health Services
The University has forged a partnership with Canton-Potsdam Hospital, CPH, in which CPH provides professional staffing and services at the University’s Student Health Center located on
the Potsdam campus. Through this partnership, students enjoy a comprehensive health care program and the broad professional capacities provided by the hospital and its highly trained staff. At the Student Health Center (centrally located in the Educational Resource Center) CPH provides clinical services to include basic medical care, preventative care, general physicals for student-related activities and limited urgent care. Students also have access to CPH’s state-of-the-art lab services. Most visits to Health Services and many of its services are free of charge. Health Services is open weekdays from 8 a.m. – 4:30 p.m. during the academic year. After hours emergencies are handled at CPH itself which is located approximately one mile from campus. There is also an Urgent Care Center on Lawrence Avenue in Potsdam.

CPH provides comprehensive acute medical-surgical care and emergency care, and has widely recognized programs in chemical dependency treatment, cardiac care, obstetrics, and physical rehabilitation services. The Hospital operates the Warner Cancer Treatment Center. In addition, CPH is an affiliate of renowned Fletcher Allen Health Care, headquartered in Burlington, VT.

Office of Accommodative Services

This is the initial point of contact for students with documented disabilities seeking accommodations or services. The office is responsible for maintaining disability-related documentation, certifying eligibility for receipt of services, determining reasonable accommodations, and ensuring the provision of those services. Students are asked to make contact with the Office of Accommodative Services prior to the beginning of each term at Clarkson, in order to ensure that accommodations will be available in a timely fashion.

The student will meet with the Director or Assistant Director of the Office of Accommodative Services to review documentation and determine appropriate accommodations. The Office of Accommodative Services will assist the student with faculty and staff notifications requesting appropriate accommodations. Appropriate accommodations will be provided to students who have followed the procedures as developed by the Office of Accommodative Services. Services may include short-term arrangements for students who have become temporarily disabled.

CAREER CENTER & EXPERIENTIAL LEARNING

The Career Center assists all Clarkson students in career preparation, with a particular focus on external experiential learning opportunities to include cooperative education, internships, and international study programs. Assistance with pursuing post-college employment and graduate study is also central to the mission of the Center. It is also a primary focus of the Center to develop relationships with business and industry that recruit or could potentially recruit our graduates, assuring that these organizations include Clarkson among their primary college relations and recruiting universities.

The International Students & Scholars Office (ISSO) informs and educates the international population as well as the University community of immigration regulations that govern international students, scholars and the University. The ISSO also coordinates services and benefits available to the international population and facilitates international cultural events within the Clarkson community. More information can be found on the International Students
& Scholars website at www.clarkson.edu/isso.

Career Center and Job Search Services

Individual career coaching appointments are available through the Career Center to discuss concerns such as career direction and choice, skills identification, employment opportunities, and job search techniques. Staff members are available to help students discern solutions and develop strategies to address career-related concerns.

The Center facilitates a wide number of career-oriented workshops for first-year students through graduate-level students, including career exploration groups, resume preparation, interviewing techniques, and job-search techniques. The mock interview program is noted for its success in preparing students for their job interviews.

Among the many benefits of a Clarkson education is the alumni network. Alumni serve as a critical link to the Center. The Center also reaches out to the community by planning programs with any campus organization or academic program.

The Career Center provides access to internship, co-op, and permanent job opportunities through the following means: an on-campus recruiting program with business, industry and government; Career Fairs; a Web-based resume database system that enables the Center to provide students’ resumes to employers; a job-listing and networking service on the Internet called CareerShift; and a network of thousands of Clarkson alumni who can be tapped at any time in the students’ years at the University.

Clarkson’s reputation with hundreds of companies across the country, combined with a comprehensive Career Center, has resulted in positive outcomes for the graduates consistently over the years. Specific employment statistics for recent classes are available upon request from the Center.

Experiential Education Program: Cooperative Education & Internships

Cooperative Education (Co-op) Program

The Career Center works closely with representatives of business, industry and government to place students in meaningful real-life work environments during the academic year. A Co-op experience provides students the opportunity to apply their academic knowledge and gain valuable experience while positioning them to obtain full-time professional employment upon graduation.

Typically, students participate in the Co-op Program for an academic semester and a summer. Students may choose to co-op from January through August or from May through December. However, the co-op work block timeframe is very flexible and the University makes every effort to match a student’s academic plans with a company’s work schedule. To help prepare students for the co-op experience, the Career Center provides skill-based seminars and workshops. The focus of these programs are on writing resumes, cover letters, practicing job interviews, and teaching students how to conduct a successful job search. A key decision for the student is how
to make up coursework missed while in the workplace. Students can choose to attend summer school, use AP credit they have earned, overload coursework during the semester or push back their planned graduation date. Co-op students work closely with their academic advisor, Student Administrative Services representative and the Career Center staff to plan out a successful co-op experience.

All University students are encouraged to consider co-op as a way to enrich their Clarkson education. Co-op positions are located across the country, though most are concentrated in the northeast. While on co-op, students are assigned a direct supervisor, paid a professional salary and are evaluated during their job assignment. Students are also encouraged to communicate with the Career Center while on co-op so that staff may monitor their progress. For more information, visit the Clarkson University Cooperative Education Web site at http://www.clarkson.edu/career/students/exp_ed/coop_requirements/index.html

Internship Program
As part of the external experiential learning component, the Career Center offers an internship program. Similar to the co-op program, special workshops are designed to prepare students for their job search and are offered throughout the year, along with individual advising. Most internships are paid; in some cases, students receive a stipend and may receive academic credit, and some internships are for credit only.

Internships are available with business and industry across the country; with local, state, and federal government agencies; and with other agencies, non-profits, and educational institutions. Students work closely with the Center and their academic advisors to select an internship that best suits their needs.

International Center
The International Center is a centralized office that consists of three operations:
- Study & Work Abroad
- International Partner Relations
- International Student & Scholar Services

Mission: We are a hub of international partnerships, programs and activities that provide innovative opportunities around the world, which advance the University’s global reputation.

International Experiences
Study Abroad provides an excellent opportunity for students to enhance their academic background and prepare for the global marketplace through exposure to another educational system and culture. The primary program, open to all students, offered by the Career Center is the Student Exchange Program. The program is designed for students to spend a term or a year abroad. Students go through a competitive application process. Clarkson University has articulated exchange agreements with over 37 colleges and universities in 20 countries.
Additionally, Clarkson offers students the option to participate in short-term summer programs or faculty led trips. The short term summer programs are 3-4 weeks in duration and are ideal for those students who do not wish to be gone for a full term or year. Faculty led trips usually occur immediately following the spring semester and are 3-4 weeks in duration.

Exchange Program Financial Policies
Students who participate in the Study Abroad/Exchange Program through Clarkson must attend one of our exchange partner universities in order to receive financial aid. During the exchange term(s) students pay their tuition to Clarkson; there is no tuition paid to the exchange university. Room, board, and other fees are paid directly to the exchange university by the student. The financial assistance package is applied to the participant’s account as if that student was attending Clarkson University. Any credit balance may be requested through SAS after tuition is applied and all required financial aid documentation (i.e. loan promissory notes, signed summary, etc.) are processed. This credit can be used toward the room, board, and other fees at the exchange partner university. It is an important step in the application process for the student to consult with SAS in order to understand how their financial assistance package will be applied to the study abroad/exchange experience.

Non-exchange Programs: Should a student decide to attend a non-exchange university, he or she must take a leave of absence from Clarkson for the term involved. No tuition is paid to Clarkson and financial assistance may not be utilized.

Exchange Program Academic Policies
Exchange Programs: All courses must be pre-approved through completion of Off-Campus Coursework Permission Forms prior to leaving campus. All credit is transferred back to Clarkson for those courses that students complete satisfactorily. Course credit will be transferred as transfer credit on a pass/fail system. It should be noted that credit hour and grading systems differ from country to country and school to school. Participants should request to have their grades sent to the Study Abroad/Exchange Office at Clarkson prior to leaving their exchange program. It may take several weeks after a student returns to receive these grades.

Non-exchange Programs: The student is responsible for assuring that the courses to be taken through the non-exchange program have been pre-approved by the faculty at Clarkson using the Off-Campus Coursework Permission Forms. The Study Abroad/Exchange Office will assist these students with any questions regarding passports, visas, and travel, but non-exchange students will not be included in the official study abroad rosters. Course credit will be transferred as transfer credit on a pass/fail system.

International Student & Scholar Services
This part of the International Center informs and educates the international population as well as the University community on immigration regulations that govern international students, scholars and the University. The ISSS also coordinates services and benefits available to the international population and facilitates international cultural events within the Clarkson community.
Athletics

Recreation and Intramural Activities
All students are encouraged to participate in intramural and recreational activities. Clarkson’s location provides students with a wide array of outdoor sporting opportunities including individual and team challenges. Intramural contests include both regular leagues and weekend tournaments. Recreational activities included both outdoor and indoor activities.

Varsity Sports
The Clarkson Golden Knights compete in 20 intercollegiate varsity sports, at the NCAA Division I level in men's and women's hockey and with the other 18 at the NCAA Division III/USCSA level.

For more information on Clarkson Sports and Athletics, visit clarksonathletics.com

Facilities
The Henry R. Hodge Sports and Recreation Complex is located on the Potsdam campus, adjacent to the residence halls and easily accessible to all students. Facilities include The Deneka Family Fitness Center, Alumni Gymnasium, Schuler Recreation Building (which houses the Stephenson Field House and the Fuller Pool), the Denny Brown Adirondack Lodge, and the Snell Athletic Fields. Additional facilities include Walker Center, Hantz Turf Field, Bagdad Field, Scott Field, Neugold Field, and the Cheel Campus Center and Arena.

Clarkson Alumni Association
The Clarkson Alumni Association was organized on Founder’s Day, November 30, 1904, and has existed since that time to benefit both the University and its alumni. The administration of the Association is vested in the Clarkson Alumni Council in partnership with the Alumni Office. The mission of the Clarkson Alumni Association is to engage and empower alumni as partners in the Clarkson community, nurturing their pride in their alma mater and promoting the interests of Clarkson University and its alumni. Alumni are actively involved identifying and recruiting quality high school students, and assisting the Career Center in providing career opportunities for our graduates. Alumni are also involved in supporting fund-raising efforts, mentoring undergraduates, serving as speakers on campus, serving on advisory councils, and providing opportunities to learn the value of being engaged alum. There is an extensive regional Clarkson alumni chapter program for alumni once they leave the University. Regional volunteers in numerous cities throughout the United States host alumni activities. Clarkson alumni stay in contact with friends and the University through various social networks including CU Online, the community for staying connected!

INFORMATION TECHNOLOGY AND UNIVERSITY LIBRARIES

Office of Information Technology
Clarkson University is wholly committed to providing high-quality computer resources, services and support to meet the diverse needs of its students and faculty. The mission of the Office of Information Technology (OIT) is to provide access to teaching, learning, research, administrative and communication technologies through a commitment to excellence in customer support and
technical leadership in fulfillment of the institutional mission. This involves leveraging the University’s corporate partnerships to provide high-performance hardware and software, while employing a distributed user support structure. As a result, Clarkson students receive access to up-to-date technology, backed by direct assistance from easily accessible and highly skilled OIT support staff.

Access to OIT resources is provided by a high-speed, fiber-optic network “backbone” connecting University classrooms, laboratories, on-campus housing, and faculty offices. Students are able to access their files and resources from any computer on campus, with remote access available for most systems.

OIT operates several computer laboratories that provide high-performance PC and Linux-based workstations, servers, and software for mathematics, statistics, data analysis, graphics, engineering design, simulation/modeling, document preparation, multimedia development, and use at Clarkson: relational database management/design. Clarkson’s computer labs support research and classroom instruction. One lab is equipped for high-resolution 3D graphics for use in modeling physical processes, chemical reactions, and material design in virtual reality.

OIT supports Clarkson’s commitment to integrating technology into the classroom through its user services operation. User services supports both students and faculty by providing and maintaining software, equipment and facilities for the production, dissemination, and utilization of learning resource materials. In addition to traditional audio-visual equipment, large screen computer and video projection systems are strategically placed in lecture halls throughout the campus for large group and classroom instruction. Wireless access is available in group study areas and lecture halls across campus, as well as in some residence halls.

Student Personal Computers
Because information technology is such an integral part of today’s marketplace, it is strongly recommended that every Clarkson student have an appropriate personal computer. Entering students who do not already possess a PC may purchase one through the University. High-speed network access is available for all students residing on campus. In addition, students can also access the network at any one of the numerous computer labs and clusters in academic buildings.

Student PCs are linked to a broad range of resources on campus and around the world, which greatly enhances the academic experience. Students not only use their PCs for word processing, e-mail and Internet research, but also for accessing course software and library resources. Clarkson faculty makes extensive use of the Web for dissemination of instructional material and interactions with students.

Computer Assistance
Current information and answers to computer related questions are available on the OIT Web page at www.clarkson.edu/oit. OIT professional staff and assistance are available to help with
all aspects of computer and network use.

The University Libraries
The University Libraries supports Clarkson University’s mission by promoting academic excellence through the implementation of programs, policies, and strategies geared towards the innovative vision of libraries in the 21st century in support of teaching and research. To achieve excellence, we provide high-level information literacy instruction, reference and research assistance, and run a robust access services model allowing our clientele to access resources both inside and outside of our collection.

The Harriet Call Burnap Memorial Library is the main library located on the Potsdam hill campus in the Educational Resources Center (ERC). Its collection is comprised of more than 746,436 volumes in various formats including journals, books, audio visual materials, government documents and reports, Clarkson University dissertations, and archival materials. The Health Science Library is the University Libraries’ branch library and is located in the Center for Health Sciences (Clarkson Hall) on the downtown Potsdam campus. This unique collection of more than 9,007 volumes serves the University’s allied health programs as well as the local health industry.
SCHOOL OF ARTS & SCIENCES
Peter R. Turner, Dean; Jerry W. Gravander, Associate Dean
Cindy L. Smith, Assistant to the Dean

The School of Arts & Sciences has graduate programs in the disciplines of Bioethics, Biology, Chemistry, Computer Science, Information Technology, Mathematics, Occupational Therapy, Physics, Physical Therapy and Physician Assistant Studies and Teaching.

Faculty and students also participate in the interdisciplinary Data Analytics, Engineering Science, Environmental Science and Engineering, Environmental Policy and Governance, and Materials Science and Engineering graduate programs. More information can be found in the Institute for a Sustainable Environment and the Interdisciplinary Program sections of the catalog.

Bioethics Program
Program Curriculum
The Bioethics Program at Clarkson University and the Icahn School of Medicine at Mount Sinai is a professional degree program intended to prepare students academically and professionally for responsibilities and services as a Bioethicist.

This Master of Science degree program consists of 36 credit hours. The degree can be taken full time taking three course per term or part-time taking one or two course(s) per term. There are three specializations within the Bioethics Degree: Clinical Ethics, Research Ethics and Bioethics Policy

Course Plan for a full time student in Clinical Ethics Specialization.

<table>
<thead>
<tr>
<th>Summer</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proseminar in Health & Human Values</td>
<td>BIE500</td>
<td>3</td>
</tr>
<tr>
<td>Term Total</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fall</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomedical Ethics</td>
<td>BIE 510</td>
<td>3</td>
</tr>
<tr>
<td>Clinical Ethics</td>
<td>BIE 590</td>
<td>3</td>
</tr>
<tr>
<td>Master Project Part I</td>
<td>BIE 630</td>
<td>3</td>
</tr>
<tr>
<td>Trimester Total</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Winter</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health Care Policy</td>
<td>BIE 520</td>
<td>3</td>
</tr>
<tr>
<td>Online Practicum in Clinical Ethics</td>
<td>BIE 610</td>
<td>3</td>
</tr>
</tbody>
</table>
Graduation Requirements
To graduate from the Bioethics Program, and earn the Master of Science in Bioethics degree (MSB) candidates must:

- Achieve a minimum overall GPA of 3.00 or better at program completion
- Successful completion of the comprehensive Capstone Assessment by score or remediation
- Be recommended for graduation by the Program Chair and Clarkson University Faculty
- Student must have paid all debts to the school and be in good standing

Academic Performance Standards
Standards of acceptable performance (cognitive and psychomotor) for courses are communicated to students in writing via the syllabus and orally reviewed at the introduction of the course.

The policy of 3.00 or better in a graduate professional program has been adopted to better ensure student’s preparation for future sequential course work. Students will be given feedback at the completion of each exam.

Performance in didactic courses is commonly assessed by written exams, oral presentations and/or research papers, as well as final written (cognitive) exams. In designated courses, psychomotor performance may be assessed by target skill competency exams and small group exercises. During the didactic phase of the program, grades for cognitive performances will be recorded as a raw score and a percentage. At the end of each course the percentage scores will be converted to a grade, A through F for each of the core Bioethics courses.

To remain in good academic standing, please refer to the academic standing section.

Additionally, a student may not progress to the On-site Practicum with a cumulative GPA of less than 3.00.
Length of Program
The majority of students finish in three years. Students must complete the program in 5 years unless granted a leave of absence for health or personal reasons. Any student that requests and is granted a leave of absence must submit a letter to the academic committee requesting a return to studies.

Contact Us
Clarkson University CRC
Department of Bioethics
80 Nott Terrace
Schenectady, NY 12308
Phone: 518-631-9860
Fax: 518-631-9901
Email: bioethics@clarkson.edu

Basic Science Program
Clarkson offers a Master’s degree in Basic Science for qualified students who desire graduate study within the sciences, with a focus that does not fit within one of the degree programs already established. The Basic Science MS program also provides a platform for specialization in Biology.

MS degree in Basic Science (thesis and non-thesis options)

Prerequisites for Admission: Applicants must possess a baccalaureate (4-year) degree in biology or a relevant science major (e.g., biochemistry, biophysics, environmental science) and must have completed the following minimum college course preparation: three semesters of biology including genetics, four semesters of chemistry including organic chemistry, two semesters of physics, and two semesters of mathematics including calculus.

Degree Requirements for the Basic Science MS

1. A minimum of 30 credit hours of graduate coursework, as follows:
 1. At least 20 hours of course and seminar work. The balance of coursework must be consistent with the research or professional experience component.
 2. Only courses numbered 500 and above are accepted for graduate credit.
 3. 10 credit hours of transfer credit (B grade or better) may be accepted.
2. Satisfactory completion of a research or comparable professional experience, as follows:
 1. A written thesis based on independent research;
 2. A comprehensive examination; or,
 3. An appropriate, professionally oriented special project.
3. At least one academic year of study beyond the BS
4. A cumulative GPA of 3.0 in courses used to meet graduation requirements.
Program Length
All work done for the master’s degree in basic science is to be completed within five calendar years, although it is normative to complete this degree in 2 years.

Bioscience and Biotechnology Programs
Craig Woodworth, Director
woodworth@clarkson.edu

The Department of Biology offers a graduate program leading to the PhD degree in Bioscience and Biotechnology. Although it is based in the Department of Biology, the graduate program is designed to be truly interdisciplinary across major sciences. The goal of this program is to train students with the skills needed to work on complex problems in the biosciences. To support this aim, the graduate program faculty includes biologists, chemists, physicists, mathematicians, and engineers who serve as dissertation advisors. The program also requires participation of social scientists and ethicists who teach graduate courses in bioethics. In addition to the general program requirements described below, students are expected to acquire a significant specialized body of knowledge in at least one of the following four areas of specialization to provide intellectual depth to their education: (1) Molecular Bioscience & Biotechnology, (2) Biomedical Sciences & Neuroscience, (3) Computational Biology & Bioinformatics, or (4) Ecology, Evolution & the Environment.

The faculty in the program are engaged in research covering a wide range of subjects in Bioscience and Biotechnology. Current research interests include: Neurophysiology and ion channels, molecular genetics of oogenesis and spermatogenesis, molecular phylogenetics and bioinformatics, comparative analysis of adaptive radiations, genetic regulation of enteric development, migration and differentiation and gene expression, microbial plankton ecology, behavioral and cognitive ecology, conservation science, analytical chemistry of the great lakes, in situ remediation of contaminated soil and groundwater, and environmental contamination and its impact on human health.

Degree Requirements for the PhD in BioScience & Biotechnology
Clarkson University requirements include completion of a minimum of 90 total credit hours including a minimum of 24 credits of course work, a minimum of six credit hours in research seminars, and an original doctorate thesis research project submitted as a written dissertation defended orally and approved by a committee of five PhD faculty members. Specific Course Requirements for the Interdisciplinary Bioscience & Biotechnology (IB&B) Program include: two core courses in cell and molecular biology (BY680 & BY682), one biotechnology or molecular biology lab course (BY612 or CM570), two specialization elective courses from one of four categories (Molecular Bioscience & Biotechnology, Biomedical Science & Neuroscience, Computational Biology & Bioinformatics; Ecology, Evolution & the Environment), one free elective course from any category, one course from the Computational Biology category and one course on Bioethics, Policy, or Law. Please see Detailed Degree Requirements for more information.
Program Requirements:
Required Two Core Graduate Lecture Courses (6 cr):
BY680 Advanced Cell Biology (3 cr)
BY682 Molecular Genetics (3 cr)

Required Graduate Laboratory Course (Choose one):
BY612 Molecular Biology Laboratory (4 cr)
BY670 Biochemistry & Biotechnology Laboratory (3 cr)

Specialization Elective Credits (6 cr):
Any 2 courses from one of the four specialization categories listed below

Free Elective Credits (3):
Any course from one of the specialization categories

Computational Biology Requirement: (3 cr):
Any course from the Computational Biology & Bioinformatics specialization category

Biology, Society, & Bioethics Requirement (3 cr):
Any course from the Biology, Society, & Bioethics category

Seminar Requirement (6 cr):
BY622 Graduate Seminar (6 cr taken over 6 semesters)

Specialization Area Courses:

Program Length
The PhD may be completed in a minimum of three years and a maximum of seven years of post-undergraduate study.

Key Contacts
IB&B Graduate Program Director **Dr. Craig Woodworth** (woodworth@clarkson.edu, 268-2391). Contact him for questions about the IBB Program.

Chair of the Biology Department **Dr. Tom Langen** (tlangen@clarkson.edu, 268-7933). Contact him for problems related to a graduate advisor, instructor, or any other matter that cannot be addressed by the IB&B Program Director or graduate advisor.

Biology Secretary **Vicki Wilson** (vwilson@clarkson.edu, 268-2342). Contact her for biology department administrative questions, including those related to TA or RA contracts, reimbursements, and pay checks.

Teaching Lab Coordinator **Dr. Stefanie Kring** (skring@clarkson.edu, 268-3961). Contact her for questions regarding lab and office health and safety concerns.

Faculty in Bioscience and Biotechnology
Professors Tom A. Langden, Thomas Lufkin, Michael Twiss, Craig D. Woodworth; *Associate Professor* Kenneth N. Wallace; *Assistant Professors* Andrew David, Cintia F. Hongay, Stefanie kring, Damien Samways, Shantanu Sur; *Instructor* Patricia Burdick; *Research Assistant Professor* Petra Kraus
Chemistry Program
For specific questions regarding the Chemistry, MS, PhD programs contact: chemgrad@clarkson.edu

The Chemistry & Biomolecular Science department offers a graduate program leading to the MS and PhD degrees in Chemistry and has provided a first class education to students of chemistry, material science and biomolecular science for more than 50 years. Our ground breaking researchers are recognized as pioneers in colloid and fine particle research and discovery, many of whom enjoy outstanding international reputation for their research accomplishments. The diverse, yet complementary research interests provide incoming students with a broad variety of research topics from which to choose in bio-nanotechnology, smart surfaces and interfaces, functional and stimuli responsive materials, nano-therapeutics, diagnostics and biosensors. Advance study through coursework and independent research under the guidance of a faculty adviser will prepare students for leading positions in industry or academia. Graduate researchers will work on projects that address many of today’s most pressing problems related to the environment, advanced manufacturing, sustainable energy and healthcare. Departmental research is supported by federal grants, primarily from the National Science Foundation (NSF), New York State and private industry.

Accreditation
The Graduate Program in Chemistry is accredited by the American Chemical Society

Prerequisites

MS Prerequisites
Applicants must possess a baccalaureate (BS) degree in chemistry or a related major (e.g., material science, biochemistry, biophysics, environmental science) and must have completed the following minimum college course preparation: introductory chemistry courses including general chemistry as well as specialized classes in organic chemistry, analytical chemistry, physical chemistry, inorganic chemistry and biochemistry. In addition, basic training in mathematics and physics is required.

PhD Prerequisites
Applicants must possess a baccalaureate (BS) or a master (MS) degree in chemistry or a related major (e.g., material science, biochemistry, biophysics, environmental science) and must have completed the following minimum college course preparation: introductory chemistry courses including general chemistry as well as specialized classes in organic chemistry, analytical chemistry, physical chemistry, inorganic chemistry and biochemistry. In addition, basic training in mathematics and physics is required.

Courses
Courses will be chosen from graduate level offerings (500 and above) and must meet all established requirements. There is no set list of required courses and choices will be influenced by student’s area of interest.
Program Requirements

MS requirements
1. A minimum of 30 credit hours graduate coursework, with a minimum of 18 credit hours of graduate chemistry courses.
2. Satisfactory completion of a research or comparable professional experience.
3. A minimum cumulative GPA of 3.0 in courses used to meet graduate requirements.
4. At least one year of academic study beyond the undergraduate degree. All work must be completed in 5 calendar years.
5. A thesis must be prepared and orally defended to a committee consisting of a minimum of three committee members.
6. Candidates in chemistry must: (i) complete a minimum of 2 credit hours of CM900, and (ii) present 1 seminar as part of their degree requirements.

PhD requirements
1. A minimum of 90 credit hours, including no less than 24 credit hours coursework, 6 credit hours seminar, and a maximum of 30 transferred credits from an MS degree, (B grade or better), which have been applied towards PhD degree requirements.
2. A minimum of three academic years of full-time graduate study or the equivalent in part-time study.
3. Satisfactory completion of the PhD candidacy procedure within two years of full-time study after admission to the PhD program or, part-time students, before completing 66 credits. If the comprehensive examination is failed twice, the student will be required to leave the program.
4. A written dissertation must be submitted by each candidate and defended orally as part of the final examination. For the final oral examination, a committee will be selected by the faculty advisor and approved by the department chair and dean of the respective school. The committee will consist of a minimum of five members. The members should include at least four Clarkson faculty of assistant professor rank or higher who possess an earned doctoral degree. At least one of the faculty members must be from a department other than the candidate’s major department.
5. All work must be completed within seven years after the student is identified as a PhD candidate.
6. Time Limit. After the comprehensive examination has been passed; all work fulfilled specifically for the doctorate is to be completed within a period of seven calendar years.
7. Grading system. The grades of A+, A, A-, B+, B, B-, C+, C and P are acceptable for credit toward the degree. For graduation an average of B or better must be earned in non-dissertation courses and seminar work.
8. Candidates in chemistry must: (i) complete a minimum of 6 credit hours of CM900, and (ii) present 3 seminars as part of their degree requirements.

Program Length
All work done for the master’s degree in chemistry is to be completed within five calendar years, although it is normal to complete this degree in 2 years. After required comprehensive
examinations are passed, all work done specifically for the doctorate degree is to be completed within a period of seven calendar years, although it is normative to complete this degree in 3-4 years.

Faculty in Chemistry
Professors Silvana Andreescu, Dan Goia, Evgeny Katz, Devon Shipp, Richard Partch, Petr Zuman; *Associate Professor* Phillip Christiansen, Costel Darie, Artem Melman, James Peploski; *Assistant Professors* He Dong, Paul Goulet, Galna Melman, Mario Wriedt; Adjunct Assistant Professor Kevin MacVittie; *Research Assistant Professor* Alisa G. Woods

Masters of Arts in Teaching (MAT)
Clarkson University Capital Region Campus, Department of Education, School of Arts and Sciences 518-631-9870

The MAT degree is a licensure endorsing program that prepares candidates for New York State certification at the secondary level (7-12 grade) in the following disciplines: biology, chemistry, earth science, physics, technology (K-12), mathematics, English, social studies, Chinese, French, German, Greek, Latin, and Spanish.

With a 25-year history of success, the MAT program offers prospective teacher candidates all the tools they need to be successful secondary classroom teachers. The Clarkson Master of Arts in Teaching program is the right career choice because:

- Our graduates have a 95% success rate on the rigorous *New York State Teacher Certification Exams*.
- Every student is placed into an *individualized full-year teaching internship* in a school that matches his or her career goals.
- Every member of the Clarkson University Master of Arts in Teaching *faculty* has secondary teaching experience.

Most of the students who join the Master of Arts in Teaching program arrive with a bachelor’s degree in the discipline they want to teach. No prior education or pedagogy coursework is necessary.

For information about the program, email *matgrad@clarkson.edu* or call 518-631-9870.

MAT Accreditation
The Master of Arts in Teaching program is accredited by the Middle States Commission on Higher Education, the Council for the Accreditation of Educator Preparation, and the New York State Department of Education.

Prerequisites for the MAT Program
Clarkson undergraduates interested in pursuing an MAT degree will want to consider the Pre-Secondary Teaching Program. The Pre-Secondary Teaching Program is a *special advising option*
rather than a major. The Pre-Teaching advisor will provide students with guidance in selecting coursework within the candidate’s discipline that meets New York State certification requirements, so that undergraduate courses will count towards both the Clarkson degree and the secondary teaching certification. The Pre-Teaching advisor will help students define career goals, and find opportunities to observe and participate in secondary teaching, so that candidates enter the MAT with strong knowledge of what secondary teachers do.

The MAT program requires all candidates to

1. The equivalent of an undergraduate major in the discipline the candidate would like to teach.
2. Undergraduate liberal arts core including courses in humanities/arts, writing/communication, social sciences, STEM and 1 semester of foreign language
3. ED 500 - Field Experience – Four days of structured observations in secondary schools. Can be arranged by CRC Department of Education Coordinator. Please call 518-631-9870 (Must be completed prior to summer intensive; can be completed in fall or spring in year one if student select the 2 year program. Waived for students who are already initially certified in NY.)
4. Educational Psychology (an undergraduate course, or independent study with Clarkson’s CRC Department of Education exam. Must be completed prior to summer intensive; can be completed in fall or spring in year one if student select the 2 year program. Available to Clarkson undergraduates as PY 246

Finally, candidates must have at least 24 credit hours of undergraduate study in their major with a GPA of 3.0 or higher at the completion of their undergraduate degree studies. The Pre-Teaching advisor can assist candidates with the selection of appropriate coursework.

Program Curriculum
Qualified Clarkson undergraduates are automatically accepted into the MAT program and awarded a two course scholarship. MAT candidates complete the following coursework as part of their 38 credit master’s degree:

Required Core Courses:
(9 courses/29 credits): All students complete the required core.
ED 540 The Psychology of Teaching with lab component (3 credits)
ED 541 Essential Reading Literacy (3 credits)
ED 511-16 Curriculum and Methods of Teaching (the discipline in which the student will become certified) (3 credits)
ED 502 - NY State Teacher Requirements (1 credit)
ED 501 - Teaching Practicum (1 credit)
ED 550 Effective Teaching for All Learners (3 Credits)
ED 551 - Teaching Internship (4 credits)
ED 560 - The Modern Teacher (3 credits)
ED 552 - Teaching Internship (5 credits)
ED 544 - Literacy for the Content Classroom (3 credits)

Research Project: All students complete an independent research project in their certification area
ED 580 MAT Project (Prefix will listed by discipline ex. HST 580 for MAT Project in History). (3 credits)

Subject Area Courses: Students complete two electives in the subject area in which they will be obtaining certification. (6 credits)

Length of Program
Most candidates complete the MAT program in one year (12 months) starting with an intensive summer program, followed by a full-time fall and spring term. Candidates may choose a longer timeline ranging from one and a half years to three years.

Faculty in Teaching
Language, STEM Education, English & Literacy, Mathematics, Social Studies
Catherine Snyder, Chair; Sherri Duan, Director; Joseph Skufca, Professor; Seema Rivera, Assistant Professor; Patricia Rand, Instructors: Stephanie Conklin, Dan Mattoon, Bryan Mattice, Peter Melito, David Besozzi, Steven Sargent, Thomas Shiland, Becky Remis, Rachel Stead, James Bell, Tracy Pontin

Mathematics Program
Kathleen Kavanagh, Graduate Committee Chair
kkavanag@clarkson.edu

The Department of Mathematics offers graduate programs leading to the Master of Science and Doctor of Philosophy degrees in Mathematics. These programs are designed to increase the student’s fundamental knowledge and to give the student guidance and experience in research. A graduate student pursues these objectives by taking advanced courses, participating in seminars, and carrying out and reporting on a research project. The department provides the advantage of close personal association between graduate students and faculty, giving special attention to individual needs and interests.

Faculty members are engaged in research over a wide range of subjects in the mathematical sciences. Current research interests include: dynamical systems, chaos, nonlinear dynamics, complex networks, critical phenomena and statistical mechanics, imaging science, functional analysis, numerical analysis, computational applied mathematics, inverse problems, optimization, hybrid and derivative-free optimization, sensitivity analysis, finite-element, multigrid, and spectral methods, fluid dynamics, atmospheric models, regional climate dynamics, computational geosciences, applied probability and statistics, multivariate and inferential statistics, application of nonparametric statistics, and biostatistics.

Prerequisite Courses
Applicants must possess a baccalaureate (4-year) degree in mathematics or a relevant major. Submitted application materials must include an official undergraduate transcript, statement of purpose, three letters of recommendation, and score results of the Graduate Records Examination (GRE) aptitude test. The GRE requirement may be waived for students with a Clarkson BS degree, at the discretion of the IBB Program Director. All international students for whom English is not a first language must submit a TOEFL score unless their undergraduate or
master of science degree was in the English language. The admissions committee will select candidates on the basis of aptitude, programmatic needs, and overall excellence of academic qualifications.

Program Requirements:

MS Degree
Students entering with a BS degree are required to take a minimum of 18 credit hours of course-work (six three-credit graduate courses) and six to 10 credit hours of thesis. A minimum total of 30 credits is required for the MS degree. The program for research assistants and teaching assistants during each semester of the academic year is a minimum of nine credit hours, at least one credit hour of which is thesis. The thesis advisor will set up the program within this framework and the department will approve it or recommend changes.

The MS thesis is normally written during the summer and orally presented and defended in late summer or fall before a committee of three or four department faculty. In lieu of a thesis, a student may do a special project. The student receives the MS degree at the next commencement after the thesis is accepted.

PhD Degree
A minimum of 90 credit hours are required for the PhD. This corresponds to a minimum of three academic years of full-time study, of which two must be in residence at Clarkson. The MS degree may be accepted in lieu of a maximum of 30 credit hours. Of these 90 credit hours, a minimum of 39 credit hours must be in coursework. The coursework presented for the PhD must include at least 15 credit hours in the major field, at least nine credit hours in a minor field, and at least six credit hours from out-of-department courses. Beyond the 39 required hours of coursework, six credit hours in seminar work are required, and the remaining 45 hours is thesis or coursework. A comprehensive examination based on general preparation in the major field is required. There is no foreign language requirement for the PhD. Candidates for the PhD are required to prepare an original dissertation in an advanced research area and defend it in an oral examination.

Degree Requirements:
Masters of Science Degree in Mathematics
- Complete 30 credit hours subject to the following restrictions:
 - At least 20 credit hours of course and seminar work must be earned in residence at Clarkson
 - At least 16 hours must be earned in the Department of Mathematics and Computer Science as courses and seminars numbered above MA 505/CS505. These courses must include: at least one of MA 521 Classical Complex Analysis, or MA 522 Classical Real Analysis; and at least one of MA 511 Algebraic Structures, or MA 514 Sets and Topology, MA 573 Matrix Theory and Computations, or MA 578 Numerical Analysis
 - Have an overall grade point average of at least 3.00 in his/her course work
Fulfill one of the following:

- Write a thesis under the guidance of a faculty member. The thesis is to be an original or expository study of some area or problem and shall represent 6 to 10 credit hours. The topic of the thesis must be approved by the graduate committee and thesis advisor in advance. As required by University regulations, the thesis must be examined by a committee of at least three Clarkson faculty appointed by the chair of the department.
- Pass two exams, one from Category I and one from another Category; the Categories are described in Section III under the requirements for the PhD degree. The choices must be approved by the student's advisor and the graduate committee.
- Pass one exam from any of the four categories listed in section III in the PhD requirements, plus complete a special project. A description of the proposed project must be approved in advance by the student’s advisor and the graduate committee. When the project is completed it must be approved by the graduate committee. Completion will carry 3 to 9 hours at the discretion of the student's advisor.

PhD Degree in Mathematics

- Take at least 39 credit hours of approved course work (30 of which may be those taken for the MS degree) As required by University regulations, the course work must contain a minimum of fifteen hours in his/her major area, a minimum of nine hours in a minor area, and a minimum of six hours of work outside the department. Cross registered graduate level courses from other institutions are acceptable. The major area and minor area will be identified by the candidate's advisor and must be approved by the graduate committee.
- Have an overall grade point average of at least 3.00 in his/her course work.
- By the fourth semester (summer not included) every PhD student must pass a Comprehensive Examination which consists of three (3) written examinations from no more than two of the following categories, and one exam must be from Category I. The choices must be approved by the student's advisor and the graduate committee. In the event that a student has not satisfied these conditions within the time limit allowed, they must petition the graduate committee in order to continue their studies.
 - Category I: (Pure Math) Real Analysis, Complex Analysis, Sets and Topology, Algebraic Structures.
- Acquire at least six hours of seminar credit. A seminar is a course in which the student is expected to make presentations to the class. This is in addition to the minimum of 39 credit hours of approved course work in (i) above. One hour of seminar credit may be
earned by either attending a regular scheduled seminar and making one presentation,
or attending all colloquia for one semester and giving one presentation at an MCS
Seminar (which would be scheduled during the regular colloquium time.)

- Have made a formal presentation of a proposed thesis topic to his/her Thesis
 Committee (see part (vi)) within one year of passing his/her Comprehensive Exam (part
 iii). The topic must be acceptable to the committee
- Write and defend (to his/her Thesis Committee) a dissertation which embodies the
 results of his/her original research. In association with this work, the student must
 obtain at least 21, but no more than 45, hours of thesis credit. The Thesis Committee
 consists of at least five Clarkson faculty members of whom at least one is from another
 department
- Complete a total of 90 hours graduate credit. The satisfaction of these requirements will
 be certified by the Thesis Committee.

Program Length
The typical length of the Mathematics MS program is two years and between five and six years
for the PhD program.

Key Contacts
Graduate Committee Chair Dr. Kathleen Kavanagh (76kkavanag@clarkson.edu , 268-2391) for
questions about the IBB Program

Chair of the Mathematics Department Dr. Joe Skufca (jskufca@clarkson.edu , 268-2399) for
concerns related to a graduate advisor, instructor, or any other matter that cannot be
addressed by the Graduate Committee Chair or graduate advisor

Mathematics Secretary Ashley Clover (aclover@clarkson.edu , 268-4074) for mathematics
department administrative questions, including those related to TA or RA contracts,
reimbursements, and pay checks.

Faculty in Mathematics
Professors Danial ben-Avraham, Erik Bollt, Scott Fulton, Lawrence Glasser, Abdul Jerri, Brian
Helenbrook, Kathleen Kavanagh, David Powers, Joseph Skufca; Associate Professor Sumona
Mondal; Assistant Professors Marko Budisic, Adom Giffin, Ying He, Rana Parshad, Guohui Song,
Jie Sun, Diana White, Guangming Yao; Instructors Michael Felland, Christopher Martin, Sara
Morrison

Physics Programs
The Physics Department offers graduate programs leading to the degrees of Master of Science and
Doctor of Philosophy.

Prerequisites Courses
For both graduate degrees, undergraduate preparation is required in the following subjects (at the
levels of the textbooks indicated): Mechanics (Symon or Becker); Optics (Bennett or Hecht); Quantum
Mechanics (Anderson, Merzbacher, or Griffiths); Modern Physics (Krane); Thermal Physics (Baierlein or Kittel); Electrodynamics (Griffiths, or Reitz, Milford and Christy).

MS in Physics
Out of the total 30 credit hours for the Master’s degree, at least 18 credits of coursework are required. This includes completion of appropriate courses from the PH661, PH663, PH669 sequence. In addition to coursework, at least 6 credits of thesis research in Physics, PH699; and at least 2 credits of seminar, including 1 credit of PH683 or PH684 (Graduate Seminar) are required. A minimum of 19 credit hours out of the total of 30 must be taken in Physics (coursework, seminars, and thesis credits).

The Master’s program has a non-thesis option and a thesis option. To maintain qualification for study towards Master’s degree, the student must, no later than the end of the second semester of study, select a general research-interest topic and find a research advisor. This requirement applies to both thesis-option and non-thesis-option MS students.

Non-thesis MS option: Students are required to take all 3 of the following courses PH661, PH663, PH669, and obtain a grade of at least B in each of them. The student’s advisor may authorize, with the approval of the Department Chair, replacement of at most one of these courses with another advanced Physics or other course appropriate for the student’s program (the B minimal grade requirement still applies). Non-thesis option students who do not take and pass the Comprehensive Examination (usually taken as part of the PhD track) must include a professionally oriented Special Project in their research (PH699) / coursework. The completion of the Project is verified by a Faculty Committee (as per University regulations) and certified by the student’s academic advisor in a notice to the Department Chair that defines the Project’s topic.

Thesis MS option: Students are required to take, and obtain a grade of at least B in, at least one of the following courses PH661, PH663 or PH669.

PhD in Physics
Out of the total 90 credit hours for PhD, the specific Physics requirements for graduation are: At least 33 credit hours of courses. Credits outside the Department: at least 6. Seminar credits: at least 6. The courses taken in Physics must include PH661, PH663, PH664, PH669, PH670. The requirement for PH664 and PH670 (passing grade) can be fulfilled any time during the study, and the student’s advisor can approve replacement of these two courses by other advanced graduate courses in the student’s chosen research field. Each semester of full-time study in residence at Clarkson prior to the completion of 78 credits, the student must register for and obtain a passing grade in PH683 or PH684 (Graduate Seminar).

To maintain qualification for study toward the PhD beyond the first year, the student must, no later than the end of the second semester of study, select a general thesis topic and be assigned to a suitable research advisor. The appointment of the advisor must be approved by
the Physics Department Chair. For interdisciplinary research projects to be supervised primarily outside the Physics Department, a physics co-advisor will be assigned to the student.

To maintain qualification for study toward the PhD beyond the second year, the student must pass the comprehensive examination and obtain at least a grade of B in each of these courses: PH661, PH663, PH669. The comprehensive examination will consist of challenge and/or conceptual problems based on the knowledge of undergraduate material in general physics, and/or material pertinent to the student’s expected thesis research topic. One or two problems will be composed by each member of a thesis committee.*

The student will have up to 30 days to submit written solutions to the comprehensive examination, and will then have to defend his/her work in an oral examination before the thesis committee. The student’s advisor will coordinate the administration of the Comprehensive Exam, and the Physics Department should receive a copy of the full exam before the student receives the exam. The result of each exam: the student completed the candidacy procedure or failed the attempt, should be reported by the advisor to the Physics Department and Graduate School within one week after the decision by the thesis committee. Up to two attempts are allowed by the University regulations.

By the end of the third year of study, to qualify for continuing in the PhD program, the student is required to write a PhD Research Proposal, and to defend the proposed doctoral topic before a thesis committee*. This defense will consist of an oral presentation of the proposed thesis topic. The thesis committee members must be appointed, and receive Research Proposal copies, at least 10 working days before the oral defense. At the conclusion of the defense, the thesis committee must be satisfied that the thesis topic is of doctoral quality and that the student’s background is adequate to carry out the proposed research.

Active research interests in the department include: chemical physics, energy storage and conversion, nonlinear phenomena, condensed matter physics, transport properties, effects of disorder, statistical mechanics, phase transitions, surface and interface physics, optics, biophysics, and self-assembly of nanomaterials, unconventional computing and (bio)sensing. To promote and enhance interdepartmental collaborations, the faculty is involved in various activities of the University’s Center for Advanced Materials Processing, Institute for Nonlinear Studies and the Center for Quantum Device Technology.

Program Length

Typical length of the Physics MS Program is two years, although well-prepared students may find it possible to complete the requirements for the Master’s degree in an academic year plus

* The thesis committee will be composed of five members; a minimum of three will be from the Clarkson Physics Department and at least one from outside the Department. The committee members are selected by the student’s advisor and the membership is approved by the Department Chair and the Dean of the School. A unanimous decision of the committee is required for passing.
a summer. Doctoral candidates should expect to spend a minimum of two years beyond the Master’s in meeting degree requirements. Typical length of the Physics PhD Program varies between five and six years.

Faculty in Physics

Professors Danial ben-Avraham, Erik Bollt, Ming-Cheng Cheng, Lawrence Glasser, Vladimir Privman, Dipankar Roy, Lawrence Schulman *Associate Professor* Maria Gracheva; *Assistant Professors* Dmitriy Melnikov, Michael Ramsdell, Jan Scrimgeour, Joshua Thomas; *Adjunct Research Associate Professor* David Wick
GRADUATE BUSINESS PROGRAMS

The School of Business offers the following graduate programs:

- Master of Business Administration (MBA)
- Master of Business Administration-Healthcare Management (MBA)
- Master of Science in Healthcare Data Analytics (MS)
- Master of Science in Clinical Leadership (MS)

The programs offer a variety of options in terms of both mode of delivery (classroom, online, or a mix of classroom and online chosen by the student) and time of completion (full time or part time).

The MBA program consists of three programs – the Residential MBA, the Online MBA, and the Hybrid MBA. The Residential MBA is offered at the Potsdam campus. All classes are taken in the classroom and follow the semester calendar. The Online MBA and the Hybrid MBA have the same curriculum and follow the same quarter calendar (four terms per year). The Hybrid MBA allows students to freely mix online and classroom courses to meet their own needs. The classroom courses are offered at the Capital Region Campus (CRC) in Schenectady. The mix can be fully online, fully classroom, or anything in between.

The Healthcare MBA program follows the quarter calendar and can be completed online, in the classroom, or utilizing any mix to meet the individual student’s needs. The classroom classes are offered at the CRC.

The Master of Science in Healthcare Data Analytics is an online program and follows the quarter calendar.

The Master of Science in Clinical Leadership follows the quarter calendar and can be completed online, in the classroom, or utilizing any mix to meet the individual student’s needs. The classroom courses are offered at the CRC.

No specific undergraduate major is required for admission; however, applicants must demonstrate high promise for success as indicated by several components of student’s application profile which include (but is not limited to) undergraduate grade point average, score on GMAT or the GRE, work experience, and references. A typical graduate class includes recent college graduates, people with work experience, and men and women from many geographic regions of the world. The breadth and diversity of the student body serve to enrich the educational experience. Merit based scholarships are awarded on a competitive basis. Full time residential MBA students are also eligible to apply for a graduate assistant position working with a faculty/staff member.

Faculty and students also participate in the interdisciplinary Data Analytics and Environmental Policy and Governance graduate programs. More information can be found in the section for
Institute for a Sustainable Environment and the Interdisciplinary Program sections of the catalog.

The School of Business at Clarkson is accredited by the Association to Advance Collegiate Schools of Business (AACSB), an internationally recognized accrediting agency for graduate and undergraduate programs in business administration. In addition, the Healthcare Management MBA is accredited by the Commission on the Accreditation of Healthcare Management Education (CAHME).

More information about the following programs can be obtained from the Graduate Business Programs office: telephone 315 268 6613; toll free for U.S. and Canadian 866 333. 6613; fax 315 268 3810; e mail busgrad@clarkson.edu; or Internet www.clarkson.edu/business/graduate.

The Master of Business Administration - Residential Program

The MBA degree is meant to provide students with the skills to be effective business leaders. At Clarkson, the program offers small class sizes and close faculty student interaction. Integrated core courses ensure that students share common experiences, while elective courses provide an opportunity for specialized study.

The MBA consists of foundation courses in ten specified areas and 38 credit hours of advanced graduate work. The foundation includes courses from the following subjects: financial and managerial accounting, information technology, corporate finance, microeconomics, macroeconomics, ethics, organizational behavior, marketing, operations and production management, quantitative methods/statistics. Through careful planning, students with backgrounds in engineering, liberal arts, or science may complete the foundation courses as part of an undergraduate minor or through pursuing the Summer Business Concepts program offered by our school, lasting from mid-May to end of July, preceding the start of the regular Fall semester. Some students may require overloading of courses and/or summer school to complete all required foundation courses. Articulation agreements, which specify acceptable foundation courses, exist for Clarkson’s engineering and science programs and a number of universities in the United States and Canada.

Beyond the foundation, the 38 credits of the residential MBA degree program consist of ten two-credit interrelated core modules, five three-credit graduate elective courses, and a three credit experiential course. The core modules stress business functions, emphasizing the development of communication, interpersonal, and managerial skills. The core module titles are:

AC603 Management Accounting
OM606 Supply Chain Management
EC604 Applied Economics
OS608 Organizational Behavior & Performance Management
FN607 Financial Management
A Strategic Planning module (2 credits) is offered as a 12 week course during the spring term or as an accelerated winterim term on-line course. The other modules are taught for seven weeks each during the fall term.

Graduate elective courses in residential program are available in several functional areas, and they include:

- OS610 Strategic Planning
- IS605 Information Systems
- MK609 Marketing Management
- OM602 Decision Analysis and Supply Chain Modeling
- SB609 Corporate Ethical Decision Making

In the course of their MBA program of study, students can earn a certificate in Global Supply Chain Management, Environmental Management, Innovation and New Venture Management or Accounting, by taking a certain set of electives as determined by the requirements of each certificate.

Experiential learning is a strong part of Clarkson's culture so each student participating in the residential MBA program is required to take a three credit hour experiential course. Currently, the experiential requirement can be satisfied by participating in global business program, or by taking the SB696 Global Business Strategies course. Through the Global Business Programs,
there are several options that are designed to give you knowledge and new perspectives regarding international business, helping you develop critical skills necessary to compete and succeed in the global market. The most popular Global Business Program option is the course that includes a 2-3 week trip to an international destination, often led by the faculty from that area. This course offers a unique opportunity to explore business outside the traditional classroom boundaries and to provide a unique experience to your resume. This course also helps you explore the global management issues facing business leaders and organizations in different parts of the world.

Length of Program
There are three length-of-study options for the residential MBA program:

1. The Accelerated One-Year study plan, with all 38 credits completed over the course of two consecutive semesters
2. 1.5 Years study plan with core modules and electives completed over the three consecutive semesters
3. 2 Years, with core modules and electives completed over the four consecutive semesters

While most students begin their MBA residential program in a fall semester, we do allow students to start their program in the spring. The students starting in the spring have their choices of elective courses in that first semester limited to those that do not have core modules as pre-requisites, and the Strategic Planning module cannot be taken during the first spring semester.

The Global Master of Business Administration – Residential Specialty Track with one semester abroad at one of the partner AACSB accredited schools
The Global MBA follows the same curriculum structure and has the same foundation requirements as the regular residential MBA program, with students completing up to six courses over the spring semester at one of the partner institutions. The courses taken at the partner institutions need to be approved by the Graduate School of Business as elective courses and/or a substitute course for the Strategic Management core module. Students are allowed to participate in the Global MBA program if they achieve satisfactory performance in the first set of core MBA modules as determined by the Graduate School of Business.

The current choices of AASCB accredited partner institutions include the Bordeaux School of Management, in Bordeaux, France and Griffith University, in Brisbane, Australia. These elective classes meet the elective requirement and experiential unit requirement of the residential MBA program. Students starting in the spring semester cannot participate in the Global MBA program in their first semester.
Online MBA Program

The online MBA program is a 48 credit hour program (a total of 16 3-credit courses). This program is designed to be completed part time, taking up to two courses during each of the four 11 week periods. Maximum time to complete the program will be five years. All students are required to take eleven (three credit hours each) MBA core courses. The remaining 15 credits are comprised of five elective courses.

Students with extensive prior academic work in specific subjects may reduce the number of courses required by waiving or transferring courses. Course waivers may be based on undergraduate or graduate work and apply only to required courses. Transfers must be graduate courses not used as part of another degree and may apply to required or elective courses. Program requirements may be reduced by up to nine credit hours (from 48 to 39) with course waivers alone. Program requirements may be reduced by up to twelve credit hours (from 48 to 36) with a combination of course waivers and transfers. Articulation agreements have been established with a number of universities in the United States and Canada. These agreements specify which combinations of undergraduate classes at the partner schools will allow courses in the online MBA program at Clarkson to be waived.

The course numbers and titles for the required courses in the on-line program are:

AC604 Financial and Managerial Accounting for Decision Making
OM607 Global Supply Chain Management
EC605 Managerial Economics
FN608 Financial Management
OS681 Strategic Management
IS606 Business Information Systems
MK610 Marketing Management
OM603 Decision Analysis and Supply Chain Modeling
SB610 Corporate Ethical and Social Responsibility
OS603 Leadership and Organizational Behavior
IS647 Statistical Methods for Data Analytics

Graduate elective courses in the on-line MBA program include:

EC652 Industrial Organization in Supply Chain
OM681 Strategic Project Management
OM686 Quality Management and Process Improvement
OS656 Leading Organizational Change
OS667 Negotiations and Relationship Management
SB640 Advanced Topics in Supply Chain Management
OS654 Labor Relations
SB651 Communicating Globally

Program Length
With no prior educational background in business, the program can be completed in as little as 2 years. Full time students complete in one year, part-time students complete two to five years with an average completion of three years.

Hybrid MBA Program (Flexible Mix of Courses at the Capital Region Campus and Online Courses)

The Hybrid MBA program is a 48 credit hour program (a total of 16 3-credit courses) with the exact same curriculum as the Online MBA program described above. Students may choose to take all their classes onsite at the Capital Region Campus or mix in any number of online classes they want. It is totally up to the individual student to choose. Onsite and online courses follow exactly the same calendar so that students may take a mix of online and onsite courses in the same term as well as across terms. The Hybrid MBA has a strong internship program that students find extremely valuable. An internship is required but may be waived for students with relevant business experience.

As with the Online MBA program, students with extensive prior academic work in specific subjects may reduce the number of courses required by waiving or transferring courses. Course waivers may be based on undergraduate or graduate work and apply only to required courses. Transfers must be graduate courses not used as part of another degree and may apply to required or elective courses. Program requirements may be reduced by up to nine credit hours (from 48 to 39) with course waivers alone. Program requirements may be reduced by up to twelve credit hours (from 48 to 36) with a combination of course waivers and transfers. Articulation agreements have been established with a number of universities in the United States and Canada. These agreements specify which combinations of undergraduate classes at the partner schools will allow courses in the online MBA program at Clarkson to be waived.

In addition to the online electives which are available to Hybrid MBA students, electives available onsite at the Capital Region Campus include:

- AC612 Advanced Management Accounting
- FN618 Mergers, Acquisitions, and Corporate Restructuring
- FN619 Investments
- FN620 Investment Management
- FN629 Money, Markets, and Banking
- FN661 International Finance
- MK626 Marketing Research Techniques
- MK627 Marketing High Technology Products
- MK629 Consumer Behavior
- MK665 International Marketing Management
- OS650 Competing By Design
- OS651 High Performance Leadership
- OS656 Leading Organizational Change
- OS659 Women and Management
Clarkson 4+1 Articulation Agreements: MBA Residential, Online, and Hybrid Programs

Clarkson has “4+1” articulation agreements with a number of colleges and universities in the United States and Canada. These agreements enable students to fulfill the business foundation requirements of the Residential MBA as undergraduates or to waive up to three courses from the MBA Online or Hybrid program, reducing the number required to complete the program from 16 to 13. Students from any undergraduate discipline can participate in these 4+1 programs by carefully selecting appropriate foundation courses as undergraduates. For further information about specific foundation requirements at our 4+1 partners, please visit our Web site at www.clarkson.edu/business/graduate.

Master of Business Administration – Healthcare Management Program

The primary purpose of the MBA Program in Healthcare Management is to prepare its graduates for management positions in health service delivery organizations (e.g. hospitals, managed care organizations, group practice, long-term care) and in related organizations (e.g. consulting, government, corporate benefits). A successfully prepared graduate will be able to obtain a professional management position in a healthcare organization, competently perform the duties of that position, and advance and grow professionally in a career.

The program serves students with diverse educational backgrounds and work experiences fully supporting and encouraging those with limited or no clinical and managerial experience who matriculate on both a part-time and full-time basis. The program provides its education in an environment that fosters a high level of interaction among and between students and faculty, both in and out of the classroom. Faculty and students value this small-class environment.

The MBA–Healthcare Management program is a 48 credit hour program (a total of 16 3-credit hour courses). The program includes seven required core courses and nine advanced courses (seven required; two elective). As with the Online and Hybrid MBA programs, students with extensive prior academic work in specific subjects may reduce the number of courses required by waiving or transferring courses. Course waivers may be based on undergraduate or graduate work and apply only to required courses. Transfers must be graduate courses not used as part of another degree and may apply to required or elective courses. Program requirements may be reduced by up to nine credit hours (from 48 to 39) with course waivers.
alone. Program requirements may be reduced by up to twelve credit hours (from 48 to 36) with a combination of course waivers and transfers.

The Healthcare MBA has a strong internship program and an internship is required. This requirement is waived for students with relevant business experience.

The seven required core courses are:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC604</td>
<td>Financial and Managerial Accounting for Decision Making</td>
</tr>
<tr>
<td>HC600</td>
<td>Introduction to Health Systems</td>
</tr>
<tr>
<td>HC605</td>
<td>Healthcare Operations</td>
</tr>
<tr>
<td>HC626</td>
<td>Healthcare Marketing</td>
</tr>
<tr>
<td>HC651</td>
<td>Health Systems Management</td>
</tr>
<tr>
<td>HC657</td>
<td>Healthcare Leadership Proseminar</td>
</tr>
<tr>
<td>IS647</td>
<td>Statistical Methods for Data Analytics</td>
</tr>
</tbody>
</table>

The seven required advanced courses are:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC617</td>
<td>Healthcare Finance</td>
</tr>
<tr>
<td>HC620</td>
<td>Healthcare Economics</td>
</tr>
<tr>
<td>HC648</td>
<td>Health Informatics</td>
</tr>
<tr>
<td>HC650</td>
<td>Structural Dynamics in Healthcare</td>
</tr>
<tr>
<td>HC674</td>
<td>Legal Aspects of Healthcare</td>
</tr>
<tr>
<td>HC680</td>
<td>Healthcare Policy and Managerial Epidemiology</td>
</tr>
<tr>
<td>HC681</td>
<td>Strategic Issues for Healthcare Organizations (Health Capstone)</td>
</tr>
</tbody>
</table>

Two electives can be chosen from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC601</td>
<td>Swiss Healthcare Study Tour</td>
</tr>
<tr>
<td>HC607</td>
<td>Healthcare Operations Research</td>
</tr>
<tr>
<td>HC656</td>
<td>Group Practice Administration</td>
</tr>
</tbody>
</table>

Any elective offered as part of the Hybrid MBA program

Program Length

With no prior educational background in business, the program can be completed in as little as 2 years. Full time students complete in one year, part-time students complete two to five years with an average completion of three years.

Healthcare Data Analytics MS

The purpose of the MS - Healthcare Data Analytics program is to prepare students with the skills to acquire, interpret and communicate healthcare data to shape the direction of the healthcare industry. Graduates will be prepared to take positions in healthcare organizations that require them to analyze high volumes of clinical, administrative and financial data. The program is fully online with a single weekend onsite component required for two of the courses.
The MS – Healthcare Data Analytics program is a 36 credit hour program (a total of 12 3-credit hour courses). The program includes nine required core courses and three electives. As with the Online and Hybrid MBA programs, students with extensive prior academic work in specific subjects may reduce the number of courses required by waiving or transferring courses. Course waivers may be based on undergraduate or graduate work and apply only to required courses. Transfers must be graduate courses not used as part of another degree and may apply to required or elective courses. Program requirements may be reduced by up to six credit hours (from 36 to 30) with any combination of course waivers and transfers.

The nine required core courses are:

- HC600 Introduction to Health Systems
- HC602 Advanced Statistics and Data Visualization
- HC603 Data Architecture
- HC610 Healthcare Accounting and Finance
- HC642 Data Analytics and Business Intelligence
- HC647 Statistical Foundations of Data Analytics
- HC648 Health Informatics
- HC657 Healthcare Leadership Proseminar
- HC681 Strategic Issues for Healthcare Organizations (Health Capstone)

Three electives can be chosen from:

- HC604 Hospital Analytics
- HC606 Payer Analytics
- HC607 Healthcare Operations Research
- HC609 Healthcare Customer Relationship Management
- IA 626 Big Data Processing and Cloud Services
- IA 640 Information Visualization

Program Length

Part-time students complete in two years.

Completing both the MBA – Healthcare Management and the MS – Healthcare Data Analytics

Students may complete both the MBA-Healthcare Management and the MS-Healthcare Data Analytics programs by taking a total of 23-3 credit courses rather than the aggregate total of 28 courses for the two programs taken separately. This is made possible by shared courses and synergies between the programs.

Clinical Leadership MS

The Clinical Leadership in Healthcare Management is designed for current and future clinical practitioners: physicians, nurses, pharmacists, therapists, and other healthcare professionals who wish to better understand the healthcare industry and the environment in which it exists, or who aspire to clinically-related leadership roles. The goal of the program is to broaden the
horizons of students by providing them with knowledge and skills in health policy and health management. The MS in Clinical Leadership is a 36 credit program (a total of 12 3-credit courses). There are eleven required courses and one elective course.

The eleven required courses are:

AC604 Financial and Managerial Accounting for Decision Making
HC600 Introduction to Health Systems
HC605 Healthcare Operations
HC617 Healthcare Finance
HC620 Healthcare Economics
HC651 Health Systems Management
HC656 Group Practice Administration
HC674 Legal Aspects of Healthcare
HC680 Healthcare Policy and Managerial Epidemiology
HC681 Strategic Issues for Healthcare Organizations (Health Capstone)
IS647 Statistical Methods for Data Analytics

The elective may be any Healthcare or Hybrid MBA elective.

Program Length
Part-time students complete within three years.

Joint Programs: Clarkson University Capital Region Campus
The Clarkson University School of Business Capital Region Campus has several joint programs with organizations located in the Capital Region. These programs are described in the following sections.

Accelerated BA or BS at Union College and MBA Program (with Union College)
Union College students considering entrance into the accelerated Bachelor’s/MBA program should consult with an MBA program advisor and apply for admission during the sophomore, junior, or first term of the senior year. Joint degree students must complete sixteen graduate courses, three of which may, with undergraduate advisor approval, count toward Bachelor’s degree requirements. Graduate courses may not be taken until the junior year and are typically completed during the senior and fifth years. Students may choose either the MBA or the MBA in Healthcare Management degree. There is a limit of five undergrads in each graduate level course.

Four-Year JD/MBA Program (with Albany Law School)
This program is designed to meet the management development goals of students enrolled at Albany Law School. Students spend their first year in law studies, their second year in management studies, and their third and fourth years in law and management studies. Three designated law courses transfer into the MBA degree.
Students are required to complete their MBA the winter term of the year they petition to graduate at ALS. Students may choose either the MBA or the MBA in Healthcare Management degree.

Joint PharmD /MBA in Healthcare Management (with Albany College of Pharmacy and Health Sciences)
The MBA in Healthcare Management degree is a 16 course program. Three designated Pharmacy courses transfer into the MBA degree, reducing the number of MBA courses in the PharmD/MBA joint program to 13. In addition, PharmD students meet the MBA Internship Requirement with the selected practicum experiences which are part of the PharmD program 6th year curriculum at ACPHS. Most joint program students complete the MBA course requirements on a part-time basis over a three year period (years 4-6 at ACPHS).

Joint BS Pharmaceutical Science /MBA in Healthcare Management (with Albany College of Pharmacy and Health Sciences)
The MBA in Healthcare Management degree is a 16 course program. The BS/MBA in Healthcare Management joint program reduces the number of MBA courses needed from 16 to 13. Up to three required courses from the MBA curriculum are waived based on courses taken in the BS program at ACPHS. The remaining courses are usually completed on a full-time basis the year following graduation from ACPHS. In addition to coursework, all BS/MBA students are required to complete an administrative internship.

Joint PharmD / MS in Clinical Leadership (with Albany College of Pharmacy and Health Sciences)
The MS in Clinical Leadership is a 12 course program. The PharmD/MS joint program reduces the number of required MS courses to 9. Up to three required courses from the MBA curriculum are waived based on courses taken in the PharmD program at ACPHS.

Joint BS Pharmaceutical Science /MS in Clinical Leadership (with Albany College of Pharmacy and Health Sciences)
The MS in Clinical Leadership is a 12 course program. The PharmD/MS joint program reduces the number of required MS courses to 9. Up to three required courses from the MBA curriculum are waived based on courses taken in the BS program at ACPHS.

Leadership in Medicine (LIM) / MBA in Healthcare Management (with Union College and Albany Medical College)
Students in the eight-year LIM program jointly offered by Union College, Albany Medical College and Clarkson University earn a BS from Union College, an MBA in Healthcare Management from Clarkson University, and an MD from Albany Medical College. The MBA in Healthcare Management degree is a 16 course program. Students choosing this option take graduate MBA courses while fulfilling all other requirements of the program at Union College and Albany Medical College throughout the eight years of the program. During the four years in residence at Union College, students pay tuition based on degree requirements for a BS degree from Union College and an MS degree in Clinical Leadership from Clarkson. There is an
additional charge for the LIM MBA degree. Students choosing the BS/MBA/MD option pay for four additional MBA courses they take at Clarkson University at the graduate tuition rate in effect in the student’s spring term of senior year of undergraduate study. Students in this program must meet admission requirements of Union College, Clarkson University, and Albany Medical College.

The LIM MBA in Healthcare Management requires 16 courses plus an internship as listed below:

Program Requirements:

AC604 Financial and Managerial Accounting for Decision Making
HC605 Healthcare Operations
HC626 Healthcare Marketing
HC651 Health Systems Management
HC617 Healthcare Finance
HC630 Introduction to Health Systems
HC633 Healthcare Leadership
HC634 Health and Human Values I
HC635* Economics of Health (*or HCM 620, Health Economics)
HC648 Health Informatics
HC656 Group Practice Management
HC674 Legal Aspects of Healthcare
HC680 Healthcare Policy and Managerial Epidemiology
HC684 Strategic Issues for Healthcare Organizations (Capstone)
IS647 Statistical Methods for Data Analytics
Elective An elective

An approved internship is required for the MBA in Healthcare Management. If taken as the MBA elective, HC637 Clinical Leadership Practicum fulfills the internship requirement.

Additional Cost

Students who elect to take the additional courses to achieve an MBA will be charged additional tuition by Clarkson University:

- 3 courses tuition- Spring of Senior Year
- 1 course tuition- Summer following Senior year

Leadership in Medicine (LIM) / MS in Clinical Leadership

Students in the eight-year LIM program jointly offered by Union College, Albany Medical College and Clarkson University may earn an MS in Clinical Leadership from Clarkson University. The MS in Clinical Leadership degree is a 12 course program. Students choosing this option take graduate Healthcare Management courses while fulfilling all other requirements of the program at Union College and Albany Medical College throughout the eight years of the program. Students choosing this option take additional courses while fulfilling all other requirements of the program. Students in this program must meet admission requirements of Union College, Clarkson University, and Albany Medical College.
The LIM MS in Clinical Leadership requires 12 courses listed below:

Program Requirements:
- AC604 Financial and Managerial Accounting for Decision Making
- HC605 Healthcare Operations
- HC651 Health Systems Management
- HC617 Healthcare Finance
- HC630 Introduction to Health Systems
- HC634 Health and Human Values I
- HC635* Economics of Health (*or HCM 620, Health Economics)
- HC656 Group Practice Management
- HC674 Legal Aspects of Healthcare
- HC684 Strategic Issues for Healthcare Organizations (Capstone)
- IS647 Statistical Methods for Data Analytics
- HC637 Clinical Leadership Practicum

Dual MD/MBA in Healthcare Management (with Albany Medical College)
The Clarkson University MBA in Healthcare Management/Albany Medical College MD is designed to provide students with a business understanding specific to healthcare and move them on to their medical education quickly. While many other medical schools offer a generic MBA, the Clarkson University MBA in Healthcare Management is focused on the healthcare environment. Students study alongside others with a passion for healthcare, and learn how to manage a medical practice, deliver quality care in a cost-containment environment, market a practice, and lead other healthcare professionals.

Dual degree students are first admitted to Albany Medical College and then apply separately to Clarkson University. Once admitted to both institutions, they defer the start of medical school by one year and spend one year at Clarkson University working on MBA courses. The second through fifth years are spent completing the MD degree requirements at Albany Medical College.

The combined programs allow students to “double count” courses which reduces the total time and cost associated with completing the two degrees separately. Four courses taken at Albany Medical College are transferred back to Clarkson University to meet MBA requirements. The combined degree is typically completed in five years.

It is possible to join the Dual degree program after the start of medical school. Students would leave medical school at the end of their third year and spend 13 months at Clarkson University completing MBA course requirements. They return to medical school for their final year.

Certificates of Advanced Study – Online and Capital Region Campus

Objectives
The purpose of the Clarkson University Certificate Programs is to allow professionals currently working in a field or wanting to enter a field to conduct intensive study in that field in an efficient and focused manner. Upon completion, students should be able to function more
effectively in their specific fields. The Certificate Programs are not designed to provide a broad management background. If students wish to expand their management skills they may apply up to four of the courses taken in a certificate program toward the MBA. All six courses from the Business Fundamentals Certificate may be applied toward the MBA. All Certificates are approved by the NYS Education Department.

Certificate in Global Supply Chain Management
The principles behind supply chain management focus on developing seamless flows of raw materials, products/services, information, and financial capital. The supply chain starts at the initial design process and includes raw material sourcing, logistics and continues through the delivery of that product or service to the end customer, with a goal of creating customer satisfaction at optimal cost. The Certificate requires four courses. Completion of these courses allows individuals to be productive in this important area and can provide a strong concentration should the individual decide to continue on for an MBA.

Required Courses:
- Global Supply Chain Management OM607
- Advanced Topics in Supply Chain Management SB640

Specialty Courses (two):
- Quality Management and Process Improvement OM686
- Negotiations and Relationship Management OS667
- Industrialization Organization in the Supply Chain EC652

Certificate in Human Resource Management
The Certificate Program in Human Resource Management will provide the educational background necessary to make informed decisions in management as related to human resource issues. The certificate holder will have the resources for strategic critical thinking necessary to optimize the human resources of an organization.

Required Courses:
- Leadership and Organizational Behavior OS603
- Human Resource Management Systems OS675
- Current Issues in Human Resource Management OS676

Specialty Courses (three):
- International Human Resources OS677
- High Performance Leadership OS651
- Leading Organizational Change OS656
- Women and Management OS659
- Labor Relations OS654
- Competing by Design OS650
- Executive Decision Processes in Dynamic Environments OS660
MBA Elective

Certificate in Management and Leadership
The Certificate in Management and Leadership is designed to give entry and middle level managers the core business skills in organizational processes, change management, resource management and leadership. It is focused on assisting managers and executives in enhancing their management and leadership skills in order to positively impact their current organization and provide them career advancement potential.

Required Courses:
- Leadership and Organizational Behavior OS603
- High Performance Leadership OS651

Specialty Courses (four):
- Financial and Managerial Accounting for Decision Making AC604
- Executive Decision Processes in Dynamic Environments OS660
- Leading Organizational Change OS656
- Women and Management OS659
- Current Issues in Human Resource Management OS676
- MBA Elective

Certificate in Healthcare Management
Healthcare has become one of the fastest growing industries in the US economy, characterized by rapid change and a need for management that will extend into the foreseeable future. The Certificate in Healthcare Management prepares individuals to take advantage of the opportunities in this field by introducing them to important business concepts applied to healthcare.

Required Courses:
- Introduction to Health Systems HC600
- Health Systems Management HC651

Specialty Courses (four):
- Health Operations Management HC605
- Proseminar in Healthcare Leadership HC657
- Health Systems Marketing HC626
- Healthcare Finance HC617
- Health Economics HC620
- Health Informatics HC648
- Structural Dynamics in Healthcare Systems HC650
- Group Practice Administration HC656
- Legal Aspects of Healthcare HC674
- Health Policy & Managerial Epidemiology HC680
Certificate in Business Fundamentals
The Certificate in Business Fundamentals is designed to provide non-business undergraduate majors working in businesses with an opportunity to develop a broad background in the fundamental areas of business without committing to a full MBA. All six courses would apply towards the MBA as well if students decide to pursue it. This certificate may be completed entirely online or entirely in classes at the Schenectady campus or students may mix online and on campus classes.

Required Courses:
- Financial and Managerial Accounting for Decision Making AC604
- Financial Management FN608
- Business Information Systems IS606
- Marketing Management MK610
- Global Supply Chain Management OM607
- Leadership and Organizational Behavior OS603

Certificate Program Length
Most candidates complete their certificate program in 9 months to 1.5 years.

The Reh Center for Innovation and Entrepreneurship
The Entrepreneurship Center
Erin Draper, Director
A resource center located within the Clarkson University School of Business, the Entrepreneurship Center helps small business owners and entrepreneurs develop and manage sustainable micro enterprises through partnerships with universities and government support programs.

The Center builds upon the University's nationally recognized expertise in entrepreneurial education and long-standing commitment to boost regional economies through small business development.

The goal of the Center is to serve as a national model for enhancing regional economic development by focusing on micro enterprises. Additionally, increased hands-on learning opportunities provide students with tremendous learning opportunities in marketing, management and finance.
Consumer and Organizational Studies
Professors Larry Compeau, Augustine A. Lado, Rajesh Sethi; Associate Professor Stephen Sauer, Sandra Fisher, Michael Wasserman; Assistant Professors Floyd Ormsbee, Na-Eun Cho, Zhaleh Semnani-Azad, Anju Sethi, Marc Compeau, Mel Chudzik, Alan Belasen, Michele Paludi

Economics and Financial Studies
Professors Clifford Brown, Mark R. Frascatore; Associate Professors, Luciana Echazu, Martin Heintzelman, Diego Nocetti, Alasdair Turnbull, Allan Zebedee; Assistant Professors, Bebonchu Atems, Gilberto Marquez-Illescas, Mohamed Mekhaimer, Jose Vega, Linying Zhou, Joseph Andriano, Instructors Gasper Sekelj

Engineering & Management
Professor Amy Zander; Assistant Professor Muhammad Usman Ahmed, H. Cecilia Martinez Leon, Seyedamirabbas Mousavian, R. John Milne, Marshall Issen

Operations and Information Systems
Professors Boris Jukic, Farzad Mahmoodi; Associate Professors Weiling Ke, Santosh Mahapatra, Somendra Pant, Dennis Yu; Assistant Professors William MacKinnon, Chester Xiang; Instructors Jesse Sherman
WALLACE H. COULTER SCHOOL OF ENGINEERING

“Technology Serving Humanity”

William Jemison, Dean of the Wallace H. Coulter School of Engineering

In our modern technological society, engineers and scientists must work together with a variety of other professionals in seeking solutions to complex problems. Revolutionary advances in applied science and technology have broadened the horizons of engineering. At the same time, these advances have created a multitude of challenging multidisciplinary problems in virtually every sphere of human activity.

The role of engineers in today’s society has become more and more critical. Engineers require not only a knowledge of fundamentals for finding solutions to problems, but they must be aware of the broad social, economic, political, and environmental implications of their ventures. The engineering programs at Clarkson are designed to provide students with a foundation in science, engineering, humanities, and management. Our goal is to make sure Clarkson graduates are highly competent in their chosen fields while at the same time they are alert on their responsibilities to society and truly practice “technology serving humanity.”

Clarkson’s School of Engineering has been named the Wallace H. Coulter School of Engineering in recognition of the Foundation’s generous gift and the late Wallace Coulter’s dedication to the University as a trustee. Wallace H. Coulter was a renowned inventor and entrepreneur. He became acquainted with Clarkson through his collaboration with colloid scientists on the faculty. In 1979 he received an honorary doctorate, and he served as a trustee of the University from 1983 to 1989. Through the years he maintained close connections with Clarkson, supporting research projects and establishing an endowed scholarship.

The grant funds five key areas: team project-based learning activities; endowed chairs and endowed fellowships; a new program in rehabilitation engineering; upgrades of laboratory facilities; and scholarships for both minority students and women pursing a degree in engineering. Growth in these evolving areas will complement and reinforce the programs and curricula described in this catalog.

The Coulter School of Engineering comprises the Departments of Chemical and Biomolecular, Civil and Environmental, Electrical and Computer, and Mechanical and Aeronautical Engineering.

Graduate Programs in Engineering

The Coulter School of Engineering offers Master of Science, Master of Engineering, and Doctor of Philosophy degrees in each department. There is also an interdisciplinary Engineering Science graduate program managed by the dean of the School of Engineering.

Faculty and students also participate in the interdisciplinary Data Analytics, Environmental Science and Engineering, and Materials Science and Engineering graduate programs. More
information can be found in the section for Institute for a Sustainable Environment and the Interdisciplinary Program sections of the catalog.

The graduate programs are designed to prepare students for careers in research, development, design, and education. Admission to graduate study will be granted to qualified applicants who hold a baccalaureate degree in engineering from an accredited institution or who have equivalent qualifications.

Programs Length in School of Engineering
 - PhD program students complete up to seven years after they pass the qualifying exam
 - MS students complete within five years
 - ME students complete within one year

Civil and Environmental Engineering (CEE) Programs
Graduate education in civil and environmental engineering concentrates in the following specialties:

- Environmental Engineering
- Geotechnical Engineering
- Structural and Materials Engineering
- Water Resources Engineering
- Construction Engineering Management (special interdisciplinary advising track)

Environmental Faculty
Professors Andrea Ferro, Stefan Grimberg, Thomas Holsen, Susan Powers; Associate Professor Shane Rogers

Geotechnical Faculty
Professor Kerop Janoyan; Assistant Professor Khiem Tran

Structures Faculty
Professors John Dempsey, Levon Minnetyan; Associate Professors Narutoshi Nakata, Sulapha Peethaparan, Steven Wojtkiewicz

Water Resources Faculty
Professors Weiming Wu, Poojitha Yapa, Assistant Professors Ian Knack, Tyler Smith

Requirements for the Master of Engineering Degree in Civil and Environmental Engineering

Prerequisites
BS, BE, or equivalent degree from an accredited program in Civil and Environmental Engineering or other engineering discipline is required. Applicants with degrees in disciplines other than
engineering may be required to demonstrate proficiency through additional undergraduate coursework as determined by the departmental Graduate Committee. This may comprise an additional semester of study for which graduate credit cannot be granted.

No minimum grade point average is required for admission; however, a superior record of academic achievement is expected of all applicants.

Program Degree Requirements

1. The following are minimum requirements:
 - 30 credit hours
 - 18 credit hours of graduate coursework at least 12 credits of these within engineering
 - 1 credit hour of project work
 - 2 credit hours of seminar
 - 2 semesters in residence
 - One-half of the total course credits at graduation must have a CE prefix.

2. An average of B or better for all graduate coursework applied toward the ME degree is required for graduation.

3. A maximum of 10 credit hours of transfer graduate credit may be awarded.

4. Pass a group of core courses in one of the following professional concentrations comprising a minimum of 15 credit hours: Environmental, Geotechnical, Structural, Water Resources or the new CEM program.

Projects must be completed and approved by the student’s advisor and Department Chair by filling out a completion memo. To receive a diploma at the May commencement, final degree completion paperwork must be submitted to the Coulter School of Engineering office no later than 10 working days before commencement.

For projects completed at the beginning of a new semester, the final approval of the project and completion forms must be received in the Graduate School no later than the second week of classes (last day to register) or the student must register and pay tuition for one credit hour of thesis.

Core Courses in Professional Concentrations

Professional concentrations require a minimum of 15 credit hours of relevant coursework. The following core courses are required for each of the 5 professional concentrations. Additional relevant courses may be necessary to complete 15 credit hours:

1. Environmental Engineering

Water and Wastewater Engineering: Satisfied by an appropriate course as an undergraduate
OR CE579
CE580 Environmental Chemistry
CE584 Chemodynamics
CE582 Environmental Systems OR CE586 Industrial Ecology

And one of the following:

CE681 Environmental Physico-Chemical Processes
CE682 Environmental Biological Processes
ES534 Air Pollution Control

2. Geotechnical Engineering

Choose three from the following list:

CE512/ME555 Introduction to Structural and Soil Dynamics
CE513 Elastic Waves and Non-Destructive Tests
CE516 Advanced Soil Mechanics
CE519 Advanced Foundation Design
CE527/ME527 Advanced Fluid Mechanics
CE538 Introduction to the Finite Element Method
CE551 Theory of Elasticity
CE554 Continuum Mechanics
ME531 Computational Fluid Dynamics

3. Structural and Materials Engineering

CE549 Experimental Methods in Structures
CE554 Continuum Mechanics

And choose two from the following list:

CE501 Fracture Mechanics of Concrete Structures
CE512 Introduction to Structural and Soil Dynamics
CE520 Computational Methods of Structural Analysis
CE521 Analysis of Advanced Composite Structures
CE538 Introduction to Finite Element Method
CE551 Theory of Elasticity
CE553 Properties and Performance of Concrete Materials
CE631 Cement Chemistry
CE633 Plasticity

4. Water Resource Engineering
Choose two from the following list:

CE527/ME527 Advanced Fluid Mechanics
CE554 Continuum Mechanics
CE569 Watershed Analysis
CE570 Stream Riparian System and Fluvial Morphology
CE571 Computational River Dynamics
CE572 Shallow Water Hydrodynamics
CE573 Sediment Transport
CE574 Hydrodynamic Dispersion
CE575 Coastal Engineering
CE576 Hydraulic Engineering in Cold Regions
ME531 Computational Fluid Dynamics

Construction Engineering Management (CEM):

Erik Backus, Director of CEM

The Masters of Engineering (ME) degree in Civil and Environmental Engineering with a concentration in Construction Engineering Management (CEM) is available for students that have a BS in Civil Engineering or from another engineering discipline. The degree requirements are;

1. Total of 30 graduate credits
2. Three Core CEM Courses (9 credits)
3. Three Civil and Environmental Engineering (CEE) courses taken from our elective list (9 credits)
4. Three Business Management Courses (9 credits)
5. ME Project (3 credits)

The CEM track is designed for flexibility giving students the opportunity to choose courses that meet their needs and schedule. The CEM Program advisor is the Director of CEM (Erik Backus). The CEM project advisor will be selected through mutual agreement between the Director of CEM, the student, and project advisor. At the completion of the project work, the student will prepare a formal report and submit it to the project advisor. When the report is approved by the advisor, the project credits will be formally granted. Project credits can be taken in the summer.

Required Core CEM Courses (9 credits)

- CE 506 Advanced Construction Engineering (even Fall semesters)
- CE 510 Sustainable Infrastructure and Building (all Fall semesters)
- CE 591 Special Topics in Construction Engineering Management (all Spring semesters)
CEE Electives (9 credits): three are required, taken from the following list:
- CE 512 Intro to Structural and Soil Dynamics (on demand)
- CE 513 Elastic Waves and Non-Destructive Testing (even Fall semesters)
- CE 515 Foundations, Stability, and Retaining Structures (all Fall semesters)
- CE 516 Advanced Soil Mechanics (odd Fall semesters)
- CE 519 Advanced Foundation Design (odd Spring semesters)
- CE 520 Computational Methods of Structural Analysis (all Spring semesters)
- CE 521 Analysis of Advanced Composite Structures (on demand)
- CE 538 Introduction to Finite Element Method (all Fall semesters)
- CE 549 Experimental Methods in Structures (all Spring semesters)
- CE 553 Properties and Performance of Concrete Materials (all Spring semesters)
- CE 555 Structural Damage: Assessment, Repair, and Strengthening (odd Spring semesters)
- CE 622 Geo-Structural Design (even Spring semesters)
- CE 631 Cement Chemistry (even Spring semesters)

Three Business Management Courses (9 credits)
Take three courses based on student's interests and approval of the Director of CEM. They are selected from the MBA program that offers courses in the areas of Economics, Ethics, Supply Chain Management, Accounting, Finance, Decision Analysis, Information Systems, and Marketing.

Full-time students can complete the degree in one year. Part-time students can take two courses each term or choose the pace that fits their schedule. Students have the option to customize their degree with courses on-line, on-site, or both through our hybrid degree program. Through these options, students who wish to do so are able to complete the MS degree in CEM in two years. A typical program of study could involve students taking two courses per semester in both fall and spring semesters of each year, and a summer business course. Students planning to complete their studies in three years could, for example, take one engineering course each fall and spring semester, a business course one semester and in each of two summers, and complete a three credit hour project during their final year of study.

Requirements for the MS Degree in Civil and Environmental Engineering Program

Prerequisites
BS, BE, or equivalent degree from an accredited program in Civil and Environmental Engineering or other engineering discipline is required. Applicants with degrees in disciplines other than engineering may be required to demonstrate proficiency through additional undergraduate coursework as determined by the departmental Graduate Committee. This may comprise an additional semester of study for which graduate credit cannot be granted.

No minimum grade point average is required for admission; however, a superior record of academic achievement is expected of all applicants.
Degree Requirements

1. The following are minimum requirements:
 - 30 credit hours with all coursework approved at the graduate level
 - 6 credit hours of thesis
 - 18 credit hours of coursework
 - 2 credit hours of seminar work
 - 20 of the 30 credit hour minimum must be earned in residence
 - 1 academic year of full time study beyond the BS
 - Maximum of 10 credit hours transfer credit (grade of B or better)
 - All students must complete a thesis and defend it orally to a committee consisting of a minimum of three faculty members.

In consultation with your advisor, students should consider taking ES 542 (Fundamentals of Research and Graduate Study), when offered by the University.

2. Pass a group of core courses in one of the following professional concentrations comprising a minimum of 15 credit hours: Environmental, Geotechnical, Structural, and Water Resources Engineering.

Core Courses in Professional Concentrations

Professional concentrations require a minimum of 15 credit hours of relevant coursework. The following core courses are required for each of the professional concentrations. Additional relevant courses may be necessary to complete 15 credit hours:

1. Environmental Engineering

Water and Wastewater Engineering: Satisfied by an appropriate course as an Undergraduate OR CE579
CE580 Environmental Chemistry
CE584 Chemodynamics
CE582 Environmental Systems OR CE586 Industrial Ecology

And one of the following:

CE681 Environmental Physico-Chemical Processes
CE682 Environmental Biological Processes
ES 534 Air Pollution Control
A course in applied statistics strongly recommended

2. Geotechnical Engineering

Choose four from the following list:
CE512/ME555 Introduction to Structural and Soil Dynamics
CE513 Elastic Waves and Non-Destructive Tests
CE516 Advanced Soil Mechanics
CE519 Advanced Foundation Design
CE527/ME527 Advanced Fluid Mechanics
CE538 Introduction to the Finite Element Method
CE551 Theory of Elasticity
CE554 Continuum Mechanics
ME531 Computational Fluid Dynamics

3. Structural and Materials Engineering

CE549 Experimental Methods in Structures
CE554 Continuum Mechanics

And choose two from the following list:

CE501 Fracture Mechanics of Concrete Structures
CE512 Introduction to Structural and Soil Dynamics
CE520 Computational Methods of Structural Analysis
CE521 Analysis of Advanced Composite Structures
CE538 Introduction to Finite Element Method
CE551 Theory of Elasticity
CE553 Properties and Performance of Concrete Materials
CE631 Cement Chemistry
CE633 Plasticity

4. Water Resource Engineering

Choose four from the following list:

CE527/ME527 Advanced Fluid Mechanics
CE554 Continuum Mechanics
CE569 Watershed Analysis
CE570 Stream Riparian System and Fluvial Morphology
CE571 Computational River Dynamics
CE572 Shallow Water Hydrodynamics
CE573 Sediment Transport
CE574 Hydrodynamic Dispersion
CE575 Coastal Engineering
CE576 Hydraulic Engineering in Cold Regions
ME531 Computational Fluid Dynamics
Requirements For the PhD Degree in Civil and Environmental Engineering

Prerequisites
A MS degree from a program in Civil and Environmental Engineering or other engineering discipline is required for admission. Applicants with degrees in disciplines other than engineering may be required to demonstrate proficiency through additional undergraduate coursework as determined by the departmental Graduate Committee. This may comprise an additional semester of study for which graduate credit cannot be granted.

No minimum grade point average is required for admission; however, a superior record of academic achievement is expected of all applicants.

Degree Requirements
1. The following are minimum requirements:
 - 90 credit hours beyond the BS
 - 39 credit hours of coursework
 - 15 credit hours in the major field
 - 9 credit hours in the minor field
 - 6 credit hours from a department other than the one in which the student is housed (courses double listed in CE and another department do not count in these 6 credit hours)
 - Six credit hours of seminar

 In consultation with your advisor, students should consider taking ES 542 (Fundamentals of Research and Graduate Study), when offered by the University.

2. A maximum of 30 credit hours transfer credit (grade of B or better).

3. All work to be completed within seven years after the candidacy procedure is completed.

4. Pass a group of core courses in one of the following professional concentrations comprising a minimum of 15 credit hours: Environmental, Geotechnical, Structural, and Water Resources Engineering.

Core Courses in Professional Concentrations
Professional concentrations require a minimum of 15 credit hours of relevant coursework. The following core courses are required for each of the professional concentrations. Additional relevant courses may be necessary to complete 15 credit hours:

1. Environmental Engineering

Water and Wastewater Engineering: Satisfied by an appropriate course as an undergraduate OR CE579
CE580 Environmental Chemistry
CE584 Chemodynamics
CE582 Environmental Systems OR CE586 Industrial Ecology

And one of the following:

CE681 Environmental Physico-Chemical Processes
CE682 Environmental Biological Processes
ES534 Air Pollution Control

A course in applied statistics strongly recommended.

2. Geotechnical Engineering

Choose four from the following list:

CE512/ME555 Introduction to Structural and Soil Dynamics
CE513 Elastic Waves and Non-Destructive Tests
CE516 Advanced Soil Mechanics
CE519 Advanced Foundation Design
CE527/ME527 Advanced Fluid Mechanics
CE538 Introduction to the Finite Element Method
CE551 Theory of Elasticity
CE554 Continuum Mechanics
ME531 Computational Fluid Dynamics

3. Structural and Materials Engineering

CE549 Experimental Methods in Structures
CE554 Continuum Mechanics

And choose three from the following list:

CE501 Fracture Mechanics of Concrete Structures
CE512 Introduction to Structural and Soil Dynamics
CE520 Computational Methods of Structural Analysis
CE521 Analysis of Advanced Composite Structures
CE538 Introduction to Finite Element Method
CE551 Theory of Elasticity
CE553 Properties and Performance of Concrete Materials
CE631 Cement Chemistry
CE633 Plasticity

4. Water Resources Engineering
Choose four from the following list:

CE527/ME527 Advanced Fluid Mechanics
CE554 Continuum Mechanics
CE569 Watershed Analysis
CE570 Stream Riparian System and Fluvial Morphology
CE571 Computational River Dynamics
CE572 Shallow Water Hydrodynamics
CE573 Sediment Transport
CE574 Hydrodynamic Dispersion
CE575 Coastal Engineering
CE576 Hydraulic Engineering in Cold Regions
ME531 Computational Fluid Dynamics

Advisory Committee, Preliminary Exam, Research Proposal, and Dissertation Defense

Additional requirements in CEE for PhD students follow.

1. **PhD Advisory Committee:**
 The Research Advisor recommends the membership of the PhD Advisory Committee to the Department Chair and the Dean of Engineering for their approval. The committee must be appointed prior to the preliminary examination. The Advisory Committee and the Research Advisor will approve the courses required to satisfy the students’ minor. This committee must consist of five members qualified to sit on such a committee, at least one of which must be from outside the candidate’s department. Normally, the Research Advisor will not act as Chair of the committee. The purpose of the committee is to provide guidance to the student for the course work and research.

2. **Preliminary Exam:**
 A preliminary examination must be taken within **eighteen months** after entry into the PhD program, as determined by the initial date of matriculation or, for the case of a Master’s student continuing for the PhD, the date of acceptance to the PhD program by the Graduate Committee. This examination will have a written portion consisting of a one-week take-home exam with access to research materials, and an oral portion to be administered by the Advisory Committee within one month after the conclusion of the written exam. In the event of failure of the written exam, the Advisory Committee may, at its discretion, elect not to administer the oral portion. The outcome of the exam is determined by a vote of the committee, with no more than one dissenting vote permitted for passage. Failure to pass the preliminary examination twice is grounds for dismissal from the program.

3. **Research Proposal Defense Presentation:**
 Within **six months** after the successful completion of the preliminary examination or **24 months** from matriculation, the PhD student must submit and orally present and defend a research
proposal to the PhD Advisory Committee. This presentation may be administered simultaneously with the oral portion of the preliminary examination. Upon successful completion of the Engineering PhD Candidacy Exam, (Appendix [form K]) the student is admitted to **Candidacy** for the PhD degree.

The research proposal must:

a) Identify a problem that is worthy of investigation,

b) Provide background materials that demonstrate an understanding of the fundamentals related to the problem,

c) Provide background materials that identify the current state-of-the-art in terms of understanding the problem and clearly identify current gaps or limitations in the research work already completed by others,

d) Establish and justify the goals and objectives,

e) Present any preliminary work to provide confidence that the problem is important and that the research is realistic,

f) Lay out a plan for the research investigation

 i) Experimental materials and methods, equipment used, design of an experimental matrix, quality control, plan for data analysis and interpretation; or

 ii) General mathematical tools used, model development procedure, approach to test or verify model, application of the model, analysis and interpretation of results.

 iii) Proposed timeline and major deliverables or milestones such as technical publications, draft copy of portions of the thesis, etc.,

g) Summarize the expected outcomes of the research work and their contribution to the current state of the art.

Chemical and Biomolecular Graduate Programs

Graduate education in Chemical and Biomolecular (ChBE) concentrates in the following specialties:

Oil and Gas Industry
- Pharmaceutical
- Environmental
- Materials
- Nanotechnology
- ElectroChemical Engineering
- Corrosion

ChBE Faculty
Professors S.V Babu, Ruth E. Baltus, David Mitlin, Ross Taylor, John MNcLaughlin; *Associate Professors* Sitaraman Krishnan, Richard J. McCluskey, Selma Mededovic Thagard; *Assistant Professors* Yuncheng Du, Shunsuke Nakao, Eunsu Paek, Zijie Yan
Requirements for the Master of Science (MS) Degree in Chemical Engineering

Prerequisites
BS or BE in chemical engineering. Those with degrees in other science or engineering disciplines may also be admitted, but will be required to make up undergraduate course deficiencies.

Prerequisite courses
CH210, CH220, CH260, CH320, CH330, CH350, CH360, CH370, CH410, CH420, CH460

Program Length
Two calendar years (24 months) for those with a BS or BE in chemical engineering

Degree Requirements
1. The following are required courses:
 - CH546 Chemical Reactor Analysis II
 - CH560 Transport Phenomena
 - CH561 Chemical Engineering Analysis
 - CH571 Advanced Chemical Engineering Thermodynamics

2. Two additional three-credit hour technical graduate courses selected in consultation with the student’s advisor. School of Business courses cannot be taken to satisfy this requirement.

3. Two credit hours of CH610 (Seminar). (While in residence, all students are required to attend seminar, whether they are registered for CH610 or not.)

4. Ten credit hours of CH611 Thesis. All students are expected to start their thesis research at the beginning of their first semester in residence.

5. The MS thesis must be orally presented and defended before a committee of three or more faculty members, at least two of whom are from the Department.

The one-credit course, ES542 Fundamentals of Research and Graduate Study, is highly recommended. This course may be used as a substitute for one credit of CH611 thesis.

A typical schedule follows. Individuals with an undergraduate degree in chemistry or physics have a different schedule - refer to “Requirements for the MS degree in Chemical Engineering for BS Chemists and Physicists” on the next page.

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 three-credit courses</td>
<td>3 three-credit courses</td>
</tr>
<tr>
<td>5 credits of thesis</td>
<td>5 credits of thesis</td>
</tr>
</tbody>
</table>
The Master of Science is a thesis-based degree; each student is required to complete and defend a research-based thesis.

Requirements for the (MS) Degree For BS Chemists and Physicists

A program is available for qualified BS chemists and physicists that will permit them to earn an MS in Chemical Engineering in four semesters. During the course of study, the student will take almost all the required courses in the chemical engineering undergraduate curriculum, as well as the chemical engineering graduate level courses required for the MS program.

A typical program, which may be altered depending on the background of the student, is illustrated below:

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courses</td>
<td>Courses</td>
</tr>
<tr>
<td>CH501 Directed Study in Chemical Engineering Principles I (CH220, CH320, CH330)</td>
<td>CH502 Directed Study in Chemical Engineering Principles II (CH260, CH360, CH370)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CH561 Chemical Engineering Analysis</td>
<td>CH571 Advanced Chemical Engineering Thermodynamics</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Graduate Elective</td>
<td>Graduate Elective</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CH610 Seminar</td>
<td>CH610 Seminar</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Semester</th>
<th>Fourth Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courses</td>
<td>Courses</td>
</tr>
<tr>
<td>CH560 Transport Phenomena</td>
<td>CH546 Chemical Reactor Analysis II</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CH611 Thesis</td>
<td>CH611 Thesis</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
</tr>
</tbody>
</table>

Requirements for the (ME) Degree in Chemical Engineering

Prerequisites
BS or BE in chemical engineering. Those with degrees in other science or engineering disciplines may also be admitted, but will be required to make up undergraduate course deficiencies.

Prerequisite courses
CH210, CH220, CH260, CH320, CH330, CH350, CH360, CH370, CH410, CH420, CH460

Program Length
One calendar year (12 months) for those with a BS or BE in chemical engineering.

Degree Requirements
1. Two graduate courses (6 credits) in chemical engineering fundamentals, to be selected from:
 - CH546 Chemical Reactor Analysis II
 - CH560 Transport Phenomena
 - CH561 Chemical Engineering Analysis
 - CH571 Advanced Chemical Engineering Thermodynamics
 - CH586 Advanced Process Control
 - CH590 Transport Phenomena

2. Two graduate courses (6 credits) in chemical engineering applications, to be selected from a list available from the Department of Chemical and Biomolecular Engineering.

3. One graduate technical elective (3 credits) in engineering, mathematics or science (500 or 600 level in BY, CE, CH, CM, CS, EE, ES, IH, MA, ME, MP, PH, PY, SU).

4. An additional 4 restricted graduates electives (3 credits) in business, engineering, mathematics, science or communication and media.

5. Two credits of CH610 Chemical Engineering Seminar.

6. Four credits of CH611 Master of Engineering Project. A design project carried out under the direction of a chemical engineering faculty member, requiring the completion of a written report.

A. **Typical program for student entering with BS in Chemical Engineering**

<table>
<thead>
<tr>
<th>Fall semester:</th>
<th>One ChE fundamentals course</th>
<th>3 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>One ChE applications course</td>
<td>3 credits</td>
</tr>
<tr>
<td></td>
<td>One restricted course</td>
<td>3 credits</td>
</tr>
<tr>
<td></td>
<td>One technical elective</td>
<td>3 credits</td>
</tr>
<tr>
<td></td>
<td>ChE seminar</td>
<td>1 credit</td>
</tr>
<tr>
<td></td>
<td>MEng project</td>
<td>2 credits</td>
</tr>
</tbody>
</table>
Spring semester:
- One ChE fundamentals course: 3 credits
- One ChE applications course: 3 credits
- Two restricted elective: 6 credits
- ChE Seminar: 1 credit
- MEng project: 2 credits
- Total: 15 credits

Summer:
- Complete MEng project: 0 credits

B. Typical program for student entering with BS in Chemistry or Physics

Fall semester:
- CH501 Directed Study in ChE Pri. I: 1 credit
- Two graduate business courses: 6 credits
- One graduate technical course: 3 credits
- Total: 10 credits

Spring semester:
- CH502 Directed Study in ChE Pri. II: 1 credit
- One ChE fundamentals course: 3 credits
- One ChE applications course: 3 credits
- ChE Seminar: 1 credit
- MEng project: 2 credits
- Total: 10 credits

Summer:
- Work on MEng project: 2 credits

Fall semester:
- One ChE fundamentals course: 3 credits
- One ChE applications course: 3 credits
- ChE Seminar: 1 credit
- MEng project: 2 credits
- Total: 10 credits

C. Graduate Courses in Chemical Engineering Applications Acceptable for the Master of Engineering Degree in Chemical Engineering

All of the following are 3 credits. Not all of them are offered every year.

- CH509 Receptor Modeling in Environmental Chemistry
- CH515 Polymer Materials
- CH547 Advanced Hydrocarbon Thermodynamics
- CH551 Multicomponent Mass Transfer
- CH576 Atmospheric Chemistry
- CH612 Directed Study
CH662-670 Special Topics

CE521 Advanced Mechanics of Composite Materials
CE525 Mechanical Design of Materials
CE526 Advanced Cellular and Composite Materials
CE531 Environmental Modelling
CE579 Water and Wastewater Treatment Design
CE580 Environmental Chemistry
CE581 Hazardous Waste Management Engineering
CE582 Environmental Systems Analysis and Design
CE584 Chemodynamics
CE586 Industrial Ecology

CM513 Carbon Capture and Sequestration
CM530 Colloids and Interfaces
CM532 Fine Particle Characterization
CM535 Better Materials through Chemistry
CM551 Manufacturing Implications of Advanced Materials Processing
CM563 Protein Chemistry and Proteomics
CM566 Bioelectronics and Bionanotechnology
CM571 Fundamental Chemical Kinetics
CM583 Introduction to Polymer Science
CM585 Nanostructured Materials

ES534 Air Pollution Control
ES552 Biomaterials and Biomedical Applications
ES564 Corrosion of Metals
ES575 Sustainable Nanotechnology

MA550 Nonlinear Partial Differential Equations
MA571 Numerical Solution of Differential Equations
MA573 Matrix Theory and Computations
MA578 Numerical Analysis
MA581 Probability

ME506 Mechanical Behavior of Materials
ME508 Fracture Mechanics
ME515 Finite Element Methods
ME529 Stochastic Processes in Engineering
ME531 Computational Fluid Dynamics
ME537 Fluid Mechanics of Aerosol Dispersion
ME543 Advanced Optimal Design
ME544 Advanced Computer Aided Design
ME551 Theory of Elasticity
ME554 Continuum Mechanics
ME557 Advanced Mechanics of Composite Materials
ME565 Combustion Fundamentals
ME568 Thermal Energy Processes
ME574 Computational Fluid Dynamics
ME575 Nuclear Engineering & Technology
ME581 Fuel Cell Science and Hydrogen Engineering
ME582 Photovoltaic Engineering
ME595 Principles of Physical Metallurgy

MSE551 Advanced Materials Characterization
MSE560 Advanced Materials Science and Engineering I

PHD Degree in Chemical Engineering

Prerequisites
BS (or BE) or MS (or ME) in chemical engineering, materials science, chemistry, or other areas.

Prerequisite courses
CH210, CH220, CH260, CH320, CH330, CH350, CH360, CH370, CH410, CH420, CH460

Program Length
Five calendar years (60 months) for those with a BS (or BE) or MS (or ME) in chemical engineering, materials science, chemistry, or other areas.

Degree Requirements
The following requirements apply exclusively to chemical engineering PhD students.
1. The student must take the four courses required for the MS degree program or their equivalent.
 - CH546 Chemical Reactor Analysis II
 - CH560 Transport Phenomena
 - CH561 Chemical Engineering Analysis
 - CH571 Advanced Chemical Engineering Thermodynamics

2. Students entering the PhD program should register for a minimum of 10 credit hours each semester until they satisfy the 90 credit hour requirement.

3. The student must take a minimum of 15 credit hours in the major field, a minimum of 9 credit hours in the minor field, and a minimum of 6 credit hours taken from a department other than Chemical Engineering.

4. The student must take a qualifying examination and adhere to the guidelines described in the section “PhD Qualifying Examination and Research Proposal Review.”
5. The student must take the PhD qualifying examination no later than 12 months after completing the MS requirements. Students given direct entry into the PhD program must take the qualifying exam no later than 12 months after being invited into the PhD program. Students entering with a MS degree must take the qualifying exam no later than 12 months from the time when they enter the graduate program.

6. Course work (minimum) = 30 credit hours (this is equivalent to 4 three-credit courses beyond MS). School of Business courses cannot be taken to satisfy this requirement.
 Seminar = 6 credit hours
 Thesis = 54 credit hours

7. While in residence, all students are required to attend all seminars.

Direct Entry into PhD Program
First year graduate students whose past academic and first semester records at Clarkson indicate outstanding research potential will be invited to enter directly into the PhD program. The thesis required in the regular MS program will be bypassed.

The department will decide which students will be invited into this program at the beginning of the second semester of the student’s residence on campus. The MS degree is awarded to the student upon completion of 40 credit hours and after passing the PhD qualifying examination.

A. Financial assistance
 Financial support for students enrolled in the PhD program is usually in the form of research assistantships, and not teaching assistantships. Continuation of support is based on academic standing and research accomplishments, and may be terminated after written notification by the Graduate Committee for lack of acceptable progress in either area. Support will continue for no more than five years beyond the BS or three years beyond the MS, whichever is longer. Requests for continued support must be made in writing to the Graduate Committee.

B. PhD qualifying examination and research proposal review
 Within twelve months following completion of requirements for the Master of Science degree or arrival at Clarkson (whichever is later), the student must complete a “Doctoral Research Proposal” and submit this proposal to the Examining Committee. For students with a BS degree who, because of demonstrated exceptional abilities, are permitted to seek direct entry into the PhD program, the proposal must be completed within twelve months of entry into the PhD program. The student must meet with the Examining Committee as early as possible after being admitted to the PhD program to discuss plans for the Research Proposal. No earlier than one full week subsequent to submission of the Research Proposal, the committee members and the student will meet to conduct a
PhD qualifying examination. The student will formally present the contents of the proposal to the committee in the form of a seminar of approximately 30 to 45 minutes duration. The presentation will be followed by an oral defense of the proposed research and related topics.

The purpose of the preliminary meetings, presentation, and the defense is three-fold:

1. To determine whether or not the student is capable of and qualified for the PhD program.
2. To acquaint the members of the Committee with the subject of the student’s research and to elicit their suggestions on and criticisms of the proposed approach.
3. To insure that adequate progress is being made throughout the twelve month period toward defining a PhD research program.

Each of these items requires the student to have a comprehensive understanding of the PhD project.

A student who violates the twelve-month time limit will not be allowed to register for additional thesis credits during subsequent semesters until the qualifying examination is passed. The student must, however, maintain full-time status. Additionally, financial aid will not be renewed beyond the initial twelve month period unless the student has passed the examination.

The Examining Committee, which will also serve as the student’s Doctoral Committee, will consist of a minimum of five members, including the student’s thesis advisor and at least one faculty member from a department other than Chemical and Biomolecular Engineering. At least four of the committee members must be on the Clarkson faculty. One or more external examiners, holding the PhD degree, may also serve on the Committee. The thesis advisor will recommend the names of prospective committee members to the Graduate Committee. The Graduate Committee, with the approval of the Graduate School, will appoint the Examining Committee. While the thesis advisor will serve as the Chair of the Doctoral Committee, the advisor will not be the Chair of the Examining Committee. Hence, the advisor should also recommend a Chair to the Graduate Committee.

The research proposal itself should represent roughly six months effort in defining a problem, reading pertinent literature, specifying plans for theoretical and/or experimental work and writing the report. At least seven typed copies of the proposal should be prepared, one for each member of the Examining Committee, the Department, and the student. A Master’s Thesis does not constitute a Doctoral Research Proposal, for which a suggested outline in attached. In particular, the proposal should stress the definition, importance and uniqueness of the problem.

The Chair of the Examining Committee will be responsible for conducting the meeting and for reporting to the Graduate Committee the Examining Committee’s
recommendation on the entrance of the student into the PhD program. The day following the examination, the Chair will receive from each person on the Committee her/his written vote on the student. The vote will be one of the following:

1. Pass. The student is clearly PhD caliber.
2. Fail. The student is clearly not PhD caliber.

The Chair of the Examining Committee will collect and summarize the vote for the other members of the Committee. The summary will be forwarded by the Chair to the Graduate Committee within two days. The Chair of the Graduate Committee will inform the student, in writing, of the decision of the Examining Committee. The student may retake the exam within one month if the final vote is “Fail”.

If, subsequent to the qualifying examination and during the course of the doctoral research, the student or thesis advisor decides that a significant change in the direction of the research project is warranted, the student’s Doctoral Committee should be so informed. A re-examination of the student will not be involved. In any event, it is recommended that annual meetings be held with the Doctoral Committee to review the student’s progress and to agree on work remaining to be completed.

C. Suggested outline for doctoral research proposal

Title Page
Table of Contents
Introduction
 Statement of the problem
 Importance of the problem
 Specific objectives of the project*

Previous Work Related to the Problem
Proposed Research
 Theoretical
 Experimental#
 Data analysis and interpretation

Literature Cited
Nomenclature
Appendices
 A. Proposed time-table for the project
 B. Equipment needed and estimated costs
 C. Anticipated waste-disposal and safety issues
* This section is extremely important. Some clear statement of the objective shall be included in each proposal. It should be noted that the objectives of the research are the goals of the work, in most cases a statement of what will be learned in the study. This is quite different from the approach, which shall be discussed at length in the “Proposed Research” section. The approach describes how the goals will be met.

Some examples of objectives might be:
- To determine the effect of Marangoni convection on mixing of molten glasses.
- To predict the extent of mechanical degradation of polymers.

The approach might be:
- To solve a set of coupled, nonlinear partial differential equations describing...
- To perform experiments on....

It is not essential to include data from preliminary experiments in the proposal.

Seminars given by graduate students will be organized according to the following rules.

1. Departmental seminars will continue to be held on Tuesdays, but graduate student seminars will be organized on Thursdays. Each summer, the Graduate Committee Chair will appoint a seminar committee of three senior doctoral students to organize the graduate student seminar series for the academic year, under the guidance of the faculty member assigned to organize the departmental seminars.

2. Two graduate students will present talks on each Thursday during the seminar period, which lasts approximately 45 minutes. While faculty members will not routinely attend graduate student seminars, graduate students are encouraged to invite selected faculty members, such as those on their thesis committee, to their talk. The introduction of the speakers and moderation of the talks will be arranged by the seminar committee members.

3. Each doctoral student is required to give one seminar as part of the graduate student seminar series every academic year, with the exception of the final year in which the student expects to complete and defend the doctoral thesis. In that year, the doctoral student will, instead, present a full length departmental seminar organized by the faculty member in charge of departmental seminars.

4. Each Master’s student is required to present one seminar, typically during the third semester in residence, as part of the graduate student seminar series.

5. Graduate students are required to attend all seminars, and are expected to participate actively in the discussion.

Electrical and Computer Engineering (ECE) Programs
The Electrical and Computer Engineering department offers programs of study leading to the degree of Master of Engineering (ME), Master of Science (MS) in electrical engineering on the Potsdam campus as well as an electrical engineering Master of Engineering (ME) and Master of
Science (MS) through the capital region campus, and the Doctor of Philosophy (PhD) in electrical and computer engineering. Clarkson University also offers an off-campus PhD option designed to assist qualified non-resident candidates to matriculate at Clarkson University as doctoral degree candidates. Recent students who have opted for the off-campus PhD program work for companies including IBM, Lockheed Martin and the Air Force Research Laboratory.

- Power
- Communications and Signal Processing
- Electronics
- Computer Hardware
- Computer Software
- Biomedical Engineering
- Biometrics

ECE FACULTY
Professors Thomas Ormeyer, Paul McGrath, William Jemison, Stephanie Schuckers, Charles Robinson, David Crouse, Ming-Cheng Cheng; *Associate Professors* Lei Wu, Jack Koplowitz, Abdul Khondker, Daqing Hou, James Carroll; *Assistant Professors* Jie Li, Chen Liu, Mahesh Banavar, Sanjiv Banjeree

Requirements For the Master of Engineering (ME) Degree in Electrical Engineering

Prerequisites
BS, BE, or equivalent degree from an accredited program in Electrical, Computer and Software Engineering or other engineering discipline is required. Applicants with degrees in disciplines other than engineering may be required to demonstrate proficiency through additional undergraduate coursework as determined by the departmental Graduate Committee. This may comprise an additional semester of study for which graduate credit cannot be granted.

No minimum grade point average is required for admission; however, a superior record of academic achievement is expected of all applicants.

Degree Requirements

1. The following are minimum requirements:
 - 30 credit hours
 - 21 credit hours of graduate coursework (500-600 level courses)
 - A major or portion (at least 12 credits) of the course work will be in the ECE department
 - 1 credit hour of project work
 - 2 credit hours of seminar
 - 2 semesters in residence
All work must be completed in 5 calendar years

2. An average of B or better for all graduate coursework applied toward the ME degree is required for graduation.

3. A maximum of 10 credit hours of transfer graduate credit may be awarded.

4. The student must prepare a written report documenting his/her project work. This report must be approved by the student’s advisor, and submitted to the ECE Department as part of the graduation requirements. The advisor’s approval certifies that the project work has been completed successfully as appropriate for the number of project credits in the student’s program of study.

For projects completed at the beginning of a new semester, the final approval of the project and completion forms must be received in the Graduate School no later than the second week of classes (last day to register) or the student must register and pay tuition for one credit hour of thesis.

Requirements for the Master of Science (MS) Degree in Electrical Engineering (Potsdam Campus)

Prerequisites
BS, BE, or equivalent degree from an accredited program in Electrical, Computer and Software Engineering or other engineering discipline is required. Applicants with degrees in disciplines other than engineering may be required to demonstrate proficiency through additional undergraduate coursework as determined by the departmental Graduate Committee. This may comprise an additional semester of study for which graduate credit cannot be granted.

No minimum grade point average is required for admission; however, a superior record of academic achievement is expected of all applicants.

Degree Requirements

1. The following are minimum requirements:

- 30 credit hours
- 18 credit hours of graduate coursework (500-600 level courses)
- A major or portion (at least 12 credits) of the course work will be in the ECE department
- 2 credit hours of seminar work
- Maximum of 10 credit hours transfer credit (grade of B or better)
- A thesis submitted in partial fulfillment of the requirements for the Master of Science degree will be examined by a committee of at least three Clarkson faculty members. All students must defend it orally to the committee.
Requirements for the Master of Science in Electrical Engineering (Capital Region Campus)

Prerequisites
A BS in engineering or equivalent. Students applying from other disciplines will be handled on a case by case basis. Those students who are not fully prepared to pursue graduate work in engineering may be required to take additional courses for which graduate credit will not be given. Admission to the MS program will be given only after the required prerequisite coursework has been completed.

Program Objective
The objective of the Electrical Engineering (EE) program is to explore technologies and related industry opportunities in modern electric machinery, modeling and control of power electronics. A strong emphasis is placed on Energy Conversion and related technologies. Students are encouraged to consider MBA electives and Business of Energy courses to integrate business skills and compliment technical expertise.

Program Length:
One and one-half – Two years (full time)
Two and one half – Three years (Part time)

Degree Requirements
30 credits of course work
MS Graduate Project EE 699 (see below)
The MSEE requires a total of ten courses. Each student’s program should include at least seven electrical engineering courses and up to three electives. The remaining courses are selected from engineering (mechanical or electrical), computer science, MBA program, or from the Business of Energy Program. Not all courses from these areas are satisfactory selections; therefore all course selections must be approved by the graduate advisor before course registration. Each student must submit a program plan of study (to be approved by the advisor) before completion of the first course taken for graduate credit.

Students complete the degree by taking ten courses and the MS Graduate Project in Electrical Engineering noted below. An option of replacing one or two courses with independent research conducted in the form of a Master’s Project (one or two course) or a thesis (two courses) requires departmental (Associate Dean) approval prior to beginning the program (these opportunities are limited). Students not completing a Master’s Project, thesis, or independent study are required to complete an MS Graduate Project in Electrical Engineering. This is a non-credit, no-fee project that serves as the culminating experience of the MS in Electrical Engineering degree.

EE COURSES

EE 699 Master of Science Graduate Project in Electrical Engineering
POWER/ENERGY CONVERSION
EE 642 Electronic Power Conversion
EE 653 Modeling and Control of Energy Conversion
EE 682 Electromechanical Energy Conversion

POWER SYSTEMS
EE 680 Power System Analysis I
EE 681 Power System Analysis II

CONTROLS
EE 657 Linear Control Systems
EE 658 Digital Control Systems

SPECIAL INTEREST
EE 645 Super Conductivity
EE 644 Solid State
EE 606 Motor Acoustics

MISC
EE 602 Engineering Statistics

ENERGY
EE 687 Nuclear Engineering
EE 640 Fuel Cell Science & Hydrogen Engineering
EE 643 Photovoltaic Technology
EE 683 Turbine Technology
EE 685 Solar Energy Engineering
EE 684 Wind Energy Engineering
EE 686 Synchronous Generator Engineering

EE 600 Disruptive Technology
EE 601 Sustainability

SAMPLE ELECTIVES
BoE 610,611,612,613,614,615

OM607 Global Supply Chain Management
OS603 Leadership and organizational Behavior
Requirements for the PHD Degree in Electrical and Computer Engineering

Prerequisites
A MS or ME degree from a program in Electrical Engineering or other engineering discipline is required for admission. Applicants with degrees in disciplines other than engineering may be required to demonstrate proficiency through additional undergraduate coursework as determined by the departmental Graduate Committee. This may comprise an additional semester of study for which graduate credit cannot be granted.

No minimum grade point average is required for admission; however, a superior record of academic achievement is expected of all applicants.

Degree Requirements
1. The following are minimum requirements:
 • 90 credit hours beyond the BS
 • 39 credit hours of coursework
 • 15 credit hours in the major field
 • 9 credit hours in the minor field
 • 6 credit hours from a department other than the one in which the student is housed (courses double listed in ECE and another department do not count in these 6 credit hours)
 • Six credit hours of seminar
 • Two years of residency for on-campus students

2. A maximum of 30 credit hours transfer credit (grade of B or better).

3. A minimum of three academic years of full-time study or the equivalent in part-time study. Two years of study must be in residence at Clarkson. Students matriculated in the off-campus PhD program are exempt from this residency requirement (see catalog for details of the off-campus PhD program).

4. Comprehensive Examination: All students must pass a comprehensive examination within one year after entering the PhD program.

The comprehensive examination will provide students with an opportunity to demonstrate depth and breadth of knowledge in their field of specialization covered in any reasonable undergraduate program. The goal is to construct an examination which will not require extensive study time. The scope of the examination will be limited to undergraduate material and thus students should be prepared for it at the start of their graduate program. The graduate committee will be responsible for organizing and administering the comprehensive examination. The overall structure of the comprehensive examination is described as follows:
• All PhD Students are required to take the exam during the first semester. The examination will be administered between the 4th and 6th week of the semester. A student who fails the exam the first time must retake the examination during the following semester.

• The examination consists of a written portion and an oral portion. Each PhD student will take the examination in four ECE undergraduate core areas and one undergraduate mathematics elective area. The areas will be selected by the candidate from a list maintained by the Department. Students are expected to consult their adviser before selecting the examination areas. The students are also responsible for making appointments with the examiners and face a brief one-on-one oral comprehensive examination within two weeks of the written test.

• The student must demonstrate proficiency in a minimum of three out of these five areas.

• At the conclusion of the comprehensive exam, the committee renders one of the following decisions:

 i. Pass
 ii. Conditional Pass
 iii. Fail

The committee must inform the ECE Department chair, in writing, of the results of the comprehensive exam. Any conditions must be spelled out in this memo, a copy of which will be placed in the student’s file. In the case of a conditional pass, the student will be considered to have passed the comprehensive exam when the conditions have been satisfied. When the conditions include specified additional coursework, the student will be allowed to fulfill this requirement beyond the one year time limit, by taking the specified class the next time that it is offered. The student must notify the department when the conditions have been met.

The exam will be administered in a 4 hour, closed book format. A List of core areas within the ECE Department and the Mathematics elective will be maintained by the department.

• When deemed necessary, the graduate committee and the department chair can administer an alternate format for this examination.

5. Also within one year of entering the PhD program, any transfer of credits from other institutions must be completed, including transfer of credits resulting from a Master’s degree program. Any coursework must be noted as major, minor, or out of department, as appropriate. 2 seminar credits will be automatically granted to students who enter having completed a residential Master’s degree program, regardless of whether seminar participation is formally noted on the student’s transcript.

6. Each PhD degree student must have a research committee of at least 5 Clarkson faculty members at the rank of Assistant Professor or higher. At least 3 members must hold primary appointments in the ECE Department, and at least 1 member must be from outside
the ECE Department.

7. This committee will be appointed within the first year of a PhD student’s entry into the program, and is responsible for ensuring that the student has sufficient fundamental preparation appropriate for the degree. The student’s research advisor acts as the committee chair. The student is responsible for informing the ECE Dept. of the committee members.

The research committee will:
 a. Serve as the members of the dissertation proposal defense committee
 b. Serve as the final dissertation committee.

The student’s committee has the responsibility to certify that the major field, minor field, and overall coursework is appropriate to the student’s field of study. This must be done by the time of the approval of the student’s research proposal.

8. Candidacy Examination: All students must satisfactorily complete the PhD candidacy procedure by defending a PhD research proposal within two years after the entering the PhD Program.

9. The research proposal is intended to demonstrate the student’s research topic is suitable for the successful completion of dissertation research, and that there is a reasonable likelihood that the student can successfully complete the research. The research proposal is a written document which is examined by the committee, and orally defended in front of the committee. At the conclusion of the oral exam, the committee will determine the exam results, either

 i. Pass
 ii. Conditional Pass
 iii. Fail

The committee will inform the ECE Dept. Chair, in writing, of the results of the exam. A copy of this memo will be inserted in the student’s file. Any conditions must be spelled out in this memo, along with a time limit for their completion. The proposal will be considered passed when these conditions have been fulfilled. The student, in writing, must notify the department when these conditions have been met. This must be done within the specified time limit. If the conditions are not met within this time limit, the student will be considered to have failed the proposal. In the event that this exam is failed, the student will be terminated from the program. In this case, the student can be granted the option of pursuing a Master’s of Science degree.

Exceptions to the departmental requirements must be approved by the Department’s graduate committee, and the department chair. This approval must be in writing, and inserted into the student’s file.
10. Satisfactory completion of the PhD candidacy procedure within two years of full-time study after admission to the PhD program or, for part-time students, before completing 66 credits.

 a. After completion of the candidacy procedure, the student will be identified as a “PhD Candidate.”
 b. Students who fail the candidacy procedure may make a second attempt according to department guidelines.
 c. A student who does not successfully complete the candidacy procedure within the time allowed may be dropped from the graduate program

11. All work must be completed within seven years after the student is identified as a PhD candidate

Specialty Areas and Course Tracks

1. Power Engineering

Power Area Course Offerings: Clarkson currently has 10 graduate level electric power engineering courses that are offered regularly in the distance format. These courses are:

EE 534 Market Operation of Power Systems (even springs)
EE 430/530 High-Voltage Techniques and Measurements (even falls)
EE 537 Power System Protection (even falls)
EE 531 Power System Planning (odd springs)
EE 532 Advanced Electric Machines (odd falls)
EE 533 Operation and Control of Electric Power Systems (odd springs)
EE 439/539 Dielectrics (odd falls)
EE536 Advanced Topics in Emerging Power Systems
EE 535: Power System Reliability
EE 554: Deregulated Power Systems

The tentative semester of offerings is also included in this list. The graduate power course offerings will be updated from time to time. However, the number of graduate power courses and frequency of their offerings will be maintained.

These courses can be selected to meet ME degree requirements, with approval of the student’s academic advisor. Examples of distance ECE courses that may be of interest to distance power students includes EE 552 Optimization Techniques in Engineering, EE 553 Linear Systems, and EE 555 Nonlinear Systems.

The Clarkson School of Business offers a number of courses of potential interest to students in the Distance Power Engineering ME program. These courses may be offered on a different schedule and in a different format than the engineering courses. Some will be offered during the summer. Courses of interest include:
1. OS 666 Negotiations Prerequisites OS 608 or OS 602 waived for Professional Power Engineering ME degree candidates.
2. OS609 Organizational Behavior and Performance Management (requires on-campus weekend)
3. ES510/OM680 Project Management
4. EC605 Managerial Economics (Permission of instructor granted for Distance Power Engineering ME degree candidates)
5. FN608 Financial Management (Permission of instructor granted for Distance Power Engineering ME degree candidates)

With approval from their advisor, students can transfer up to 10 credits from other institutions.

Double Numbered Courses: The distance offerings include certain courses appropriate for both advanced undergraduate students and graduate students. These courses carry a senior level course number as well as a graduate level course number (i.e., EE 439/539 Dielectrics). Students with credit for this course material in their undergraduate programs cannot also get graduate credit for the same topical material. However, it is important to be able to offer these courses to ME students who do not have this background.

Students can apply to switch to the thesis based Masters of Science program if they have identified a power engineering faculty member who has agreed to advise their thesis research.

Schedule of studies. Distance course offerings will be scheduled so that students who wish to do so are able to complete the distance ME degree in power engineering in 2 years. A typical program of study could involve students taking 2 courses per semester in both fall and spring semesters of each year, a summer business course, and completing a 1 credit hour project in the summer. Students planning to complete their studies in 3 years could, for example, take 1 engineering course each fall and spring semester, a business course in each of two summers, and complete a 4 credit hour project during their final year of study.

2. Communications and Signal Processing Course Offerings

Communications deals with problems in signal transmission, propagation and processing. In the area of Signal Processing, algorithms and systems are designed to analyze, manipulate, and transform signals such as sound signals, images, EKG signals, and videos. Communications and signal processing are an indispensable part of everyday life and are used in everyday application such as mobile phones, Wi-Fi, and the Internet.

Clarkson currently has 13 graduate level communication and signal processing courses that are offered regularly and are offered on-campus and through the distance learning program. These courses are:

Core Courses

These courses should be taken the first semester of the program as they are prerequisites to other courses.
• EE 501 Digital Signal Processing (every fall)
• EE 529 Stochastic Processes (every fall)

Elective Courses

It is suggested to choose at least 3 courses.

Fall Courses

• EE 522 Advanced Signal Processing (odd falls)
• ES 522 Signal Processing and Applications (even falls)
• EE 570 Coding and Information Theory (every fall)
• EE572 Digital Communications (odd falls) – to be approved as a new course
• EE574 Pattern Recognition (even falls)

Spring Courses

• EE 523 Introduction to Biometrics (even springs)
• EE526 Detection and Estimation Theory (even springs)
• EE 550 Control Systems (every spring)
• EE 552 Optimization Techniques in Engineering (even spring)
• EE 622 Advanced Biometrics (odd springs)
• EE 628 Adaptive Signal Processing (odd springs) – to be approved as a new course

The tentative semester of offerings is also included in this list. The graduate course offerings will be updated from time to time. However, the number of graduate courses and frequency of their offerings will be maintained.

Clarkson offers a number of courses outside of the department of interest for this program. Courses of interest include:

Courses Outside of the Department

• CS 556 Cryptography (every spring)
• MA 584 Advanced Applied Statistics (even spring)
• MA 579 Introduction to Applied Optimization (given when needed)
• CS 652 Computer Vision (given when needed)
• BR 500 Biomedical Engineering Fundamentals (every spring)

Mechanical Engineering Programs

Graduate education in Mechanical Engineering concentrates in the following specialties:

• Fluid mechanics, multiphase flows and thermal sciences engineering
• Materials and Fabrication Engineering
• Energy Systems and Renewable Energy Engineering
• Mechanical Systems and Design Engineering
• Biomechanical and Rehabilitation Engineering

ME FACULTY
Professors Goodarz Ahmadi, Daryush Aidun, Cetin Cetinkaya, Suresh Dhaniala, Brian Helenbrook, John Moosbrugger, Daniel T. Valentine, Kenneth Willmert; Associate Professors Douglas Bohl, Kevin Fite, Kathleen Issen, Ronald LaFleur, Steve Yugartis, Ajit Achuthan, Douglas Bohl, Marcias Martinez, Pat Pipeni, Ken Visser, Laurel Kuxhaus; Assistant Professors Byron Erath, Ioannis Mastorakos, Parisa Mirbod, Philip Yuha, Craig Merrett, Arthur Michalek

Requirements for the ME Degree in Mechanical Engineering

Prerequisites
BS in engineering or equivalent is required. Students applying from other disciplines will be handled on a case by case basis. Those students who are not fully prepared to pursue graduate work in mechanical engineering may be required to take additional courses for which graduate credit will not be given. Admission to the ME program will be given only after the required prerequisite coursework has been completed.

Degree Requirements

1. The following are minimum requirements:
 • 24 credit hours of graduate coursework
 • 4 credit hour of project work (ME 616)
 • 2 credit hours of seminar

 The course work must satisfy the following requirements:

 a. A minimum of two MAE graduate courses must be taken. Typical courses are:

 ME527 Advanced Fluid Mechanics
 ME537 Fluid Mechanics of Aerosol Dis
 ME529 Stochastic Processes in Engineering
 ME554 Continuum Mechanics
 ME555 Advanced Mechanical Vibrations
 ME595 Principles of Physical Metallurgy
 ME633 Plasticity
 ME639 Advanced Turbulence

 b. At least one mathematics course must be taken. The following is a list of suggested courses:
CH561 Engineering Analysis
ME515/MA572 Finite Element Methods
MA514 Sets and Topology
MA521 Classical Complex Analysis
MA522 Classical Real Analysis
MA531 Initial and Boundary Value Problems
MA550 Nonlinear Partial Differential Equations
MA577 Numerical Methods
MA578 Numerical Analysis
MA581 Probability

Other courses may also be acceptable with the written approval of the MAE Graduate Committee.

c. At least two graduate engineering courses with focus on practice and design. The following is a list of suggested courses:

 ME517 Advanced Thermal Systems
 ME531 Computational Fluid Dynamics
 ME543 Advanced Optimal Design
 ME544 Advanced CAD
 ME557 Advanced Mechanics of Composite Materials
 ME563 Applied Dynamical Systems
 ME580 Adv. Mod & Sim of Design System
 ME590 Advanced Welding Metallurgy

Other courses may also be acceptable with the written approval of the MAE Graduate Committee.

d. No more than two courses may be selected from this group.

 ME591 Selected Topics in Materials Engineering
 ME594 Selected Topics in Manufacturing
 ME618 Selected Topics in Heat Transfer
 ME628 Special Topics in Fluid Mechanics
 ME657 Selected Topics in Solid Mechanics

Only reading or lecture courses are acceptable. Other courses may also be acceptable with the written approval of the MAE Graduate Committee.

e. At least 15 course credit hours must be in engineering.

The ME student has the option of continuing towards a PhD degree if accepted into the PhD program by the MAE Graduate Committee.
Requirements for the MS Degree in Mechanical Engineering (Potsdam Campus)

Prerequisites
A. BS in engineering or equivalent. Students applying from other disciplines will be handled on a case by case basis. Those students who are not fully prepared to pursue graduate work in engineering may be required to take additional courses for which graduate credit will not be given. Admission to the MS program will be given only after the required prerequisite coursework has been completed.

Degree Requirements
Program Duration: One and one-half year (three semesters and summer)

Requirements:
18 credits of course work
2 credits of seminar
10 credits of research project work (ME 614 – Thesis/Dissertation) with a MAE faculty advisor. One credit may be ES 542 – Fundamentals of Research and Graduate Study

a. A minimum of two ME graduate courses must be taken. Suggested courses are:

 ME517 Advanced Thermal Systems
 ME527 Advanced Fluid Mechanics
 ME529 Stochastic Processes in Engineering
 ME531 Computational Fluid Dynamics
 ME537 Fluid Mechanics of Aerosol Dis
 ME543 Advanced Optimal Design
 ME544 Advanced CAD
 ME554 Continuum Mechanics
 ME555 Advanced Mechanical Vibrations
 ME557 Advanced Mechanics of Composite Materials
 ME563 Applied Dynamical Systems
 ME580 Adv. Mod & Sim of Design System
 ME590 Advanced Welding Metallurgy
 ME595 Principles of Physical Metallurgy
 ME633 Plasticity
 ME639 Advanced Turbulence

b. At least one mathematics course must be taken. The following is a list of suggested courses:

 CH561 Engineering Analysis
 ME515/MA572 Finite Element Methods
 MA514 Sets and Topology
MA521 Classical Complex Analysis
MA522 Classical Real Analysis
MA531 Initial and Boundary Value Problems
MA550 Nonlinear Partial Differential Equations
MA577 Numerical Methods
MA578 Numerical Analysis
MA581 Probability

Other courses may also be acceptable with the written approval of the MAE Graduate Committee

c. No more than two courses may be selected from this group.

ME591 Selected Topics in Materials Engineering
ME594 Selected Topics in Manufacturing
ME618 Selected Topics in Heat Transfer
ME628 Special Topics in Fluid Mechanics
ME657 Selected Topics in Solid Mechanics

Other courses may also be acceptable with the written approval of the MAE Graduate Committee.

d. At least 15 course credit hours must be in engineering. No more than two dual numbered courses may be taken for graduate credit.

The MS student has the option of continuing towards a PhD degree if accepted into the PhD program by the MAE Graduate Committee.

Requirements for the Master of Science in Mechanical Engineering (Capital Region Campus)

Prerequisites

A BS in engineering or equivalent. Students applying from other disciplines will be handled on a case by case basis. Those students who are not fully prepared to pursue graduate work in engineering may be required to take additional courses for which graduate credit will not be given. Admission to the MS program will be given only after the required prerequisite coursework has been completed.

Program Objective

The objective of the Mechanical Engineering program is to expand graduates’ understanding and applications of solid mechanics, thermal-fluid systems, materials, and manufacturability to advance career opportunities in power systems, emerging energy technologies, and product
design evolution. Students are encouraged to consider MBA electives and Business of Energy courses to integrate business skills and complement technical expertise.

Program Length:
One and one-half – Two years (full time)
Two and one half – Three years (Part time)

Degree Requirements
30 credits of course work
MS Graduate Project ME 599 (see below)

The MSME requires a total of ten courses. Two of three core courses must be taken by all students: ME 502 (Engineering Analysis) is required by all students and one or both of the following: ME 501 (Transport Phenomena) or ME 500 (Elasticity). Of the remaining eight courses, six must be in the technical mechanical engineering (ME) major. The remaining two courses are selected from engineering (mechanical or electrical), computer science, MBA program, or from the Business of Energy Program. Not all courses from these areas are satisfactory selections; therefore all course selections must be approved by the graduate advisor before course registration. Each student must submit a program plan of study (to be approved by the advisor) before completion of the first course taken for graduate credit.

Students complete the degree by taking ten courses and the MS Graduate Project in Mechanical Engineering noted below. An option of replacing one or two courses with independent research conducted in the form of a Master’s Project (one or two course) or a thesis (two courses) requires departmental (Associate Dean) approval prior to beginning the program (these opportunities are limited). Students not completing a Master’s Project, thesis, or independent study are required to complete an MS Graduate Project in Mechanical Engineering. This is a non-credit, no-fee project that serves as the culminating experience of the MS in Mechanical Engineering degree.

ME COURSES

CORE
ME 599 Master of Science Graduate Project in Mechanical Engineering
ME 500 Elasticity
ME 501 Transport Phenomena
ME 502 Engineering Analysis

MATERIAL
ME 506 Mechanical Behavior of Materials
ME 508 Fracture Mechanics
ME 513 Processing and Selection of Engineering Materials

STRUCTURAL
ME 509 Current Approach to Fatigue in Design
ME 514 Finite Element Methods in Engineering
ME 510 Advanced Dynamics
ME 512 Vibrations of Discrete Systems
ME 561 Engineering Optimization
ME 562 Composites
ME 576 System Modeling & Optimization (Computational Intelligence)

FLUIDS
ME 563 Dynamics of a Viscous Fluid
ME 564 Compressible Fluid Flow
ME 565 Combustion Fundamentals
ME 566 Fluid Dynamics of Turbo machinery
ME 578 Flow and Heat Transfer in Multiphase Systems
ME 572 Advanced Fluid Dynamics
ME 574 Computational Fluid Dynamics

THERMAL
ME 567 Thermodynamic Analysis
ME 568 Thermal Energy Processes
ME 569 Conduction Heat Transfer
ME 576 Super Conductivity
ME 571 Convection Heat Transfer
ME 584 Principles of Thermal Systems

MISC
ME 577 Engineering Statistics

ENERGY
ME 575 Nuclear Engineering and Technology
ME 581 Fuel Cell Science and Hydrogen Engineering
ME 582 Photovoltaic Technology
ME 583 Turbine Technology
ME 584 Principles of Thermal Systems
ME 587 Solar Energy Technology
ME 588 Wind Energy Technology
ME 589 Synchronous Generator Engineering
ME 600 Disruptive Technology
ME 601 Sustainability

SAMPLE ELECTIVES
Business of Energy BOE 610 - BOE 615
OM607 Global Supply Chain Management
OS603 Leadership and organizational Behavior
Requirements for the Doctoral Degree in Mechanical Engineering

Mechanical Engineering Department Requirements (in addition to the above University Requirements)

1. A minimum of 39 credit hours of course work.
2. At least two additional ME courses beyond the MS degree course requirements (part of the 39 course credit hours required).
3. In order to monitor a student’s progress toward a PhD, the following sequence of examinations and presentations are required (the exact form and timing of these are presented in separate sections of these requirements):

 a. Qualifying Examination
 b. Research Proposal Defense Examination
 c. Examination on the Dissertation

 Note: A student is considered a PhD candidate after passing both the Qualifying and Research Proposal Defense Examinations.

4. A qualifying examination based on general preparation in the major field, must be taken at the first offering after the student completes one semester in the PhD program. MS students may take the exam one time prior to completion of their MS thesis with written permission from their advisor. This is a written examination covering a general background in the area of mechanical engineering. If a PhD student fails any portion of this exam, studies cannot proceed until approval is obtained from the Department Chairman and from the Dean of the Graduate School. If a PhD student fails the qualifying exam twice, the student will be dropped from the Graduate School.

 The Qualifying Examination is composed of two written parts:

 b. Mechanical Engineering Science: Statics, dynamics, fluid mechanics, strength of materials, thermodynamics, heat transfer, vibration and material science/metallurgy.

 The exam is closed book. The two parts of the exam are scheduled within a one-week time period. Missing an exam counts as failing the exam. The MAE Graduate Committee is responsible for administering and making arrangements for grading the exams.

5. PhD Course Selection: Courses that a PhD student takes to complete course requirements must be mutually agreed upon by the student and advisor. Students and advisors must define the major field of study (15 credits minimum) and minor field of
study (9 credits minimum) on the PhD Degree Program Form. Examples of suitable major fields include fluid mechanics, solid mechanics, controls, materials, etc. An example of a minor field could be mathematics, numerical methods, or solid mechanics for a student whose major field is fluid mechanics. A student whose major field is solid mechanics could have a minor field of mathematics, materials, fluid mechanics, controls, etc. There are many possible combinations of major and minor fields of study. However, the choices must be supported by appropriate courses. With the advisor’s consent, a student’s minor field could be innovation and entrepreneurship. This program, offered by the Clarkson School of Business, consists of three of the following four courses: OM626, Developing and Managing Technology; SB613, Entrepreneurship and New Venture Creation; MK 689, New Product Marketing; and OM680, Strategic Project Management.

6. In order to provide guidance to PhD students, a Degree Committee must be selected within one year of entry into the PhD program and prior to the student’s Research Proposal defense. In consultation with the student, the Committee will be selected by the student’s Major Professor, who also serves as the dissertation advisor. Approval for the Degree Committee must be obtained from the MAE Department Chair and the Dean of the Graduate School. The Committee will consist of a minimum of five members, of which a minimum of three must be faculty members from Clarkson's MAE Department and at least one must be from a department at Clarkson other than MAE. This Committee will judge the technical competence of the Research Proposal, the dissertation and other oral presentations. With the Provost’s approval, additional Committee members may be appointed from outside the faculty as necessary.

7. A formal oral presentation of a Research Proposal must be made to the Degree Committee within two years after enrollment in the PhD program. It is also required that this proposal be made at least one year prior to the completion date of the research work. The major purpose of the proposal defense examination is to provide an opportunity for the Degree Committee to evaluate the technical competency of the student and the scientific merit of the proposed research, and to make critical but constructive suggestions regarding the proposed work. The proposal may be brief, but must describe clearly the proposed research as well as the research carried out so far. It is required that the proposal be distributed to the Degree Committee prior to the formal presentation. The Research Proposal must be accepted by the Degree Committee for successful completion of the proposal defense examination.

8. Before the final dissertation examination can be taken, the candidate must submit at least two research articles to academic journals. At the time of the examination, these papers must be either under review or accepted by the journal.

9. A final dissertation examination must be passed. The candidate must submit an announcement flyer to the MAE Graduate Coordinator at least one week prior to the dissertation examination. Prior to submission, the flyer must be approved by the
advisor. The final dissertation examination will include, as a minimum, an oral examination based on the dissertation. The candidate will present and defend his/her dissertation. The Degree Committee and the Dean of the Graduate School must approve the dissertation.

NOTES

1. Final copies of accepted dissertations or thesis must be received by the Graduate School no later than ten working days before commencement to qualify a student to receive a degree at the end of the spring semester (May commencement). This date is published each semester by the Provost’s office. Graduating students should check this date.

2. The copy of the thesis or dissertations must be distributed to the members of degree committee at least one week before the date of oral examination.

Program Length
For part time students, the 24- month rule is replaced by “before 33 credit hours are completed toward the PhD”

V. Thesis Advisor

The thesis/project advisor for ME, MS and PhD students in Mechanical Engineering must be a full time mechanical engineering faculty member. A faculty member from another department who has a courtesy/research appointment in MAE Department could co-advise a mechanical engineering student with a full time departmental faculty.

New graduate students with TA support will be assigned advisors based on their research interests and those of the faculty that qualify for a TA position. Students should meet with every MAE faculty member and indicate their four choices of faculty. This is done using the Research Meetings with MAE Faculty” form available in the MAE Department.

VI. Additional Requirements

For a graduate student to continue a minimum of B average is required. A graduate student who obtains more than two C or lower grades (although he/she may have a B average) will be subjected to a MAE Graduate Committee review before the student is allowed to continue. The Graduate Committee will request bi-annual progress reports from the graduate student regarding his/her performance in course work, seminar and research.

Teaching Assistantship, Research Assistantship, Fellowship, Instructorship, etc. are awarded on a competitive basis. To receive consideration for TA support, the student must have a B or better average. For MS degree students, the departmental support will be limited to a total of three semesters. For PhD degree students the departmental support will be limited to a total of two years. Support for the PhD student during the first year should be from an RA (except for
financial assistance in the form of a partial tuition waiver may be given to ME or MS students on a competitive basis.

Qualifying foreign students with MS degrees from foreign countries will be admitted to the PhD program provisionally. Each of these students are required to take the PhD qualifying examination the first time it is given after his/her tentative admission to the PhD program. If the student does not pass this exam, he/she will automatically be required to pursue a MS degree before being considered again for admission to the PhD program.

The Graduate School may grant permission to a graduate student to participate in a Co-op experience. Eligibility for Co-op is limited to those graduate students who have matriculated (i.e., been accepted and enrolled) as a full-time student in residence in one of Clarkson’s graduate degree programs for at least one regular semester and have maintained a GPA of at least 3.0 for all graduate coursework. The graduate students’ request for permission to participate in the Co-op experience must include (1) a written acknowledgement that she or he has discussed the program with a Career Center counselor; (2) documentation that indicates the Co-op experience is appropriate to the professional and educational objectives of the student, including a statement from the student’s graduate program advisor; and (3) a coursework and project/thesis plan that indicates the student’s intended path to completing degree requirements.

Seminar Attendance: Graduate students are expected to attend the MAE seminar series every semester they are in their respective programs. Students should additionally register for one credit of seminar until the seminar credit requirements for the degree have been met. After their first year in the PhD program, under some circumstances, PhD students may register for two seminar credits in one semester. The student must obtain written permission from the seminar coordinator to register for two seminar credits, and a copy of the permission memorandum must be presented to the MAE graduate coordinator for inclusion in the student’s graduate record. The permission memorandum must include specific activities that the student must accomplish to receive the second credit. Typically, these activities could include attending ten additional seminars from other departments and documenting the attendance using the form at Appendix D, or presenting a full-length seminar. The seminar coordinator will make the final decision concerning what activities will be required to earn the second credit. With prior approval of the seminar coordinator, off-campus students can receive seminar credit by attending ten professional presentations and documenting their attendance using the form at Appendix D.

Requirements for the Master of Science in Energy Systems

Prerequisites
A BS in engineering or equivalent. Students applying from other disciplines will be handled on a case by case basis. Those students who are not fully prepared to pursue graduate work in engineering may be required to take additional courses for which graduate credit will not be
given. Admission to the MS program will be given only after the required prerequisite coursework has been completed.

Program Objectives
The objective of the Master of Science in Energy Systems is to enable students to integrate: (1) Mechanical/Electrical energy related courses, (2) Mechanical and Electrical fundamental discipline courses and (3) non-technical courses regarding the impact of environmental, economic, and regulatory issues on energy. This is a technical degree focused on energy systems and related technology and the impact of our external changing environment on these technologies.

The engineering profession continues to require the understanding and application of technologies that complement each other in their product, system or service applications. Course offerings that include two disciplines (Mechanical/ Electrical Engineering) provide a student with the technical breadth/depth required to compete in the design, commercialization, and service associated with products related to emerging energy systems. Career growth may be additionally enhanced by a broad understanding of non-technical elements impacting change such as sustainability, the disruptive nature of new technology, and the Business of Energy.

The Master of Science in Energy Systems provides a balanced degree program of energy focused mechanical/electrical courses, fundamental discipline mechanical and electrical courses, and the broad understanding of related environment, economic, and regulatory issues.

Program Length:
One and one-half – Two years (full time)
Two and one half – Three years (Part time)

Degree Requirements
33 credits of course work (11 courses)
The Master of Science in Energy Systems requires a total of 11 courses. Each student’s program will include at least 5-9 energy related mechanical or electrical engineering courses, 0-4 fundamental technical mechanical or electrical engineering courses, and 2-3 non-technical Mechanical Electrical energy related and/or Business of Energy courses.

Course selection should be approved by the graduate advisor before course registration. Each student should submit a program plan of study (to be approved by the advisor) before completion of the first course taken for graduate credit.

Courses taken will be selected from the following groupings:

Energy Systems Courses
Choose 5-9
Mechanical Energy Related Courses Electrical Energy Related Courses
ME 560 ME 576 EE 657 EE 658
Requirements for the Master of Science in Engineering and Management Systems (Capital Region Campus)

Prerequisites
A BS in engineering or equivalent. Students applying from other disciplines will be handled on a case by case basis. Those students who are not fully prepared to pursue graduate work in engineering may be required to take additional courses for which graduate credit will not be
given. Admission to the MS program will be given only after the required prerequisite coursework has been completed.

Program Objectives
The objective of the Engineering and Management Systems program is to integrate engineering and computer science technologies with the components of an MBA and/or Business of Energy. Students become architects of a multi-disciplined technical/management degree that provides the skills necessary to quickly develop products and move them toward commercialization. The engineering professions continue to require the understanding and application of broadening technologies that complement each other in their product, system, or service application. Course offerings from all three disciplines (Electrical Engineering, Mechanical Engineering, and Computer Science) may be required to provide a student with their desired technical growth or parallel the direction of their industrial interests. Technical career growth may be additionally enhanced by supplementing strong technical fundamentals with management disciplines such as finance, marketing, operations, or other related business skills related to the energy industry. The Master of Science in Engineering and Management Systems provides a balanced degree program of engineering and computer science complimented by courses from the School of Management and the Business of Energy.

Program Length:
One and one-half – Two years (full time)
Two and one half – Three years (Part time)

Degree Requirements
33 credits of course work (11 courses)
- 18 credits of technical course work from School of Engineering and/or Computer Science (6 courses)
- 15 credits of course work from School of Management and/or Business of Energy (5 courses)

A minimum of 11 graduate courses are required. Each student’s program should include at least 6 courses from the School of Engineering and Computer Science and 5 courses from the School of Management and/or Business of Energy Programs. Not all courses from these areas are satisfactory selections; therefore all course selections should be approved by the graduate advisor before course registration. Each student should submit a program plan of study (to be approved by the advisor) before completion of the first course taken for graduate credit.

School of Engineering Courses should be selected from the mechanical and electrical technical courses located in the requirements for the Master of Science Degree in this catalog and/or the Computer Science courses listed below:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 502</td>
<td>Business Intelligence</td>
</tr>
<tr>
<td>CS 504</td>
<td>Enterprise Architecture</td>
</tr>
<tr>
<td>CS 505</td>
<td>Business Data Communications and Networking</td>
</tr>
</tbody>
</table>
School of Management Courses should be selected from the MBA Core courses and/or electives. Business of Energy courses should be selected from the Business of Energy Certification Program Courses listed below:

- BOE 610 Fundamentals of the Business of Energy
- BOE 611 Planning and Operations of Power Systems
- BOE 612 Power Markets
- BOE 613 Deregulations and Restructuring
- BOE 614 Electric Power Industry Economics and Finance
- BOE 615 Challenges to Upgrading Infrastructure

The Master of Science in Engineering and Management Systems Program will not allow graduate work from another institution to be transferred toward completion of this degree program per the existing transfer policy noted elsewhere in this catalog unless specifically approved by the Dean of the school.

Requirements for the Online Graduate Certificate – Business of Energy

Prerequisites
A bachelor’s degree. Applications will be handled on a case by case basis.

Program Objectives
The Business of Energy graduate certificate program combines contemporary energy issues and related business principles to produce leaders well-versed in the energy marketplace. Students will gain an understanding of power generation, transmission, distribution and the market functions.

Working professionals and recent graduates seeking to advance their careers in professions associated with the energy industry are encouraged to apply. The program is designed for students from all academic backgrounds – including engineering, geosciences, law, business, policy and related disciplines.

Program Duration:
One– Two years (full time or part-time)

Certificate Requirements
12 credits of course work (4 courses)
- 3 credits of course work from Fundamentals of the Business of Energy course
- 9 credits of course work from 3 other Business of Energy courses
Completion of the certificate program requires four courses, for a total of 12 credits. All students take Course 1: The Fundamentals of the Business of Energy, and then choose three more classes in their area of interest. To get the most out of the program, students are recommended to take all six courses. Students interested in particular courses, but not the complete certificate, may take those courses with the approval of the program Director.

Business of Energy Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOE 610</td>
<td>Fundamentals of the Business of Energy</td>
</tr>
<tr>
<td>BOE 611</td>
<td>Planning and Operations of Power Systems</td>
</tr>
<tr>
<td>BOE 612</td>
<td>Power Markets</td>
</tr>
<tr>
<td>BOE 613</td>
<td>Deregulations and Restructuring</td>
</tr>
<tr>
<td>BOE 614</td>
<td>Electric Power Industry Economics and Finance</td>
</tr>
<tr>
<td>BOE 615</td>
<td>Challenges to Upgrading Infrastructure</td>
</tr>
</tbody>
</table>
INSTITUTE FOR A SUSTAINABLE ENVIRONMENT
Susan Powers, Interim Director and the Spence Professor in Sustainable Environmental Systems; Alan Rossner, Associate Director

About the Institute
The Clarkson Institute for a Sustainable Environment is home to Clarkson's environmental activities associated with research, interdisciplinary graduate and undergraduate degree programs, and outreach programs. The Institute was established to support Clarkson's long-standing expertise in this field and to increase collaboration among faculty.

Mission Statement
The Institute for a Sustainable Environment is a collaborative and multidisciplinary community that serves as the hub for the University’s drive toward a sustainable world. We facilitate high impact learning experiences, foster transformative scholarship, and engage the campus and broader community in order to understand and address environmental and sustainability challenges.

The Clarkson Institute for a Sustainable Environment sponsors workshops, seminars, and a small grants program to foster links among its members and facilitate environmental activities.

MS and PhD in Environmental Science and Engineering
Master's and doctoral degrees in Environmental Science and Engineering (ES&E) span multiple disciplines to investigate how science and engineering interact with the environment in a broad context. This approach is necessary since the environment comprises complex, interacting biological, chemical, physical and social systems. It is essential to apply an interdisciplinary framework to understand how these systems function and the many ways environmental factors should be integrated into a comprehensive decision-making process. The unusually broad background of ES&E graduates will enable them to better understand how engineering and science impact policy decisions. The research-focused ES&E degree programs provide a flexible framework for students to develop coursework and pursue research projects that fit their individual interests.

MS Prerequisites: Students are expected to have completed at least one year of calculus, physics, and chemistry, have some background in Fluid Mechanics, and have obtained a BS, BE or equivalent degree from an engineering or science program.

MS Requirements in addition to University requirements: Students must take: EV 532 (Risk Analysis), either POL 570 (Environmental Policy) or POL 571 (Energy Policy), and either CE 586 (Industrial Ecology) or CE 582 (Environmental Systems Analysis and Design). They must also take at least 3 additional electives (9 credits) following a theme of the student’s choosing subject to approval by the student’s advisor AND the chair of the Graduate Committee. At least two of these electives must have an environmental or sustainability focus, as determined by the Graduate Committee. In addition, students must take at least three Engineering courses. These
are either any course offered by the Coulter School of Engineering, or other courses with significant engineering content, as determined by the Graduate Committee.

All students must complete either a Thesis or a Project. Students choosing to complete a Thesis must defend it orally to a Committee consisting of a minimum of three faculty members. Students choosing to complete a project must present their work on campus and have their project and presentation approved by their Advisor and at least one other faculty member affiliated with ISE. Thesis students must complete at least 7 credits of thesis work. Students choosing a Project must complete at least 4 credits towards this project. Projects are expected to be more substantial than a term project, but not necessarily of the depth or breadth such as to be publishable in the academic literature. Projects may be related to a student’s work in a professional context.

Length of MS Program: MS Students are expected to complete their degree in 18-24 months.

PhD Prerequisites: Students are expected to have completed at least one year of calculus, physics, and chemistry. Most students enter the PhD program following completion of an MS degree. Exceptional students may be invited to proceed directly to the PhD.; such students will be awarded the MS upon completing 40 credit hours and passing the doctoral qualifying examination with a superior grade.

PhD Requirements in addition to University requirements: Students must take: EV 532 (Risk Analysis), either POL 570 (Environmental Policy) or POL571 (Energy Policy), and either CE 586 (Industrial Ecology) or CE 582 (Environmental Systems Analysis and Design). They must also take at least 5 additional electives (15 credits) following a theme of the student’s choosing subject to approval by the student’s advisor AND the chair of the Graduate Committee. At least two of these electives must have an environmental or sustainability focus, as determined by the Graduate Committee. In addition, students must take at least three Engineering courses. These are either any course offered by the Coulter School of Engineering, or other courses with significant engineering content, as determined by the Graduate Committee.

All PhD students must complete a dissertation. The Dissertation needs to be an original and scholarly body of work. Publication of aspects of the dissertation is expected of all students. Subject to advisor approval, papers written for publication can comprise the main body of the dissertation, with additional introductory and concluding chapters. Detailed requirements pertaining to the Dissertation are provided in the ISE Graduate Handbook.

Length of PhD Program: PhD Students are expected to complete their degree in 3-5 years.

MS in Environmental Politics and Governance
The interdisciplinary MS Degree in Environmental Politics and Governance (EPG) provides a unique graduate experience in the policy aspects of environmental management. Graduates are prepared to be the next generation of environmental and energy policy analysts and experts who understand the complex socioeconomic and political processes that inform environmental outcomes — including the allocation of federal funding of environmentally-
related research and the development of science-based environmental policy while taking into account the actions and interests of private sector firms and non-governmental organizations in the environmental arena.

Prerequisites: Students are expected to have taken a course on American Politics or American Society (sociology) as well as an introductory course in environmental science and have obtained a BS, BE or equivalent degree from an accredited institution.

Requirements in addition to University requirements: All students must take: POL 570 (Environmental Policy) or POL 571 (Energy Policy), EC 660 Environmental Economics and either SS 580 (Research Methods) or EC 611 (Econometrics) or EV 612 Directed Study (Methods), under the direction of the advisor. In addition, students must take at least two different elective courses. These must be from two separate course categories from amongst: Environment & Society, Environmental Philosophy & Theory, Environmental Policy, and Environmental Science. Courses meetings these requirements are listed in the ISE Graduate Handbook.

All students must complete a Thesis. Students must defend their thesis orally to a Committee consisting of a minimum of three faculty members, and must complete at least 7 credits of thesis work.

Length of Program: Students are expected to complete their degree in 12-18 months.

Institute Faculty: The Institute for a Sustainable Environment is comprised of a small group of faculty fully and jointly-appointed in the Institute plus a large number (~70) of affiliated faculty from across the University. The expertise of these faculty spans nearly all fields and disciplines from Engineering, Natural Sciences, Social Sciences, Business, and the Humanities.
PROGRAMS IN HEALTH PROFESSIONS

Master of Science in Occupational Therapy (MS)
The Occupational Therapy Department at Clarkson University in Potsdam, N.Y., serves the health needs of the community through preparation of occupational therapy graduates who engineer solutions that enable health and wellbeing throughout an individual’s lifespan.

We believe in the right for all individuals to live their lives with dignity regardless of any disability or barriers to living life to the fullest.

Our graduates will use occupations as both interventions and outcomes to promote an individual’s adaptation to biological, psychological and contextual factors that have interrupted the ability to engage in occupations that have meaning and purpose in the individual’s life.

Our program is designed to change the world through occupational therapy. We develop professionals with deep cultural sensitivity toward the unique needs of rural and underserved populations living with disability. Our graduates will have advanced interprofessional competencies in areas of technology, innovation and education.

Our Occupational Therapy Program is committed to graduating therapists who are prepared to respond to both current and emerging societal needs that influence individual’s occupations. We integrate experiential learning to help students develop internalized working models for activating occupational therapy in culturally diverse, innovative practice settings.

The Occupational Therapy Program at Clarkson is committed to expanding the knowledge of the profession through interprofessional scholarship and practice.

Our curricular goals for our program

Goal 1: Design and deliver humanistic, ethical and high-quality, individualized occupational therapy services to individual clients and their family/caregivers in both individual and group treatment.

Goal 2: Students will understand and be able to respond with occupation-based programs to contemporary and global issues affecting health, wellbeing and disability, with specific focus on unmet and emerging needs in rural and underserved populations.

Goal 3: Integrate innovative, technological, imaginative art and educational resources into program planning, design, management and intervention.

Goal 4: Demonstrate the ability to reflect on science and technology, including their relationship to society, their impact on the environment, and occupation and demonstrate the capacity and commitment to grow both as an individual professional.

Goal 5: Collaborate skillfully with clients, interprofessional team members and non-professional colleagues, families and community members and demonstrate the important contribution of occupational therapy by doing good work.
Curricular Threads
Clarkson's Occupational Therapy Program's "curricular threads" represent the themes that are interwoven throughout all of the coursework. They reflect the values and priorities of our program, as well as the unique philosophy and mission of Clarkson University.

Professional Identity
Students will value and assume an identity of service and contribution, by promoting occupation and participation in multiple contexts through the identification of barriers to and providing supports for occupational roles and performance patterns.

Innovation
Students will develop the ability to meet the needs of local, regional, and global society, including a focus on rural communities, through research and scholarship.

Technology
Students will learn to engineer solutions through technology including telehealth, assistive technology, and virtual contexts.

Education & Research
Students will develop problem-solving abilities through science-driven practice and the use of practice-based evidence, with a focus on occupation as both intervention and outcome.

Interprofessional Practice
Students will exhibit strong leadership and collaborative skills as they assume roles of advocacy and activism for both clients and the profession.

Master of Science in Occupational Therapy (MS) Admission Requirements
- Complete a baccalaureate degree; cumulative GPA should be greater than or equal to 3.0.
- Take the necessary pre-requisite courses. The overall grade-point average should be greater than or equal to 3.2 in all pre-requisite courses and no grade lower than a C in these courses. (see list below)
- Submit documentation of a minimum of 40 hours of observation/volunteer or work experience under the supervision of an occupational therapist or occupational therapy assistant.
- Submit three letters of recommendation. At least one must be from a faculty member who can speak to your academic or professional character. At least one from an occupational therapy professional is preferred. Letters from family, friends or clergy will not be accepted.

An essay stating your interest in the field of Occupational Therapy Satisfactorily complete an on-campus interview requirement (may be satisfied via tele-meeting technology)
**Course must include actual hands-on manipulation of media/materials. Examples: Knitting, 3-dimensional science or engineering project, woodwork, sculpting, loom work, fly-tying, boat making, electric car construction, ceramics, sewing, beading, et al (Portfolio will be reviewed by Graduate Admissions Coordinator to determine if fulfills this pre-req)

Pre-requisites for the MSOT Program at Clarkson University

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Abnormal Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Development Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Statistics</td>
<td>3</td>
</tr>
<tr>
<td>Biology (in addition to A&P)</td>
<td>3</td>
</tr>
<tr>
<td>Physics or Kinesiology</td>
<td>3</td>
</tr>
<tr>
<td>Recommended but not required:</td>
<td></td>
</tr>
<tr>
<td>Communication/Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>Scientific Writing</td>
<td>3</td>
</tr>
<tr>
<td>Human Anatomy</td>
<td>3 credits</td>
</tr>
<tr>
<td>Human Physiology</td>
<td>3 credits</td>
</tr>
<tr>
<td>English Composition/Critical Thinking</td>
<td>6 credits</td>
</tr>
<tr>
<td>3D skill / craft**</td>
<td>3 credits or portfolio</td>
</tr>
<tr>
<td>Social Sciences (Anthropology, Humanities, Philosophy, Sociology)</td>
<td>6 credits</td>
</tr>
</tbody>
</table>

**Course must include actual hands-on manipulation of media/materials. Examples: Knitting, 3-dimensional science or engineering project, woodwork, sculpting, loom work, fly-tying, boat making, electric car construction, ceramics, sewing, beading, et al (Portfolio will be reviewed by Graduate Admissions Coordinator to determine if fulfills this pre-req)

Application

Applications are made via the Centralized Application Service for Occupational Therapy (OTCAS) https://portal.otcas.org. A supplemental Clarkson University OT program application will be required for qualified OTCAS applicants. Applications from OTCAS are valid until June 15th of that same year applying. A rolling acceptance policy is being used. The class size will be approximately 30 students.

Supplemental Application

The supplemental application is in addition to the OTCAS application. After verification of the OTCAS application, the program will review and invite qualified applicants to complete a supplemental application. Supplemental applications received that have not been requested by the program will be disregarded and will not be considered for admission to the program. The supplemental application is to be completed only at the request of the program. For the supplemental application to be completed, it will include:

- Application
- Signed statement of Meeting Technical Standards
- Personal Statement: describe why you would like to be part of the Occupational Therapy Program at Clarkson University. *If your personal essay submitted on OTCAS already reflects our supplemental personal statement question, you may resubmit that essay.*
• Official transcripts for grades not verified in OTCAS
• Reference letter – a total of 3 is required, one of which must be from an Occupational Therapist. A letter must come from a faculty member who can speak to your academic or professional character. If OTCAS has 3 letters and one is from an Occupational Therapist no letter is required with supplemental application
• $50.00 application fee (made payable to Clarkson University)

All materials are to be mailed directly to Clarkson University at:
Clarkson University
Department of Occupational Therapy
Box 5883, 8 Clarkson Avenue
Potsdam, NY 13699-5883

For questions about completing the Clarkson University supplemental application, contact the Clarkson University Department of Occupational Therapy at ot@clarkson.edu or 315-268-2161.

Program Curriculum
Clarkson's Occupational Therapy Program taps the University's core strengths in engineering, science, entrepreneurship and the arts to provide students with an expansive knowledge base. This specialized Master of Science in Occupational Therapy helps our students embrace the field’s essential points:
• Engaging in meaningful occupation and finding purpose are profound curatives.
• A thorough knowledge of human anatomy and psychology — tied to an appreciation for creativity — lead to recovery and unique paths of productivity.
• Neither disabilities nor perceived differences can violate an individual's dignity or self-determination.

Specialty Tracks
Students will have the opportunity to pursue one of three Clarkson OT Specialty Tracks of study, which will allow them to become immersed in advanced study in their area of interest.

• Technology for Health Related Quality of Life Track: Students will become clinicians who can design and implement individual, organization and population based programs that leverage the promise of technology.
• Occupational Therapist as an Educator Track: Students will become clinicians who can design and implement individual, organization and population based programs in academia, clinical research and/or intervention directed to the current and emerging needs of children and youth.
• Innovative Practitioner Track: Students will become clinicians who can design and implement individual, organization and population based programs in innovative practice to include but not limited to primary care practitioner, product designer or entrepreneur.
Fieldwork
At Clarkson University, experiential learning plays a fundamental role in helping students make connections between the classroom and real-life practice. Initially, this will begin informally through service-based learning projects, volunteerism and class assignments. As students enter the second year of the program, they will complete several required fieldwork placements that provide them with strategic learning opportunities that will prepare them for transitioning from the role of student to that of occupational therapist.

Our students will have the opportunity to complete two 1-week Level I Fieldwork Periods during the third trimester of the program (summer). Level I Fieldwork is intended to provide exposure to different populations and settings, to further develop professional behaviors, and to build the comfort and confidence that will be essential to success in Level II Fieldwork. Level I assignments may be with an occupational therapist or with other related professionals. Upon completing all other coursework, students will be required to complete two 12-week Level II Fieldwork placements, which reflect Clarkson’s commitment to innovation. Students will have the opportunity to immerse themselves in OT practice in both traditional settings, as well as those where OT is new or emerging. Students’ unique interests, skills and areas of specialty are taken into account when assigning Level II placements to ensure a good fit. Examples of Level II learning experiences include (but are not limited to):

- Assessment, treatment and progress monitoring
- Individual, agency or community-wide needs assessments
- Innovative program development within existing service delivery models or within underserved settings
- Provide education and training to consumers, colleagues or community members
- Product development and interprofessional collaboration
- Research and advanced study

<table>
<thead>
<tr>
<th>Term I</th>
<th>Course #</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case Base Reasoning 1: Gross Anatomy, Neurorehabilitation and Human Occupation</td>
<td>OT 500</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Foundations in Occupation Based Practice</td>
<td>OT 510</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Experiential Learning Lab I: Health, Disability and Occupation</td>
<td>OT 520</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Engineering Occupational Performance during Transitions across the lifespan</td>
<td>OT 600</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Professional Seminar A: Professionalism in Occupational Therapy</td>
<td>OT 540</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Optional: Independent Study in Occupational Therapy (1-3 credits)</td>
<td>OT 530</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>
Term II

<table>
<thead>
<tr>
<th>Course #</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>OT 503</td>
<td>Case Base Reasoning 2: Applied Neuroscience, Human Health and Human Occupation</td>
<td>6</td>
</tr>
<tr>
<td>OT 513</td>
<td>Foundations in Intervention: Health-Related Quality of Life (HRQoL)</td>
<td>3</td>
</tr>
<tr>
<td>OT 523</td>
<td>Experiential Learning Lab 2: Applied Neuroscience and Human Occupation: Conditions and Function</td>
<td>3</td>
</tr>
<tr>
<td>OT 610</td>
<td>Engineering Health through Creativity, Craft and Analysis of Occupation</td>
<td>3</td>
</tr>
<tr>
<td>OT 543</td>
<td>Professional Seminar B: Theory and Practice</td>
<td>2</td>
</tr>
<tr>
<td>OT 530</td>
<td>Optional: Independent Study in OT (1-3 credits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

Term III

<table>
<thead>
<tr>
<th>Course #</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>OT 700</td>
<td>Fieldwork Level I</td>
<td>4</td>
</tr>
<tr>
<td>OT 620</td>
<td>Engineering Pathway to Clinical Practice: Technology for Health-Related Quality of Life I</td>
<td>2</td>
</tr>
<tr>
<td>OT 621</td>
<td>Engineering Pathway to Clinical Practice: Occupational Therapist as an Educator I</td>
<td>2</td>
</tr>
<tr>
<td>OT 622</td>
<td>Engineering Pathway to Clinical Practice: Innovative Practitioner I</td>
<td>2</td>
</tr>
<tr>
<td>OT 530</td>
<td>Optional: Independent Study in OT (1-3 credits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>10</td>
</tr>
</tbody>
</table>

Term IV

<table>
<thead>
<tr>
<th>Course #</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>OT 505</td>
<td>Case Base Reasoning 3: Kinesiology, Social Determinants of Health & Participation</td>
<td>4</td>
</tr>
<tr>
<td>OT 515</td>
<td>Foundation in Evidence Based Practice: Applied Research I</td>
<td>3</td>
</tr>
<tr>
<td>OT 525</td>
<td>Experiential Learning Lab 3: Development of Intervention Across the Lifespan</td>
<td>3</td>
</tr>
<tr>
<td>OT 630</td>
<td>Engineering Pathway to Clinical Practice: Technology for Health-Related Quality of Life II; OR</td>
<td>3</td>
</tr>
<tr>
<td>OT 631</td>
<td>Engineering Pathway to Clinical Practice: Occupational Therapist as an Educator II; OR</td>
<td>3</td>
</tr>
<tr>
<td>OT 632</td>
<td>Engineering Pathway to Clinical Practice: Innovative Practitioner II</td>
<td></td>
</tr>
<tr>
<td>OT 545</td>
<td>Professional Seminar C: Clinical Scholarship</td>
<td>2</td>
</tr>
<tr>
<td>OT 530</td>
<td>Optional: Independent Study in OT (1-3 credits)</td>
<td></td>
</tr>
</tbody>
</table>

Total 10
Term V

<table>
<thead>
<tr>
<th>Course #</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>OT 507</td>
<td>Case Base Reasoning 4: Innovations in Practice</td>
<td>4</td>
</tr>
<tr>
<td>OT 517</td>
<td>Foundations in Evidence Based Practice: Applied Research II</td>
<td>3</td>
</tr>
<tr>
<td>OT 527</td>
<td>Experiential Learning Lab 4: Professional Practice, Leadership, Management & Activism</td>
<td>3</td>
</tr>
<tr>
<td>OT 640</td>
<td>Engineering Pathway to Clinical Practice: Technology for Health-Related Quality of Life III; OR</td>
<td>3</td>
</tr>
<tr>
<td>OT 641</td>
<td>Engineering Pathway to Clinical Practice: Occupational Therapist as an Educator III; OR</td>
<td>3</td>
</tr>
<tr>
<td>OT 642</td>
<td>Engineering Pathway to Clinical Practice: Innovative Practitioner III</td>
<td></td>
</tr>
<tr>
<td>OT 547</td>
<td>Seminar D: Guided Practice in Scholarly Activity</td>
<td>2</td>
</tr>
<tr>
<td>OT 530</td>
<td>Optional: Independent Study in OT (1-3 credits)</td>
<td></td>
</tr>
</tbody>
</table>

Total 15

Term VI

<table>
<thead>
<tr>
<th>Course #</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>OT 705</td>
<td>Fieldwork Level IIA</td>
<td>9</td>
</tr>
<tr>
<td>OT 530</td>
<td>Optional: Independent Study in OT (1-3 credits)</td>
<td></td>
</tr>
</tbody>
</table>

Total 9

Term VII

<table>
<thead>
<tr>
<th>Course #</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>OT 710</td>
<td>Fieldwork Level IIB</td>
<td>9</td>
</tr>
<tr>
<td>OT 530</td>
<td>Optional: Independent Study in OT (1-3 credits)</td>
<td></td>
</tr>
</tbody>
</table>

Total 9

Total Credit Hours 92

Length of Program

Students must complete the program in 27 months unless granted a leave of absence for health or personal reasons. Any student that requests and is granted a leave of absence must complete the program in 40 months (27 months plus 1 year).

Program Sequence and Advance Standing

Students are expected to complete the designated professional curriculum in the sequence specified. Each semester’s course work is to be considered pre-requisite to the next semester.

1. Students may not enter the program with advanced standing.
2. Students are required to successfully complete, in sequence, all course work as full-time students.
3. There is no opportunity to progress into an advanced semester.
4. There is no opportunity to change the order of pre-clinical course work.
5. Elective courses are limited to the clinical year.
Students are expected to complete each semester on time as a cohort. Student progression will be a function of successfully passing all required courses in a semester.

Graduation Requirements
To graduate from the OT Program, and earn the Master of Science in Occupational Therapy degree (MSOT) candidates must:
• Achieve a grade of C or better for all courses in the program
• Achieve a minimum overall GPA of 3.00 or better at program completion
• Successful completion of both levels of fieldwork
• Successful completion of the comprehensive written final exam by score or remediation
• Be recommended for graduation by the Program Chair and Clarkson University Faculty
• Student must have paid all debts to the school and be in good standing

Clarkson Pre-OT Plan
Clarkson University offers a pre-Occupational Therapy program to highly qualified and motivated incoming high school students who wish to pursue a career in occupational therapy. The Pre-OT plan is not a major or a minor. Students must declare a major in an area of interest.

Students accepted into the pre-Occupational Therapy program will be invited to participate in activities in the OT department and will be granted preferential consideration as long as they demonstrate successful completion of the pre-requisites and meet all admission requirements of the Master of Science in Occupational Therapy to include:
• Complete a baccalaureate degree at Clarkson University with an overall grade-point average greater than or equal to 3.0.
• Overall grade-point average greater than or equal to 3.2 in all pre-requisite courses and no grade lower than a C in these courses.
• Submit documentation of a minimum of 40 hours of observation/volunteer or work experience under the supervision of an occupational therapist or occupational therapy assistant.
• Submit three letters of recommendation. At least one must be from a faculty member who can speak of your academic or professional character. At least one from an occupational therapy professional is preferred. Letters from family, friends or clergy will not be accepted.
• Provide an essay stating your interest in the field of Occupational Therapy.
• Satisfy the on-campus interview requirement.
• Submit an application to the MSOT program through the Occupational Therapy Common Application Service (OTCAS) by September 20 of your senior year as an undergraduate at Clarkson University.

Contacts
If you have any specific questions regarding our Pre-OT plan, you can contact our Pre-Health Sciences Advisor, at ot@clarkson.edu or 315-268-3968.

Accreditation
The Accreditation Council for Occupational Therapy Education (ACOTE) of the American Occupational Therapy Association (AOTA) has granted “Candidacy Status” to the Occupational therapy Program at Clarkson University.

Candidacy Status is step 2 of the accreditation process. Although the designation “Candidacy Status” is not a guarantee of accreditation, it does indicate that the resource allocation and plan for development of the proposed program appear to demonstrate the ability to meet the ACOTE Standards for a Master’s-Degree-Level Educational Program for the Occupational Therapist if fully implemented as planned.

Doctor of Physical Therapy (DPT) Program

Mission
The domain of physical therapy is the application of human movement science to maintain or enhance activity level and social participation. Physical therapy is a health profession that includes evaluating, alleviating and preventing impairments, functional limitations, and disability from injuries, disease and other causes. Physical therapists serve a dynamic and comprehensive role in health care engaging in treatment, consultation, education and research.

The mission of the Department of Physical Therapy is:
- To graduate physical therapists who emulate the core values of the profession in their physical therapy practice; and
- For faculty, graduates, and students to contribute to the profession, community, and society through education, scholarship, service or practice.

Pre-Physical Therapy (Pre-PT) Undergraduate Concentration
To prepare candidates for entry into the graduate physical therapy professional curriculum, the University offers an undergraduate Pre-Physical Therapy (Pre-PT) Concentration. The Pre-PT Concentration consists of three unique aspects:
- At least 50% of the available seats in each cohort will be held for Clarkson University pre-PT undergraduate students who successfully complete all of the necessary pre-requisite requirements.
- A physical therapy program adviser. In addition to your major adviser, you'll be assigned a second faculty adviser from the Department of Physical Therapy. This extra mentoring relationship adds another dimension of support to your experience. You and your PT adviser will work together to define your career goals, balance your PT course requirements with major requirements, and make a successful transition to the Doctor of Physical Therapy program.
• A solid foundation in Problem-Based Learning, which is a cornerstone of the graduate program. The pre physical therapy courses will introduce you to this student-centered, collaborative and self-directed education model. Problem-Based Learning (PBL), based on patient case studies, more closely resembles actual clinical experience. It better prepares you to be a self-motivated lifelong learner, which is essential to being a competent healthcare professional.

The graduate professional curriculum (DPT) emphasizes problem-based learning, technology in education, a strong basic science partnership, and a strong commitment to cultural diversity. The Pre-PT Concentration provides an introduction to problem-based learning.

Pre-PT Concentration Admissions Requirements
Pre-PT Concentration applicants must complete all the required material for general Clarkson undergraduate admission, and indicate on the undergraduate application that Special Advising - Physical Therapy is desired. Of the required recommendations by the University, applicants to the Pre-PT Concentration should have at least one academic, and preferably one in a health-care field.

Length of Pre-PT Concentration
An undergraduate degree normally takes four academic years. There are plans of study in some undergraduate majors that can be completed in three years.

Doctor of Physical Therapy Application Requirements
• Completion of baccalaureate degree (BS, B.A., etc.) prior to matriculation into the professional curriculum; with an overall grade point average greater than or equal to 3.2
• Take all the necessary pre-requisite courses with a grade point average greater than or equal to 3.2 in all pre-requisite courses and no grade lower than a C in these courses.
• Submit documentation of a minimum of 50 hours of observation/volunteer or work experience in physical therapy and/or another healthcare setting, of which a minimum of 30 hours must be completed under the supervision of a physical therapist.

All applications to the graduate physical therapy program must be submitted through the Physical Therapy Centralized Application Service (PTCAS - www.ptcas.org).

Prerequisite Courses
Two Biology courses:
• Cellular and Molecular Biology/Lab (Clarkson course: BY160/BY162), 5 credits
• Human Anatomy and Physiology I/Lab (Clarkson course: BY 471/BY 473), 5 credits or Human Anatomy & Physiology II/Lab (Clarkson course: BY 472/BY 474) 5 credits

Two Chemistry courses:
• General Chemistry I with lab (Clarkson course: CM 131 or CM 103/105: Structure and Bonding with lab) 4 or 5 credits
• General Chemistry II with lab (Clarkson course: CM 132 or CM 104/106: Chemical Equilibrium and Dynamics with lab) 4 or 5 credits

Two Physics courses:
• Physics I with lab (Clarkson course: PH 131 or PH 141) 4 credits
• Physics II with lab (Clarkson course: PH 132 or PH 142) 4 credits

One statistics course:
• Statistics (Clarkson courses: STAT 282, STAT 284, STAT 318, STAT 383) 3 credits

Two Psychology Course
• General Psychology (Clarkson course: PY 151) 3 credits
• Another 3 credit Psychology course, we recommend Developmental Psychology, life span (Clarkson course: PY 370) 3 credits

Medical Terminology

Academic Learning Experiences
The DPT curriculum utilizes a problem-based learning (PBL) approach to education, providing students an active, exciting and effective way to learn. PBL is student-centered, collaborative, self-directed, and an active learning process based on patient case studies. Students are prepared for clinical practice and lifelong learning.

Clinical Learning Experiences
Clinical internships are integrated into the curriculum throughout the educational process. To prepare students optimally for work in a variety of clinical settings, Clarkson continuously develops new clinical internship sites. Contractual relationships exist with many clinical internship sites in the North Country of New York State, throughout the United States, and some international sites as well.

The DPT Curriculum
The DPT professional curriculum is a full-time program, starting in the fall semester. Each year is divided into three semesters (trimesters), and includes Clinical Education. The professional curriculum takes three years to complete, finishing in May of the third year.

<table>
<thead>
<tr>
<th>Fall — Semester 1</th>
<th>Cr. Hrs.</th>
<th>Spring — Semester 5</th>
<th>Cr. Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT505</td>
<td>9</td>
<td>PT606</td>
<td>6</td>
</tr>
<tr>
<td>Foundational Sciences For Physical Therapy</td>
<td></td>
<td>Neuromuscular Physical Therapy II</td>
<td></td>
</tr>
<tr>
<td>PT506</td>
<td>2</td>
<td>PT607B</td>
<td>1</td>
</tr>
<tr>
<td>Professional Found For Physical Therapy</td>
<td></td>
<td>Professional Practice III</td>
<td></td>
</tr>
<tr>
<td>PT508</td>
<td>1</td>
<td>PT615</td>
<td>3</td>
</tr>
<tr>
<td>Principles of Measurement</td>
<td></td>
<td>Physical Therapy for Multiple Systems I</td>
<td></td>
</tr>
<tr>
<td>Spring — Semester 2</td>
<td></td>
<td>PT617A</td>
<td>1</td>
</tr>
<tr>
<td>PT515</td>
<td>9</td>
<td>PT618</td>
<td></td>
</tr>
<tr>
<td>Cardiopulmonary/Exercise Science</td>
<td></td>
<td>Research Data Collection</td>
<td>1</td>
</tr>
<tr>
<td>PT517</td>
<td>2</td>
<td>PT616</td>
<td>6</td>
</tr>
<tr>
<td>Professional Practice</td>
<td></td>
<td>Physical Therapy for Multiple Systems Disorders II</td>
<td></td>
</tr>
<tr>
<td>PT518</td>
<td>1</td>
<td>PT617B</td>
<td>1</td>
</tr>
<tr>
<td>Evidence-Based Practice</td>
<td></td>
<td>Professional Practice IV</td>
<td></td>
</tr>
</tbody>
</table>

| Summer — Semester 3 | | | |
| PT606 | | | |
Facilities
The Doctor of Physical Therapy (DPT) curriculum is housed in Clarkson Hall. The Department of Physical Therapy provides a focus on health sciences education, treatment and research in physical rehabilitation for the University and the community. Clarkson Hall houses Clarkson’s academic physical therapy programs.

Program Length
Students complete within 2 2/3 years or 8 trimesters.

Accreditation Status
The Commission on Accreditation in Physical Therapy Education (CAPTE) of the American Physical Therapy Association (APTA) accredited Clarkson University’s graduate physical therapy professional curriculum on October 24, 2001. The State Education Department of the University of the State of New York approved Clarkson University’s graduate physical therapy as the Master of Physical Therapy (MPT) on April 21, 1999, and the Doctor of Physical Therapy (DPT) on May 18, 2005. CAPTE reaffirmed Program accreditation on October 28, 2009.

Masters of Science Physician Assistant Studies Program
Mission and Goals
The mission of the Clarkson University Department of Physician Assistant Studies is to educate Physician Assistants to become highly skilled and compassionate health care providers. The program will encourage an interdisciplinary approach with an emphasis on patient-centered care. Graduates will become leaders in the health care community, continuously striving for excellence in their professional endeavors while compassionately providing for the health care needs of those they serve.
The goals of the Department of Physician Assistant Studies are to:

1. Identify for admission those individuals with the academic ability, clinical experience, interpersonal skills, and maturity necessary to become outstanding Physician Assistants.
2. Provide a coordinated, comprehensive didactic and clinical curriculum that will allow graduates to deliver the highest quality of health care services.
3. Promote a didactic and clinical educational environment that embraces the concepts of continuous communication, cooperation, and compassion.
4. Promote an atmosphere of "learner-centered" education that empowers students to become self-directed learners.
5. Instill in students the core values of Clarkson University and the importance of staying in the Clarkson region to practice after graduation.
6. Provide students with the medical knowledge, clinical skills, and caring attitude needed to practice as a Physician Assistant anywhere and within any type of clinical practice.
7. Contribute knowledge to the medical community by performing research or other forms of academic activity through the students' Master's Project, which may be utilized as a community resource or published in a professional journal.
9. Develop in students an appreciation of the dignity of the individual and each individual's right to a quality life with consideration for the culture and diversity of each patient.
11. Highlight the importance of community service by incorporating service learning into the curriculum while fostering a commitment to future volunteerism in our students.
12. Encourage graduates to strive for excellence in clinical practice while employing professional ethics as a member of the health care team focused on service to others.

The Department of Physician Assistant Studies will prepare individuals to become valued members of the health care team licensed to practice medicine with physician supervision.

Department motto: a posse ad esse - from possibility to reality.

Application

Applications are made via the Centralized Application Service for Physician Assistants (CASPA) https://portal.caspaonline.org/. A supplemental Clarkson University PA program application will be required for qualified CASPA applicants. Deadline for applications through CASPA is March 1st. A rolling acceptance policy is being used. The class size will be approximately 30 students.

The prerequisites for admission are listed below. Be sure that you meet the Clarkson program prerequisites before submitting your CASPA application. This includes your score on the GRE. Please review the technical standards for the program. Those applicants who are invited to submit a supplemental application will sign a statement in that application that these standards can be met.

Prerequisites for the Clarkson PA program

- Bachelor's degree from a regionally accredited college/university
- 2 semesters Human/Animal/Vertebrate Anatomy & Physiology or 1 semester of Human/Animal/Vertebrate Anatomy and 1 semester of Physiology - minimum 6 hours total
- 2 semesters of Biology - one of which must be Microbiology (A&P cannot be used to fulfill the remaining course requirement) -minimum 6 hours total
- 2 semesters of Chemistry (Organic Chemistry recommended) - minimum 6 hours total

GPA for the above courses must be 3.0 or higher

- 1 semester of Humanities/Social Sciences: minimum 3 credits
- 1 semester Statistics: minimum 3 credits
- 1 semester Genetics: minimum 3 credits
- 1 semester Psychology (upper level recommended): minimum 3 credits

Grades less than C are not accepted for any prerequisite (C minus not accepted). Prerequisite courses must be complete or in progress at the time of application. Overall GPA for all required courses must be 3.0 or higher

All prerequisite coursework must be completed at an accredited institution within the United States or Canada.

- GRE - with results sent to Clarkson University (school code 2084).
- A minimum of 500 hours of documented patient care experience is to be completed by the time of admission. Applicants with compensated hours of direct patient care will have an advantage. A portion of the required hours must be started by the time of application. Those that have not met the required hours by time of application must demonstrate a plan to obtain the remaining hours before classes begin if accepted into the program.
- It is required that applicants spend at least one day shadowing/observing a clinically practicing Physician Assistant. A separate (non-reference) Clarkson PA program form will be completed by the PA documenting the experience.
- Students who studied extensively outside of North America will require formal evaluation of those transcripts by the World Education Service (WES). Completion of TOEFL will be required for those for whom English is not the primary language. This requirement may be waived if the applicant has a bachelor's, master's, or doctoral degree from a regionally accredited U.S. college/university.

Simply meeting the prerequisites and submitting an application will not guarantee an interview or acceptance into the program. The admissions committee will decide which applicants are interviewed and which are selected for admission.

Technical Standards Requirements
The abilities and skills which candidates and students must possess in order to complete the education and training associated with Physician Assistant education are referred to as "Technical Standards." These same abilities and skills are essential for clinical practice as a Physician Assistant. The Technical Standards listed below reflect five categorical areas: observation, communication, critical reasoning (intellectual), motor and sensory, and behavioral/social and represent minimum competence levels. Students must attest that they
meet these Technical Standards prior to or at the time of matriculation to the Clarkson University Department of PA Studies. Students found to be in violation of Technical Standards are at risk for dismissal from the program. Each standard is defined below and is followed by examples of indicators of minimum competence in that area. Reasonable accommodation for persons with documented disabilities will be considered on an individual basis, but a candidate must be able to perform in an independent manner.

Observation. Candidates must have sufficient capacity to observe in the lecture hall, the laboratory, the outpatient setting and the patient’s bedside. Sensory skills to perform a physical examination are required. Functional vision, hearing and tactile sensation are required to properly observe a patient’s condition and to perform procedures regularly required during a physical examination such as inspection, auscultation and palpation.

Communication. Candidates must be able to communicate effectively in both academic and health care settings. Candidates must show evidence of effective written and verbal communication skills. Candidates must be able to communicate with patients in order to elicit information, describe changes in mood, activity and posture and perceive nonverbal communications. Candidates must be capable of completing, in a thorough and timely manner, appropriate medical records and documents and plans according to protocol.

Motor. The ability to participate in basic diagnostic and therapeutic maneuvers and procedures (e.g., palpation, auscultation) is required. Candidates must have sufficient motor function to execute movements reasonably required to properly care for all patients. Candidates must be able to move freely about patient care environments and must be able to move between settings such as clinics, classroom buildings, and hospitals. In addition, physical stamina sufficient to complete the rigorous course of didactic and clinical study is required. Long periods of sitting, standing, or moving are required in classroom, laboratory and clinical experiences.

Intellectual. Candidates must be able to measure, calculate, reason, analyze and synthesize. Problem solving, one of the critical skills demanded of physician assistants, requires all of these intellectual abilities. Candidates must be able to read and understand medical literature. In order to complete the Physician Assistant Studies program, candidates must be able to demonstrate mastery of these skills and the ability to use them together in a timely fashion in medical problem-solving and patient care.

Behavioral and Social Attributes. Candidates must possess the emotional health and stability required for full utilization of their intellectual abilities, the exercise of good judgment and the prompt completion of all academic and patient care responsibilities. The development of mature, sensitive and effective relationships with patients and other members of the healthcare team is essential. The ability to function in the face of uncertainties inherent in clinical practice, flexibility, compassion, integrity, motivation, interpersonal skills and concern for others, are all required. Candidates must be able to function effectively under stress and
have the ability to accept constructive criticism and handle difficult interpersonal relationships during training.

Supplemental Application
Candidates will be required to certify that they have read and understand the Technical Standards of the Department of PA Studies at Clarkson University and attest that they have no condition -as noted above- that would interfere, inhibit, compromise or distract from their participation in the program.

The supplemental application is in addition to the CASPA application. After verification of the CASPA application the program will review and invite qualified applicants to complete a supplemental application. Supplemental applications received that have not been requested by the program will be disregarded and will not be considered for admission to the program. The supplemental application is to be completed only at the request of the program.

For the supplemental application to be completed, it will include:
- The application form
- Your personal statement describing how Clarkson’s values and its PA program will influence your PA education
- Certification of meeting technical standards (form is in the application)
- Reference letter from a practicing physician, Physician Assistant, or Nurse Practitioner if one was not included in your CASPA application (form is in the application)
- The CASPA and supplemental application must contain a total of three reference letters. If additional letters are needed to meet the minimum requirement, submit additional letters with the supplemental application. (form is in the application)
- Official transcript for all coursework not verified in the CASPA application
- Documentation of shadowing PA (form is in the application)
- GRE – school code 2085. Must be official scores reported by ETS directly to CASPA
- $50.00 application fee (made payable to Clarkson University)

All materials are to be mailed directly to Clarkson University at:
Clarkson University Department of Physician Assistant Studies
8 Clarkson Avenue Potsdam, NY 13699-5882

For questions about completing the Clarkson University supplemental application, contact the Clarkson University Department of Physician Assistant Studies at pa@clarkson.edu or 315-268-7942.

The supplemental application must be returned within 30 days of the request from the program. If the supplemental application is not received within thirty days the entire application will closed and applicant status will be moved to withdrawn. Incomplete applications, applications received after the deadline, or applications received without the application fee will not be considered.
Program Curriculum
The PA Program at Clarkson University is a professional degree program intended to prepare students academically and professionally for responsibilities and services as a Physician Assistant. This entry level master’s degree program consists of 82 credit hours divided into three phases that span 28 consecutive months.

1. The Didactic phase is the preclinical year and spans 13 months.
2. The Clinical phase consists of 14 months of supervised clinical education and coursework.
3. The Summative Phase consists of 1 month and consists of evaluation and preparation for the future as a graduate PA.

The curriculum is structured so that courses from term two build on courses in term One, etc. Therefore, opportunities for transfer of credit into the PA curriculum or advanced placement are not available. Supervised Clinical Practice Experiences are distributed among 9 clinical field experiences or “SCPE’s”. These experiences form the basis of the clinical and socialization processes for adaptation to the roles and functions of a Physician Assistant. A separate 5-week elective is designed for student research.

<table>
<thead>
<tr>
<th>Spring I</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to the Profession</td>
<td>PA500</td>
<td>2</td>
</tr>
<tr>
<td>Clinical Medicine I</td>
<td>PA501</td>
<td>6</td>
</tr>
<tr>
<td>Basic Science I</td>
<td>PA504</td>
<td>2</td>
</tr>
<tr>
<td>Pharmacotherapeutics I</td>
<td>PA507</td>
<td>3</td>
</tr>
<tr>
<td>Patient Assessment I</td>
<td>PA510</td>
<td>3</td>
</tr>
<tr>
<td>The Patient and the PA I</td>
<td>PA513</td>
<td>1</td>
</tr>
<tr>
<td>Semester Total</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer I</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Medicine II</td>
<td>PA502</td>
<td>4</td>
</tr>
<tr>
<td>Basic Science II</td>
<td>PA505</td>
<td>2</td>
</tr>
<tr>
<td>Pharmacotherapeutics II</td>
<td>PA508</td>
<td>3</td>
</tr>
<tr>
<td>Patient Assessment II</td>
<td>PA511</td>
<td>3</td>
</tr>
<tr>
<td>The Patient and the PA II</td>
<td>PA514</td>
<td>1</td>
</tr>
<tr>
<td>Semester Total</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fall I</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Medicine III</td>
<td>PA503</td>
<td>6</td>
</tr>
<tr>
<td>Basic Science III</td>
<td>PA506</td>
<td>2</td>
</tr>
<tr>
<td>Pharmacotherapeutics III</td>
<td>PA509</td>
<td>3</td>
</tr>
<tr>
<td>Patient Assessment III</td>
<td>PA512</td>
<td>3</td>
</tr>
<tr>
<td>The Patient and the PA III</td>
<td>PA515</td>
<td>1</td>
</tr>
<tr>
<td>Medical Informatics</td>
<td>PA516</td>
<td>2</td>
</tr>
<tr>
<td>Semester Total</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>
Length of Program

Students must complete the program in 28 months unless granted a leave of absence for health or personal reasons. Any student that requests and is granted a leave of absence must complete the program in 40 months (28 month program plus 1 year).

Program Sequence and Advance Standing

Students are expected to complete the designated professional curriculum in the sequence specified. Each semester's course work is to be considered pre-requisite to the next semester.

1. Students may not enter the program with advanced standing.
2. Students are required to successfully complete, in sequence, all course work as full-time students.
3. There is no opportunity to progress into an advanced semester.
4. There is no opportunity to change the order of pre-clinical course work.
5. Elective courses are limited to the clinical year.

Students are expected to complete each semester on time as a cohort. Student progression will be a function of successfully passing all required courses in a semester. In the didactic phase of the program, any course failure after attempts at remediation will result in dismissal from the program. In the clinical phase, one rotation may be failed, but with remediation and a repeat of that rotation once only for the clinical phase. In that instance, the student's education may continue 5 more weeks. In the summative phase, the student must pass both the physical assessment exam and the comprehensive written final to pass PA 610 and to be recommended for graduation. If after remediation, a student cannot successfully pass either or both exams, they will not be recommended for graduation and will be released from the program.

Graduation Requirements
To graduate from the PA Program, and earn the Master of Science in Physician Assistant Studies degree (MS) candidates must:

- Achieve a grade of C or better for all courses in the program
- Achieve a minimum overall GPA of 3.00 or better at program completion
- Successful completion of a multi-station OSCE/history and physical skills assessment by score or remediation
- Successful completion of the comprehensive written final exam by score or remediation
- Be recommended for graduation by the Program Chair and Clarkson University Faculty
- Student must have paid all debts to the school and be in good standing

Academic Performance Standards
Standards of acceptable performance (cognitive and psychomotor) for courses are communicated to students in writing via the syllabus and orally reviewed at the introduction of the course.

A student must achieve and maintain the required 3.00 semester Grade Point Average (GPA) to remain in good academic standing and graduate from the PA Program.

The policy of 3.00 or better in a graduate professional program has been adopted to better ensure student’s preparation for future sequential course work. Students will be given feedback at the completion of each exam.

Performance in didactic courses is commonly assessed by written exams, oral presentations and/or research papers, as well as final written (cognitive) exams. In designated courses,
psychomotor performance may be assessed by target skill competency exams and small group exercises.

During the didactic phase of the program, grades for cognitive performances will be recorded as a raw score and a percentage. At the end of each course the percentage scores will be converted to a grade, A through F for each of the core PA courses.

Performance in the clinical phase of the program is assessed using a combination of targeted behavioral, psychomotor and clinical competencies relative to the supervised practice objectives and opportunities and, when indicated, by the syllabus for the SCPE, grand rounds presentations, and written cognitive exams.

To remain in good academic standing, all PA Students must maintain a minimum semester GPA of 3.00 and receive a “C” or better in all courses (a “D, or F,” grade in any course may result in academic dismissal from the program).

Additionally, a student may not progress to the clinical year of the program with a cumulative GPA of less than 3.00 at the end of the 3rd semester of the program.

Faculty will meet formally at the end of each semester to discuss student’s academic progress; students will be notified in writing the results of their individual student progress. Each bi-weekly faculty meeting will include an agenda item on student progress. Additionally, the department will notify Student Administrative Services to comply with the university policy on satisfactory academic progress.

Clarkson Pre-PA Plan

High school seniors who apply to Clarkson University for undergraduate studies are eligible to apply for the Pre-PA Plan as part of their application. Applicants must demonstrate scholarship in Math and Science and a representative SAT/ACT score. Participation in health related courses and activities is encouraged.

The Pre-PA Plan is not a major or minor. Students must declare a major in an area of interest, but will be required to take the 10 prerequisite courses for the PA program as part of their degree. At least three prerequisite courses must be completed by the end of the second year. Patient care hours must be acquired during the first 2 years as well. At least 100 hours of the 500 hour total is required by this time.

Student advising will be done by the department of the declared major with input from the health science advisor and the PA advisor when needed. Pre-PA students will be expected to participate in PA program activities when possible.

Students must achieve and maintain a GPA of at least 3.25 throughout their undergraduate years. No grade less than B is acceptable for prerequisite courses. The students must also be free of any disciplinary problems. At the end of the second undergraduate year, the student will meet with the PA faculty to determine their continuation in the Pre-PA Plan. They must
continue to acquire patient care hours and finish prerequisite courses while maintaining the above mentioned GPA.

During the senior year, the student must still formally apply through the centralized process (CASPA). *50% of the available seats in each cohort will be held for Clarkson University pre-PA students.* Each student that successfully completes the prerequisites of the pre-PA plan will be granted an interview and then compete for the available seats with other pre-PA applicants. Applicants that are not Clarkson pre-PA students will compete for the remaining seats.

Accreditation
The program has been granted continuing accreditation by the ARC-PA as of March 2015. The program has also been registered by the New York State Education Department. Graduation from an accredited program is a requirement of states for licensing and healthcare systems for credentialing.

Accreditation-Continued is an accreditation status. The granting of Accreditation-Continued is an accreditation status granted when a currently accredited program is in compliance with ARC-PA Standards. Accreditation remains in effect until the program closes or withdraws from the accreditation process or until accreditation is withdrawn for failure to comply with the *Standards*.

The approximate date for the next validation review for the program by the ARC-PA will be March 2022. The review date is contingent upon continued compliance with the Accreditation Standards and ARC-PA policy.

If you have questions about the accreditation process or Clarkson's status, please contact us at 315-268-7942 or pa@clarkson.edu.

Contact Us
Clarkson University
Department of Physician Assistant Studies
Box 5882
Potsdam, NY 13699-5882
Phone: 315-268-7942
Fax: 315-268-7944
Email: pa@clarkson.edu
INTERDISCIPLINARY PROGRAMS
In recent years, Clarkson University has built on its existing strengths in business, engineering, liberal arts, and the sciences to develop an increasing number of new interdisciplinary majors that combine learning from two or more traditionally distinct areas. Today, many of the most profound advances in knowledge are occurring at the intersections of previously separate academic disciplines and industrial fields. These innovative programs reflect not only the strength of the University’s academic faculty and resources, but also the flexibility and vitality of Clarkson’s highly collaborative academic environment.

Computer Science Program
The Department of Computer Science offers graduate programs leading to degrees of Master of Science (offered jointly with the Department of Electrical and Computer Engineering) and Doctor of Philosophy in Computer Science. These programs are designed to increase the student’s fundamental knowledge and to give the student guidance and experience in research. A graduate student pursues these objectives by taking advanced courses, participating in seminars, and carrying out and reporting on a research project. The department provides the advantage of close personal association between graduate students and faculty, giving special attention to individual needs and interests.

Requirements for MS in Computer Science
In addition to the general requirements for the MS degree that are established by the University, a student is required to satisfy the following set of requirements:

1. The program requires a minimum of 30 credit hours of graduate level work.
2. At least 20 credit hours must be earned in residence at Clarkson.
3. Each student's program of study must be approved by the Advisory Committee.

Those students who are not fully prepared to pursue graduate work in computer science may be required to take the course CS 511, Foundations in Computer Science. In addition, students with very little to no background in computer science may be required to take undergraduate computer science courses, for which graduate credit will not be given.

4. Course and seminar work will comprise a minimum of 20 credit hours. To ensure some breadth in the program, four courses must satisfy the following:

Two foundation courses must be taken, as described below
- CS 541 Introduction to Automata Theory and Formal Languages
- CS 547 Computer Algorithms

Two courses from the following set, where each of these courses requires a substantial amount of programming.
- CS 544 Operating Systems
- CS 545 Compiler Construction
- CS 550 Software Design and Development
- EE 505 Computer Graphics
- EE 569 Software Design and Analysis
For those students who can demonstrate that they have successfully completed comparable graduate-level courses before coming to Clarkson, the Advisory Committee may waive the requirement that the student take these specific courses upon request from the student.

5. At least two restricted elective courses will be taken from the courses offered in computer science or computer engineering departments as selected by the student and their advisor. Of these 2 restricted elective courses, one must be a course that focuses on research topics in computer science and one must be a computer engineering course with relevant emphasis on computer science topics. Students should consult with their advisors to identify courses in these categories.

6. Two seminar credits: To earn a seminar credit, students must enroll in a seminar course in Computer Science.

7. Thesis credit will comprise a maximum of 10 credit hours of the 30 credit hour minimum. All students must have a research advisor by the end of their first semester of study and must submit a research proposal to the Examination Committee by the end of the semester before they plan to graduate. The Examination Committee shall consist of a minimum of three faculty members. All students must complete a thesis and defend it orally to their Examination Committee. Two copies of the completed thesis must be submitted to the University.

Requirements for PhD in Computer Science

1. A minimum of 90 credit hours earned for graduate courses numbered 500 and higher including at least 36 credit hours of classroom and instructional laboratory coursework (this is above the university minimum of 24); a minimum of 6 credit hours of research seminar. A maximum of 30 credit hours of graduate transfer credit from an MS degree with grades of B or higher may be accepted toward the PhD degree.

2. At least three full academic years of study beyond the baccalaureate degree with at least two years in residence in Clarkson.

3. A cumulative GPA of 3.0 in courses used to meet graduation requirements.

4. Graduate students must complete the PhD candidacy procedure within two years of full time study after admission to the PhD program.

5. Doctoral candidates must complete an original research project submitted as a written thesis to be orally presented and approved before a committee of at least five faculty members. At least four members must be Clarkson faculty of assistant professor rank or higher and possessing a doctoral degree. At least one committee member must be from a department other than the candidate’s major department. An external examiner with appropriate credentials from outside the university may serve as one of the five committee members. The thesis must also be approved by the Dean of the Graduate School and a copy deposited in the university library.

Additional Program Requirements and Procedures:
Students must complete a minimum of 36 credits of computer science related coursework including:

Students must take four required courses across three areas – CS 541 (Theory), CS 547 (Theory), CS 544 (Systems) and CS 545 (Languages). A grade of B+ or better is required in each of these courses. A written exam option is offered for students who have taken equivalent courses at other institutions and for students who did not receive a B+ in the Clarkson course. Students who have taken equivalent courses at other institutions and pass the exam with a grade of B+ or better can replace the corresponding course by another CS course.

Students must also complete a minimum of four 3-credit research-oriented 600-level CS courses. Research-oriented courses include substantial research literature review and a research project/presentation component. The Computer Science PhD Committee will maintain a list of acceptable research-oriented courses. 600-level CS Directed Study Courses are acceptable by permission of the Computer Science PhD Committee only when they satisfy the same standards as regular 600-level CS courses and include substantial research literature review and a research project/presentation component. A grade of B+ or higher is required in two 600-level CS courses in order to advance to candidacy and one of these must be a research-oriented 600-level course.

Beyond the four required courses listed in Foundations, students must take one course from each of the following four groups. Courses used to satisfy this breadth requirement may also be used to satisfy the requirements in Research. The specific lists of courses may change and students may petition the Computer Science PhD Committee to accept additional courses, including courses outside the department, in these groups.

Group A (Theory and Algorithms): 542, 546, 549, 556, 642, 656
Group B (Computer Systems and Networks): 553, 555, 557, 563, 644, 654
Group C (Languages and Software Development): 543, 550, 558, 560, 658
Group D (Artificial Intelligence and Applications): 551, 552, 559, 561, 562, 659

Additional Courses as necessary to reach 36 course credits. Students are expected to take at least one graduate course in computer science or a related field each semester that they are enrolled in the Computer Science PhD Program. This requirement may be waived if in consultation with the student’s advisor, the Computer Science PhD Committee decides it is in the student’s best interest to focus on completion of their thesis work.

Students are required to attend and participate in the CS 707 or 708 Seminar in Computer Science (1 credit) series during at least six semesters in residence in the PhD program. Participation is recommended during each semester in residence in the PhD program.

The doctoral candidacy procedure for the Computer Science program is portfolio-based.
Before advancing to candidacy, students must have completed the 4 required courses (CS 541, CS 547, CS 544 and CS 545) and two of the 600-level CS courses at least one of which must be a research-oriented course. A grade of B+ or higher is required in each course.

Students prepare a portfolio consisting of a written statement of research interest and representative work from courses and seminar (e.g. exams, research papers, presentation materials). The student appears before the Computer Science PhD Committee for an oral defense of their portfolio. This oral defense and portfolio examination constitutes the comprehensive exam for candidacy in Computer Science.

To advance to candidacy, the student must have also chosen a faculty advisor who believes he or she is prepared to begin original research in a mutually acceptable field of specialization. Students must advance to candidacy within two years of full-time study after admission to the PhD program or be granted an extension by the Computer Science PhD Committee.

The doctoral candidacy procedure for the Computer Science program is portfolio-based.

The student must write a thesis proposal outlining his or her research plan and discussing related work and defend this proposal in an oral exam before his or her thesis committee. In addition to the university requirements, at least three members of the committee must be from the Computer Science Department. Students must form their committee and pass the thesis proposal defense exam by the end of their third year of full-time study after admission to the PhD program or be granted an extension by the Computer Science PhD Committee.

The final step in completion of the doctoral program is the submission of a written thesis in conjunction with an oral thesis defense. The candidate will normally present a 50-minute oral presentation of the thesis work at an advertised campus event followed by at least 10 minutes of public questions. After the end of the public session, the candidate and their 5-member thesis committee will gather in closed session for final questions and presentation of corrections to thesis. The candidate will be then asked to leave the room for a final vote of approval. Following approval, the candidate must complete the requested corrections to the written thesis and obtain final signatures. The candidate must provide all five thesis committee members with a copy of the thesis at least four full weeks before the public defense.

The thesis committee for the final defense is the same as for the proposal defense. Any changes must be approved by the Computer Science PhD Committee in advance of the final defense.

Program Length
All work done for the master’s degree in computer science is to be completed within five calendar years, although it is normative to complete this degree in 2 years. All work for the PhD degree must be completed within seven years after admission to candidacy.
Faculty in Computer Science
Professor Christopher Lynch; Associate Professors Daqing Hou, Alexis Maciel, Jeanna Matthews, Christino Tamon; Assistant Professors Natasha Banerjee, Sanjib Banerjee, Yaoquing Liu

Engineering Science Programs
Clarkson University offers MS and PhD programs in Engineering Science for qualified students who desire interdisciplinary graduate study in engineering that does not fit within any of the four engineering departments shown below.

- Chemical and Biomolecular Engineering
- Civil & Environmental Engineering
- Electrical & Computer Engineering
- Mechanical & Aeronautical Engineering

Requirements for MS degree

BS in Engineering or Science (Chemistry, Computer Science, Math or Physics; other degrees considered on a case-by-case basis).
1. The following are minimum requirements:
 - Minimum of 30 credits beyond BS
 - Minimum of 18 credits of graduate course work (12 credits in engineering).
 - GPA for graduation is B (3.0/4.0).
 - 2 credits of seminar work (in engineering or science).
 - Minimum of 6 credits of thesis.
 - 20 of the 30 credit hour must be earned in residence
 - 1 academic year of full time study beyond the Baccalaureate

2. The research advisor must be a member of Clarkson School of Engineering (CSoE) (may be a courtesy appointment).
3. MS Thesis Committee will consist of a minimum of three faculty members (PhD) with at least two from CSoE.

Requirements for PhD Degree

MS in Engineering or Science (Chemistry, Computer Science, Math or Physics; other degrees considered on a case-by-case basis).

1. The following are minimum requirements:
 - Minimum of 60 credits beyond MS, 90 credits beyond the BS
 - Minimum of 39 credits of graduate course work (minimum of 24 credits in engineering).
 - GPA for graduation is B (3.0/4.0).
 - 6 credits of seminar (in engineering or science).
• PhD Thesis Committee: Minimum of five faculty Members (PhD) with at least three from CSoE.

2. A maximum of 30 credit hours transfer credit (grade of B or better).
3. All work to be completed within seven years after the candidacy procedure is completed.
4. The research advisor must be a member of CSoE (can be a courtesy appointment).

Sequence of Examinations:
 a. Qualifying Examination: A written qualifying exam is required within one year of admission to the PhD program. The qualifying exam will be administered by the Chair of the student’s PhD Committee or the researcher advisor’s departmental graduate committee. The outcome of the exam is determined by a vote of the respective committees, with no more than one dissenting vote permitted for passage. Failure to pass the qualifying examination twice is grounds for dismissal from the program.

 c. Examination on the Dissertation: Administered by PhD Thesis Committee at least one year after passing the proposal defense.

Data Analytics MS

Key Contacts
Boris Jukic
Co-Director of Data Analytics & Professor of Operations & Information Systems
School of Business
Phone: 315/268-3884 or E-mail: bjukic@clarkson.edu

Joseph Skufca
Co-Director of Data Analytics & Professor and Chair of Mathematics
School of Arts & Sciences
Phone: 315/268-2399 or E-mail: jskufca@clarkson.edu

Daqing Hou
Co-Director of Data Analytics
Associate Professor and Director of Software Engineering
Coulter School of Engineering
Phone: 315/268-7675 or E-mail: dhou@clarkson.edu
The MS-Data Analytics degree provides students with the skills to be effective professionals in a highly sought-after field of identifying, acquiring, managing, presenting, analyzing and interpreting large amounts of data in a variety of professional fields and organizational settings. The program offers close faculty student interaction with core courses ensuring that students acquire common set of key critical skills in areas of data management, decision analysis, statistics, data mining and knowledge discovery. In addition, the programs offers a variety of elective courses in various areas of data analytics form which students can build additional level of proficiency and expertise.

Upon completion of this program students will possess skills and demonstrate proficiency in the core areas of data analytics and will be able to apply them to one or more specialized contexts of business, engineering or science. Students will develop deep understanding of how to identify and satisfy data requirements of a variety of stakeholders, working closely across organizational boundaries to create, analyze and present valuable information. Their acquired expertise will enable them to manage, review, analyze, and evaluate data at a very advanced level for critical decision making purposes. These skills will enable them to secure positions in private enterprises as well as government and other intuitions with job titles such as Data Analyst, Data Solution Analyst and Data Scientist, among many others.

Prerequisites

The MS program requires completion of foundation courses in three specific areas: Calculus, Mathematical Statistics and Basic Programming. These courses can be completed as part of the regular undergraduate degree program or through pursuing the Summer Analytics Foundation program offered by this program, lasting from June to August preceding the start of the regular fall semester.

Degree Requirements

The (33) thirty-three credits of the MS degree program consist of five three-credit core graduate courses, four three-credit graduate elective courses, and a six-credit capstone course based on a sponsored project work. The core course titles are:

- **IA 510 - Database Modeling, Design and Implementation**
- **IA 520 - Optimization Methods for Analytics**
- **IA 530 - Probability and Statistics for Analytics**
- **IA 640 - Information Visualization**
- **IA 650 - Data Mining**

Some of the core courses may be waived if the students can demonstrate that their previous undergraduate or graduate coursework contains equivalent material. In those cases, students will be required to take a greater number of elective courses to satisfy 33-credit program requirement.

Graduate elective courses are offered in a variety of areas and they include but are not limited to the following:
IA 605 - Data Warehousing
IA 630 - Modeling for Insight
IA 626 - Big Data Processing and Cloud Services
IA 628 - Introduction to Big Data Architecture and Applications
OM 680 - Strategic Project Management
MK 696 – Marketing Research Methods
EC 611- Econometrics

ES 505 - Design of Experiments
EE 574 - Pattern Recognition
ME 529, Stochastic Processes for Engineers
CS 551 - Artificial Intelligence
CS 559 - Human Computer Interaction
EE 501 - Digital Signal processing
CS 549 - Computational/Machine Learning

The electives list is not exclusive. We anticipate that students entering the program will have an interest in working in a focused area of data analytics. Students will build an individualized plan of study through the selection of course electives that align with their intended focus. Faculty advisor will work with individual students to choose proper electives by exploring all graduate courses offered in the curriculum of the different schools at Clarkson University.

IA690 - Capstone Project is a course centered on a sponsored data analytics projects with interdisciplinary teams. Capstone projects, depending on project parameters could consist of a 2 unit seminar w/4 unit project (consistent with engineering curriculum as currently offered) and/or be a mentored capstone of 6 total units. Depending on the nature of the capstone and its sponsorship, projects could be on-site fieldwork intensive.

Program Length
Expected program length for the MSDA (residential) is three semesters, but it can be extended and expected program length for the MSDA (distance) is (5) five quarters, but it can be extended.

Data Analytics Faculty
Boris Jukic, Professor of Operations & Information Systems
Joseph Skufca, Professor and Chair of Mathematics
Daqing Hou, Associate Professor and Director of Software Engineering
Sumona Mondal, Associate Professor, Mathematics
Tyler Conlon, Instructor and Director of Projects and IT Infrastructure, Data Analytics
Bebonchu Atems, Assistant Professor of Economics & Financial Studies
William MacKinnon, Assistant Professor of Operations & Information Systems
Master of Science in Engineering Management
Michael Walsh, Associate VP Business Development, Professional Programs
mwalsh@clarkson.edu

Clarkson University’s Master of Science in Engineering Management brings together world-class engineering and technology expertise with best practices in business to deliver an unparalleled education and an exceptional degree, specifically for rising engineering and technical professionals. Our mission is accomplished by focusing on the three areas key to professional education including curriculum & instruction, people, and learning environment.

Prerequisites
The MS in Engineering and Management (MSEM) program requires an engineering/technical degree OR relevant experience in an engineering/technology based organization.

Degree Requirements
The thirty credits required for the MS in Engineering and Management consists of 10 courses, 7 core and 3 electives. Program courses are illustrated below:

- Strategic Project Management
- Optimization Methods
- Organizational Strategy & International Competitiveness
- Cost Management
- Quality Management & Process Control
- Negotiations & Relationship Management
- Financial Management
- Environmental Sustainability & Risk Analysis
- Marketing Management for Innovation
- Business & Environmental Law
- Capstone Project

Students also complete a final (or Capstone) project demonstrating newfound knowledge and skills as well as their ability to address the challenges faced by their company or a specific industry.

Program Length
Expected program length for the MSEM is 24 months

More Interdisciplinary Programs
For information on the Interdisciplinary Programs of Environmental Politics and Governance MS and the Environmental Science and Engineering MS and PhD, please refer to the Institute for a Sustainable Environment.

Information Technology Program
Dr. William Horn, Director
The Master of Science in Information Technology offers an interdisciplinary, broad-based curriculum for this professional degree. Students take courses from a range of disciplines that include math and computer science, electrical and computer engineering, communications, and management information systems. The program has a practical orientation that emphasizes hands-on learning and real-world experience in collaborative projects.

Students develop a broad base of competencies in hardware, software, and the management of technology. At the same time they can explore specific application areas of their choice through elective classes and project work. Projects will focus on problems that provide experience directly applicable to IT in an organizational setting.

Applicants should be able to show competence in at least one modern programming language (such as C, C++, Pascal, Java, or related languages), familiarity with the use of a modern operating system, and experience with applications on multiple hardware platforms. Full acceptance may be delayed and remedial coursework required if a student lacks specified competencies.

All applications are evaluated individually by an advising committee. The MS in IT program comprises a minimum of 30 credit hours which include: one course treating modern object-oriented design in a language such as C++; one course treating the principles of computing and telecommunication systems; one course in the management of technology; three courses in application of information technology; six credits of project work; additional credits can include course or project work. Each student must prepare a comprehensive report acceptable to the IT Advisory Committee documenting the scope and subject matter of the degree project.

Prerequisites for Admission: In order to be considered for admission, applicants must possess either a bachelor's degree in a related field or a bachelor degree and five years of applicable work experience. Applicants should have the ability to display competence in one or more programming languages, operating systems, and multiple hardware platforms. If any applicant lacks these requirements, he or she may be required to complete remedial coursework before being accepted into the program.

Degree Requirements:
- The MS in IT program comprises a minimum of 30 credit hours which include:
- One course treating modern object oriented design in a language such as C++
- One course treating the principles of computing and telecommunication systems
- One course in the management of technology
- Three courses in application of information technology
• Two credits of seminar
• Six credits of project work
• Additional credit can include course or project work
• Each student must prepare a comprehensive report acceptable to the IT Advisory Committee documenting the scope and nature of work toward the degree.

Courses:
IT 501 Software Systems
IT 502 Computing and Telecommunications Systems
IT 520-523 Information Technology Independent Project
COMM 540 PHP/MySQL Interactive
COMM 541 JavaScript
COMM 542 CGI Programming with Perl
COMM 544 Unix Web System Administration
IT 620-621 Information Technology Project

Program Length
The typical length of the graduate program is one and half years.

Materials Science & Engineering PhD Program

The Doctor of Philosophy PhD degree in Materials Science and Engineering (MSE) focuses on advanced materials and their application across the full spectrum of technical challenges around the world. The objective of this program is to offer students from diverse science and engineering backgrounds the opportunity to develop special competence in one or more of the MSE fields and to demonstrate their ability to conduct research and add to the body of knowledge in materials science or materials engineering.

This MSE program is designed to provide graduate students with an in-depth, fundamental understanding of metals/alloys, polymers, ceramics, composites, and advanced materials, as well, an understanding of the relationships among structure, properties, processing. Applications of advanced materials in fields of biotechnology, electronic devices, alternative energy, and the environment, are at the forefront of technology development. Companies such as Corning, General Electric, IBM, and Alcoa (to name only a few) and the Federal Government seek scientists and engineers with MSE degrees to sustain their competitive edge.

The MSE graduate program is administered through its Director (materials@clarkson.edu), who works closely with the Dean of Engineering and the Dean of Arts & Sciences. The MSE graduate program is closely associated with Clarkson’s Center for Advanced Materials Processing, whose mission is "to perform innovative research and conduct educational efforts on the synthesis and processing of advanced materials of interest to industry." PhD MSE students are advised and mentored by faculty from appropriate underpinning disciplines and/or faculty with MSE degrees and experience.
Given the complex nature of advanced materials an interdisciplinary program has been developed, underpinned by courses from several academic disciplines, including physics (PH), chemistry (CM), mechanical engineering (ME), chemical engineering (CH), electrical engineering (EE) and engineering science (ES).

MSE Key Contacts
Marilyn Miller Freeman – Director of MSE / Director of CAMP
David Mitlin – Professor / GE Chair in Oil and Gas Systems

Students seeking the MSE PhD must complete:

- 30 hours of classwork (courses)
- A comprehensive qualifying examination (usually taken in the 3rd semester of matriculation)
- 54 hours of research, completing dissertation on an appropriate MSE topic
- 6 hours of MSE Seminar

Students seeking a PhD in MSE may enter the program with either a MS/ME in MSE or one of the supporting disciplines or a BS/BE in MSE or in one of the supporting disciplines (mechanical engineering, chemical engineering, civil engineering, chemistry or physics). Those entering with a MS/ME degree may transfer up to 30 credit hours from the completed courses of their MS/ME program, if the MSE program director deems these courses equivalent to the courses listed below.

Course Requirements
PhD students are required to take 10 courses (30 hours) from the 3 areas below.

Area A – Materials Science Core Courses (required)
- MSE 551 Advanced Characterization of Materials
- MSE 560 Advanced Materials Science and Engineering
- MSE 552 Design with Materials (NEW)

Area B – Materials Properties and Applications (select 4 courses)
- ME 557 Advanced Mechanics of Composite Materials
- ME 591 Selected Topics in Micro/Nano Systems Engineering
- ME 595 Principles of Physical Metallurgy
- CM 530 Colloids and Interfaces
- CM 553 Medical and Pharmaceutical Biomaterials
- CM 584 Multicomponent Polymer Systems
- CM 585/PH 585 Nanostructured Materials
- CH 515 Polymer Materials
- PH 528 Intermolecular Forces in Modern Nanotechnology
- PH 589/EE 543 Physics of Semiconductor Devices
- EE 539 Dielectrics
EE541 Electronic Devices for IC Simulation
ES552 Biomaterials and Biomedical Engineering Applications

Area C - Materials Processing and Characterization (select 2 courses)
- ME 637 Particle Transport, Deposition and Removal
- CM 551 Manufacturing Implications of Advanced Materials Processing
- ES 557 Microelectronic Circuit Fabrication
- ES 564 Corrosion Engineering
- PH 636 Scanning Probe Techniques in Soft Condensed Matter Physics

Program Length
Students entering with an MS/ME may expect to reach completion of the program within two years. Students entering with a BS/BE may expect to complete the program within three years.
DIVISION OF RESEARCH

Gregory C. Slack, Director of Research and Technology Transfer; Anna Marie Dawley Grant and Contract Administrator/CAMP Financial Manager; Todd C. Travis, Award Administrator

The Division of Research (DOR) is the central office charged with overseeing the conduct and promotion of research activities at Clarkson University. It is the philosophy of the University that research supports and enhances its educational mission. The DOR strives to provide and constantly enhance services to the Clarkson community as well as individuals and companies that come in contact with the Division. Examples of such services include proposal development for faculty and staff; administration of grants and contracts established under federal, state, and private awards on behalf of the University; assurance of compliance with federal, state, private, and other regulations pertaining to grant sponsorship activities at the University; and the creation, submission, or provision of analyses, reports or policies as required. Through these activities, the DOR promotes innovation and creativity, thereby increasing knowledge and making the knowledge available and useful for scholarship and education.

Some typical areas of sponsored research in engineering and science include: crystal growth, aerosol kinetics and scavenging, light scattering, stability of colloidal dispersion, strength of materials, metallic systems, ceramic surfaces, phase transitions, bio-engineering, heat transfer and mass transfer, thin film adsorption, film flow stability, transition and turbulence and active flow control, nonlinear wave motion, dynamical systems, chaos and control, computational applied math, optimization and numerical p.d.e.s., wave forces, surface shear viscosity, nutrient regeneration in lakes, flow slides, copper and zinc protein, nanotechnology, artificial intelligence, oxygenation of metal complexes, asynchronous networks, communication networks, detection of random signals, renewable energy production, power transmission, energy conversion, plasma deposition, osmotic work, and corrosion.

In the business area, studies have been conducted relative to dispute settlement techniques, scientific and technical information systems, effects of organizational changes, economic impact of environmental damage from acid rain, marketing approaches, pricing environmental alternatives, banking systems, and monetary policies.
ACADEMIC CENTERS

CENTER FOR ADVANCED MATERIALS PROCESSING (CAMP)
A New York State Center for Advanced Technology
Marilyn Freeman, Director

The essential roles of advanced materials in modern manufacturing include producing “small” particles for advanced ceramics, photo-imaging and inks and medical diagnostics; fabricating integrated circuit chips and electronic packages for computers; producing high-performance plastics and composites for aircraft, and myriad other uses.

Since its inception in 1986, the Center for Advanced Materials Processing (CAMP) has been dedicated to developing Clarkson’s research and education programs in high-technology materials processing. The Center emphasizes development of scientific and technological expertise in the field of colloids, thin films and surfaces. CAMP researchers produce, modify and convert solids and liquids for which “small” particles, colloidal media or surfaces play an important role, either in the processing or in the properties of the final product. CAMP is an interdisciplinary endeavor, bringing together participants from six departments of science and engineering.

CAMP was designated a New York State Center for Advanced Technology (CAT) in 1987. As one of the 15 CATs at New York State universities, CAMP receives one million dollars per year from the New York State Office of Science, Technology and Academic Research for applied research, technology transfer and operating expenses. In addition, CAMP-related work receives several million dollars each year from the federal government and private industry. CAMP places a particularly strong emphasis on cooperative projects with industry, including exchange programs for students, scientists, and engineers. Materials processing activities at Clarkson include undergraduate projects, educational lectures and seminars by international experts, special short courses, and research by graduate students, research associates, and visiting scientists from around the world.

A building funded by New York State was completed in 1991 to house CAMP’s educational and research activities. Occupying 190,000 square feet and containing 70 laboratories, 102 offices, and a variety of special facilities and equipment, the complex is a valuable resource for promoting cooperative research projects with New York State industries.

CENTER FOR INNOVATIVE DEVICE TECHNOLOGIES
Vladimir Privman, Director

The Center’s research focuses on the device science of novel information processing and on the engineering approaches that offer alternatives and new capabilities for the computer, sensor and biosensor technologies in commercial use. This research involves synergistic collaborations
across disciplines, between engineers and scientists, and serves as a catalyst to form dynamic teams of researchers.

The enabling role of the Center is to provide a synergistic unit for organizing faculty-teams aimed at research collaborations and project development. The Center activities include mentoring students/researchers, organization of conferences, sponsorship of conference sessions and scientific journal issues in relevant research topics, and participation in research endeavors that transcend single-investigator projects.

CENTER FOR AIR RESOURCES ENGINEERING AND SCIENCE (CARES)
Thomas M. Holsen, Director, Savesh Dhaniyala, Coordinator

The presence of contaminants in the atmosphere can produce a wide variety of adverse effects including increased adverse public health effects, decreased visibility, deterioration of buildings and monuments, acidification of lakes and rivers, and forest and crop damage. The health effects of atmospheric contaminants cannot be avoided by staying inside since ambient air is transported indoors along with its pollutants while indoor sources can add to the problems. Although we have substantially improved the ambient air quality over the past 35 years, there are still a number of problems that are attributed to air pollution. Recent studies have found strong correlations between changes in particle concentrations and increased mortality. There has been a sharp rise in childhood asthma, and many areas of the country continue to fail to meet national ambient air quality standards. Worldwide much of the world's air quality fails to meet the quality specified by the World Health Organization's guidelines.

Clarkson University has significant resources in people and equipment to bring to bear on the management of air pollution. These resources have been combined with those of a consortium of universities and research organizations to form the Syracuse Center of Excellence in Environmental and Energy Systems (CoEEES). CoEEES brings together multidisciplinary teams of investigators to measure, model, and suggest implementation strategies that will lead to improved atmospheric conditions including the ambient atmosphere, indoor atmospheres in homes and hospitals, and controlled atmospheres in commercial manufacturing operations and office workplaces. In this process, we are developing new modeling, measurement, and flow management tools that can provide the base for new or expanded commercial ventures as well as providing critical information to state and federal regulatory authorities that will help to improve the quality of life for New Yorkers. CARES is the center that brings together the world-class expertise that is available at Clarkson as part of CoEEES. Our expertise is focused in air sampling and analysis, receptor modeling, atmospheric deposition, and the application of experimental and computational fluid dynamics to air pollution problems. CARES laboratory and office space, and equipment including an aerosol wind tunnel, a high-speed aeronautical wind tunnel, a Beowolf computer cluster, field sampling systems, and analytical equipment are available to programs at Clarkson and throughout CoEEES's other participating institutions.
CENTRAL FOR SUSTAINABLE ENERGY SYSTEMS
Kenneth Visser, Director

Clarkson University has been engaged in energy research and education for over 30 years and our faculty's wide range of interests and activities span disciplines from Engineering to Business. The Center provides a vehicle to bring these efforts together, exchange ideas with each other and generate new concepts for innovative, sustainable, collaborative projects at local, national and international levels. The Center also supports the current efforts of the Institute for a Sustainable Environment (ISE) and the Center for Advanced Materials Processing (CAMP) and is closely linked to the Shipley Center for Innovation.

GREAT RIVERS CENTER
M. Twiss, Director

Clarkson University faculty and researchers have a distinguished history of investigating and engineering solutions to a broad range of issues involving the lower Great Lakes and St. Lawrence River. Clarkson is best known for contributing to the solution of environmental problems such as eutrophication, toxic chemical pollution, and corrective measures to remediate contaminated environments; to the solution of water resources management concerns related to navigability for commerce and power generation, especially as affected by winter conditions and the formation and dynamics of ice; and for addressing socioeconomic issues such as binational trade and cultural concerns.

These activities have been undertaken by teams comprising faculty members, graduate students and undergraduates using Clarkson facilities and often involving collaborators from several other universities in New York State via the Great Lakes Research Consortium. Not only do these efforts create new knowledge that is essential to the education of students who pursue BS, MS, ME and PhD degrees and to the professional development of the faculty members, this work provides environmental and economic benefits to the people of the region, the nation and, indeed, the international community.

Recognizing the multiplicative effect of interdisciplinary collaboration, in 1999 Clarkson initiated actions that resulted in the establishment of the Great Rivers Center on the Clarkson campus. The Great Rivers Center is integrated into the education, research and outreach missions of the Clarkson Institute for a Sustainable Environment.

CENTER FOR REHABILITATION ENGINEERING, SCIENCE, AND TECHNOLOGY (CREST)
Charles Robinson, Director

The Center for Rehabilitation Engineering, Science and Technology was established at Clarkson University in 2005. Its mission is to educate, mentor and train students to be able to integrate and apply a combined scientific, analytic, technological and business approach to emerging
biomedical engineering and biomedical science areas. It is of note that biomedical engineering is the most rapidly growing field of engineering, with outstanding biomedical job prospects, and with half of the undergraduates being female, a ratio that exists in no other engineering discipline.

The Center for Rehabilitation Engineering, Science and Technology takes a unique approach to the study of rehabilitation problems. First, through its focus on biomedical engineering, the Center studies how the nervous and skeletal muscle systems of the human body normally work. Secondly, through its rehabilitation science and technology components, it models the mechanisms by which these systems become impaired through disease or injury. Within its rehabilitation technology aspects, the Center investigates how technology can help to restore or replace functions such as hearing, speaking, seeing or moving through the use of artificial assistive or substitutive devices. Through a clinical link with Clarkson’s Physical Therapy program, the Center investigates the outcome of the applications of this assistive technology. The Center also organizes and presents seminars, campus lectures and classroom discussions by visiting leaders in the field of rehabilitation.

Medical and health care have become increasingly technology-based in recent years, with an increased demand for engineers with skills that integrate engineering principles with an understanding of the human physical and psychosocial characteristics. The Center for Rehabilitation Engineering, Science and Technology offers a concentration in Biomedical and Rehabilitation Engineering to meet this need. Obtaining an engineering degree with a concentration in biomedical and rehabilitation engineering is an attractive opportunity for university bound engineering students who have a strong desire to use their talents to improve the quality of life for people with medical conditions or disabilities. Clarkson offers this concentration to augment a degree from a traditional engineering department. This concentration is multi-disciplinary, and will include courses from multiple schools or departments across the University. The Biomedical and Rehabilitation Engineering Concentration is just one of the examples addressing Clarkson’s Coulter School of Engineering’s motto “Technology Serving Humanity.”

SHIPLEY CENTER FOR INNOVATION

Matthew Draper, Executive Director, Gabor Forgacs, Scientific Director

The Shipley Center for Innovation is a University-wide resource dedicated to bringing Clarkson innovations to market, gaining recognition for the technology created by our faculty and students, and creating local jobs for graduating Clarkson students. The Center will serve as an engine for economic development in the North Country by engaging in the creation of new enterprises that capitalize on emerging technologies.

Leading the Shipley Center as its managing director is Matthew Draper, Executive Director and Gabor Forgacs, Scientific Director, bringing together complementary knowledge from both areas into one resource.
The Shipley Center for Innovation is comprised of a business incubator which provides tools needed for the emerging technologies to be commercialized and developed into profitable companies. Workshops are also developed to assist with future technology.
THE REGISTER

BOARD OF TRUSTEES

Officers of the Corporation

Jean E. Spence ’79, Chair
Bayard D. Clarkson Sr., Hon. ’74, Distinguished Vice Chair
Charles R. Craig, Vice Chair
Nancy D. Reyda ’81, Vice Chair
Carolyn A. Brandsema ’80, Secretary
Anthony G. Collins, President
James D. Fish ’79, Treasurer
Kelly O. Chezum ’04, Assistant Board Secretary

MEMBERS OF THE BOARD OF TRUSTEES

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Company/Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert A Campbell ’61</td>
<td>Managing Partner & CEO</td>
<td>Asia Pacific (Ret) Deloitte & Touche</td>
</tr>
<tr>
<td>Richard R Griffith ’69, P’01</td>
<td>President & CEO</td>
<td>Sturges Manufacturing Co.</td>
</tr>
<tr>
<td>Amy E Castronova ’04</td>
<td>President & CEO</td>
<td>Novatek Communications, Inc.</td>
</tr>
<tr>
<td>Daniel E Heintzelman ’79</td>
<td>Vice Chairman</td>
<td>General Electric Co.</td>
</tr>
<tr>
<td>Bayard D Clarkson, Jr., M.D.</td>
<td>Private Practioner</td>
<td></td>
</tr>
<tr>
<td>William Helmer ’56, P’85</td>
<td>President</td>
<td>Helmer-Cronin Construction Inc.</td>
</tr>
<tr>
<td>Jason R Currie ’94</td>
<td>Executive Vice President</td>
<td>Timbercreek Asset Management</td>
</tr>
<tr>
<td>Dianna M Jones Herrmann ’85</td>
<td>Global Professional Development Manager</td>
<td>MacKinsey & Company</td>
</tr>
<tr>
<td>Karel K Czanderna ’77, PhD</td>
<td>President & CEO</td>
<td>Flexsteel Industries Inc.</td>
</tr>
<tr>
<td>Thomas L Kassouf ’74</td>
<td>President</td>
<td>Snap-on-Tools Group</td>
</tr>
<tr>
<td>Mark Dzwonczyk</td>
<td>President & CEO</td>
<td>Nicholville Telephone Co.</td>
</tr>
<tr>
<td>Lawrence D. Kingsley ‘85</td>
<td>Director</td>
<td>Berkshire Partners</td>
</tr>
<tr>
<td>Judith J Foster-Glick</td>
<td>Northern New York Advocate</td>
<td></td>
</tr>
<tr>
<td>Earl (Skip) R Lewis ’66</td>
<td>Chairman, President & CEO (Ret.)</td>
<td>FLIR Systems Inc.</td>
</tr>
<tr>
<td>Robert K Goldman ’79</td>
<td>Director Global Environmental Program</td>
<td></td>
</tr>
<tr>
<td>Carl B Mack, Hon. ’10</td>
<td>Executive Director (Former)</td>
<td></td>
</tr>
</tbody>
</table>
Jody A Markopoulos ’93
Vice President Sourcing
GE Oil & Gas

Frank Schmeler ’64, P’91, ’93
Chairman (Ret.)
Albany International Corp

Kaitlin P Monte TCS ’06
Traffic Anchor
PIX11 News

Raymond L Skowyra, Jr., P’11
Technology Business Strategy Consultant
Summit Associates

Lisa Napolione ‘87
Sr Vice President
Estee Lauder Companies

James F Wood ’64
Director, U.S.-China Clean Energy Research Center
West Virginia University

James W Ransom ’88
Director of Integrated Resource Management Department
Mohawk Council of Akwesasne

Mary Kay Woods ‘82
Partner (Ret.)
KPMG LLP

Walter L Robb
President Vantage Management

Robert R Ziek ’78
President
ZSource Ltd

Stephen D Ryan ’87
Senior Vice President
The Ryan Group
ADMINISTRATION

President
Anthony G. Collins, President
Kelly O. Chezum, Vice President for External Relations
Barbara A. Parker, Assistant to the President

Academic Affairs
Chuck Thorpe, Provost and Senior Vice President
Amanda J. Pickering, Director Academic Policies and Practices

The Graduate School
Kerop Janoyan, Interim Dean
Shannon Robinson, Associate Dean

School of Arts & Sciences
Peter Turner, Dean
Jerry W. Gravander, Associate Dean

Clarkson Writing Center
Courtney Johnson-Woods, Director

Department of Bioethics
Sean Philpott-Jones, Chair

Department of Biology
Tom Langen, Chair

Department of Chemistry and Biomolecular Sciences
Devon Shipp, Chair
James Peploski, Artem Melman, Executive Officers

Department of Communication and Media
Bill Karis, Chair

Department of Computer Science
Christopher Lynch, Chair

Department of Education
Catherine Snyder, Chair

Department of Humanities and Social Sciences
Bill Vitek, Chair
Department of Mathematics
Joseph Skufca, Chair
Scott R. Fulton, Executive Officer

Department of Occupational Therapy
Victoria Prignac, Chair

Department of Physical Therapy
George D. Fulk, Chair

Department of Physician Assistant Studies
Keith B. Young, Program Director and Chair

Department of Physics
Dipankar Roy, Chair

Department of Psychology
Robert Dowman, Chair

Reh Center
Erin Draper, Director of Operations

School of Business
Dayle Smith, Dean; Mark Frascatore, Senior Associate Dean of Operations and Undergraduate Programs
Alan Bowman, Senior Associate Dean for Graduate Programs

Shipley Center for Innovation
Matthew Draper, Executive Director
Gabor Forgacs, Distinguished University Professor
Jamey Hoose, Director of Shipley Center

The Clarkson School
Jon Goss, Head of School
Brenda Kozsan, Associate Head of School
Matthew Rutherford, Director of Admission and Financial Aid
Kathleen O’Leary, Associate Director of Student Life and Alumni Relations
Jennifer Townsend, Assistant Director of Academic Advising

Wallace H. Coulter School of Engineering
William Jemison, Dean
John Moosbrugger, Associate Dean for Academic Programs

Department of Chemical and Biomolecular Engineering
John McLaughlin, Chair
Richard J. McCluskey, Executive Officer

Department of Civil and Environmental Engineering
James Edzwald, Chair
Levon Minnetyan, Executive Officer
Erik Carl Backus, Director of Construction Engineering Management Program

Department of Electrical and Computer Engineering
David Crouse, Professor/Chair
Paul McGrath, Executive Officer

Department of Mechanical and Aeronautical Engineering
Daniel T. Valentine, Chair
Kevin Fite, Executive Officer

Biomolecular Science
Phillip Christiansen, Director

Engineering & Management
Amy Zander, Professor and Director
Misty Spriggs, Associate Director

Environmental Health Science
Alan Rossner, Program Director

Environmental Science & Policy
Alan Rossner, Program Director

Software Engineering
Daqing Hou, Director

Environmental Policy & Governance
Susan E. Powers, Director

Information Technology
Dennis Horn, Director

Institute for a Sustainable Environment
Susan E. Powers, Director
Alan Rossner, Associate Director

Office of Educational Partnerships
Diane Brouwer, Program Coordinator
Division of Research
Gregory C. Slack, Director of the Division of Research and Technology Transfer Administrator/CAMP Financial Manager
Todd C. Travis, Award Administrator
Anthony Adamczyk, Assistant Director of Research
Ronda Wagstaff, Assistant Research Administrator

Center for Advanced Materials Processing
Marilyn Freeman, Director
Elisabeth Cain, Business Development Manager

Center for Air Resources and Engineering and Science (CARES)
Thomas M. Holsen, Director
Suresh Dhaniyala, co-director

Center for Innovative Device Technologies
Vladimir Privman, Director

Center for Rehabilitation Engineering, Science and Technology
Charles J. Robinson, Director

Clarkson Space Grant Program
Daniel T. Valentine, Director

Institute for Statistical Physics
Lawrence S. Schulman, Director

ROTC
Department of Aerospace Studies
Lt Col Jennifer Amato, Chair

Department of Military Science
Maj Michael Athanasakis, Chair and Professor

Clarkson University Honors Program
Jon Goss, Director
Kathleen O’Leary, Associate Director of Student Life and Alumni Relations
Jennifer Townsend, Assistant Director of Academic Advising

University Library
Michelle L. Young, Director of Libraries/Associate Professor
Gayle C. Berry, Collection Management Librarian
Mary Cabral, Public Services Librarian
Regan DeFranza, Health Sciences Librarian
Peter Morris, Systems Librarian
Barbara Osgood, Senior Library Paraprofessional
Bonnie Oemcke, Senior Library Paraprofessional

Admissions
Brian Grant, Vice President for Enrollment and Student Advancement
Mia Wicke, Assistant to the VP for Enrollment & Student Advancement and Operations Manager
Trish Dobbs, Director of Admissions
Kara Pitts, Director of New Student Financial Assistance
Matthew Rutherford, Director of Admissions of The Clarkson School

Athletics, Recreation, and Physical Education
Steven Yianoukos '72, Director of Athletics
James Allott, Head Men's and Women's Cross Country and Nordic Skiing Coach
William Bergen, PE Director, Head Men's Lacrosse and Golf Coach
Matthew Desrosiers, Head Women's Hockey Coach
Bennett Gaebel, Head Women's Lacrosse Coach
Jeffrey Gorski, Head Men's Basketball Coach
Micaela Holland, Head Men's and Women's Alpine Skiing Coach
Tad Johnson, Strength & Conditioning Coach
Casey Jones, Head Men's Hockey Coach
James Kane, Head Men's Baseball Coach/Assistant Golf Coach
Laurel Kane, Associate Athletic Director
Carol LaMarche, Head Women's Volleyball Coach
Michael Maguire, Assistant Athletic Director, Head Men's and Women's Swimming Coach
Kristen McGaughey, Head Women's Softball Coach
Gary Mikel, Director of Sports Information
Kelly Norman, Fitness Center Director
Michael Pitts, Head Athletic Trainer
Philippe Roy, Assistant Men's Hockey Coach
Scott E. Smalling, Associate Athletic Director/Director of Cheel Campus Center
Christopher Taylor, Head Men's Soccer Coach
Maureen Webster, Head Women's Basketball Coach
Kelsey Yam, Head Women's Soccer Coach

Business and Financial Affairs
James D. Fish, Chief Financial Officer

Affirmative Action
Suong Ives, Chief Inclusion and Human Resource Officer

Budget and Planning
Allison Aldrich, Director
Jenna S. Stone, Assistant Director for Institutional Research
Financial Operations
Chris Alger, Controller
Todd Phillips, Associate Controller

Human Resources
Suong Ives, Chief Inclusion and Human Resource Officer
Amy McGaheran, Director of Human Resources Operations
Dave Delisle, Director of Campus Safety and Security

International Relations
Kathryn B. Johnson, Vice President
Tess Casler, Director, International Student & Scholar Services
Rebecca Brown, Assistant Director, International Student & Scholar Services

Risk Management/Purchasing/Payroll/Special Projects
George Giordano, Director
Cinda Boyce, Associate Purchasing Agent
Sue Bancroft, Payroll Manager

Student Administrative Services
Suzanne Davis, Director, Student Administrative Services
Karen Burkum, University Registrar
Jen Stokes, Associate Registrar
Travis Dox, Bursar/Associate Director of Undergraduate Student Services
Nicole Adner, Assistant Bursar
Pamela Nichols, Director of Financial Aid

Facilities and Services
Ian Hazen, Director of Facilities & Services
Michael Tremper, University Engineer
Anastasia Thomas, Director of Project Manager
John Lawrence, Safety Manager
Judson Mills, Maintenance Manager
Kathryn Green, Director of Administrative Services
Gina LaPointe, Director of Customer Service and Process Improvement
Scott Richardson, Grounds Manager
Donald Shanty, Custodial Manager

Marketing and External Relations
Kelly O. Chezum, Vice President for Marketing and External Relations
Marcy Bennett, Associate Director of University Events and Conference Services
Jessica Carista, Associate Director of Admissions and Conference Marketing
Julie M. Davis, Director of Web Development
Michael P. Griffin, Director of News and Digital Content Services
Timothy Jones, Associate Vice President of Marketing
Office of Information Technology
Joshua Fiske, Chief Information Officer
Christopher Cutler, Director of Administrative Computing
Brian Huntley, Director of Network Services
Erin Towne, Director of User Services

Development & Alumni Relations
Patrick Roche, Vice President
Andrew Brewer, Senior Director

Alumni Relations
Teresa Plany, Director
Rachael Matejick, Assistant Director
Gabriela Meza Moreno, Assistant Director of Regional Chapter Development & Young Alumni Engagement

Clarkson Fund
Nichole Thomas, Director
Beth Reasoner, Assistant Director

Corporate and Foundation Relations
Elizabeth Sarah Colello, Associate Director
Nicole Gadway, Assistant Director
Cheryl Mirer, Assistant Director

Donor Relations
Development
Salvatore Cania, Assistant Vice President
Colleen Baker, Director

Development Operations
Jeffrey Wellings, Database Administrator
Prabin Upadhyaya, Data Reporting Analyst

Student Affairs
Brian Grant, Vice President for Enrollment and Student Advancement

Dean of Students
Jim Pittman, Acting Dean of Students

Office of Student Organizations
Kelsey Deso, Director of Student Organizations and Student Center

Student Life and Engagement
Tamera Rizk, Assistant Dean of Students
Career Center
Jeffrey Taylor, Director
Barbara Brown, Associate Director
Jane Fleury, Associate Director
Katje Foster, Project Manager
Margo Jenkins, Associate Director
Cara Valentine, Associate Director
Administrative Assistant and Recruiting Support, TBD

Office of Accessibility Services
Loren Edmond Nowak, Director

Arthur O. Eve Higher Education Opportunity Program (HEOP)
Tammy McGregor-Twiss, Director

Community Underrepresented Professional Opportunities (CUPO)
Marjorie B. Warden, Director

Student Success, Diversity and Inclusion
Catherine M. McNamara, Associate Vice President
Kathleen Mikel, Associate Director and Tutor Coordinator

Office of Multicultural Student Affairs – OMSA and Veterans Liaison
Demetrius Dowell, Director

Student Development
Mark J. DeRitis, Associate Dean of Students for Residence Life and Student Development

Counseling and Health
James Wesley Pittman, Executive Director
Theresa Samways, Associate Director of Counseling

Student Health Services
Susan Knowles, FNP-BC, Director

First-Year Advising and University Studies Program
Catherine Avadikian, Director

Pre-Health Professions and Arts & Sciences First Year Advising
Carolyn Zanta, Director
Faculty

PROFESSORS

AHMADI, Goodarz
BS, Tehran University
MS, PhD, Purdue University
Clarkson Distinguished Professor and Robert A. Hill Professor of Mechanical and Aeronautical Engineering

AIDUN, Daryush
BS, MS, Syracuse University
PhD, Rensselaer Polytechnic Institute
Professor of Mechanical and Aeronautical Engineering

AMATO, Jennifer
Lt. Col., AF Reserve Officer Training Corps
B.A., University of North Carolina
M.A., University of Phoenix
Professor of Aerospace Studies

ANDREESCU, E. Silvana
BS, University of Bucharest
MS, University of Bucharest
PhD, University of Bucharest
Professor of Chemistry and Biomolecular Science/Egon Matijevic’ Chair of Chemistry

ANISIMOV, Mikhail
Research Professor of Institute for a Sustainable Environment

ATHANASAKIS, Michael
MAJ, U.S. Army
BS, Jacksonville State University
M.A. Murray State University
Professor of Military Science

BABU, S.V.
B. Tech, Andhra University, India
M. Tech, I.I.T. Karagpur, India
PhD, State University of New York at Stony Brook
Distinguished University Professor

BALTUS, Ruth
BS, State University College of New York at Oswego
MS, PhD, Carnegie-Mellon University
Professor of Chemical Engineering / Chair of Chemical and Biomolecular Engineering

BEN-AVRAHAM, Daniel
BS, MS, PhD, Bar-Ilan University
Professor of Physics and Mathematics

BLACKMAN, Marcia
Ph.D University of California Berkeley
Adjunct Professor Biology

BOLLT, Erik
BS, University of California, Berkeley
M.A., PhD, University of Colorado
W. Jon Harrington Professor of Mathematics of Mathematics

BONNER, James
B.A., State University of NY at Plattsburgh
MS, Clarkson College of Technology
PhD, Clarkson University
Professor of Civil and Environmental Engineering / Shipley Center for Innovation Fellow

CETINKAYA, Cetin
BS, Istambul Technical University
MS, PhD, University of Illinois–Urbana
Professor of Mechanical and Aeronautical Engineering

COLLINS, Anthony G.
BE, Monash University
MS, PhD, Lehigh University
P.E., New York
President of Clarkson University

CHENG, Ming-Cheng
BS, National Chiao Tung University
MS, PhD, Polytechnic University
Professor of Electrical and Computer Engineering

COMPEAU, Larry
BS, MS, Clarkson University
PhD Virginia Polytechnic Institute & State University
Professor of Consumer and Organizational Studies
CONRY, Susan
B.A., MS, PhD, Rice University
Distinguished Service Professor of Electrical and Computer Engineering / Director of Software Engineering

DEMPSEY, John
BE, PhD, University of Auckland
Professor of Civil and Environmental Engineering

DHANIYALA, Suresh
B.Tech., Indian Institute of Technology
MS, University of Delaware
PhD, University of Minnesota
Bayard D. Clarkson Distinguished Professor of Mechanical and Aeronautical Engineering

DOWMAN, Robert
BS, University of Victoria
MS, PhD, Northwestern University
Professor and Chair of Psychology

DUEMER, Joseph
B.A., University of Washington at Seattle
M.F.A., University of Iowa
Professor of Humanities

EDZWALD, James
BS, MS University of Maryland
PhD University of North Carolina
Professor and Chair of Civil and Environmental Engineering

FARINA, Stephen
BS, Indiana University of Pennsylvania
M.A., University of Maine at Orono
PhD, Rensselaer Polytechnic Institute
Professor of Communication and Media

FERRO, Andrea
BS, University of Massachusetts-Amherst
MS, PhD, Stanford University
Professor of Civil and Environmental Engineering

FOWLER, Kathleen
B.A., SUNY Plattsburgh
MS, PhD, North Carolina State University
Professor of Mathematics

FRASCATORE, Mark
BS, SUNY Binghamton
M.A., PhD, Virginia Polytechnic Institute & State University
Professor of Economics and Financial Studies

FREEMAN, Marilyn
Director of CAMP
Michael and Janet Jesanis Chair

FULTON, Scott
B.A., Kalamazoo College
MS, PhD Colorado State University
Professor and Executive Officer of Mathematics

GOIA, Dan
BS, MS, Babes-Bolyai University, Romania
PhD, Clarkson University
Distinguished Professor of Chemistry and Biomolecular Science

GOSS, Jon
B.A., M.A., Mansfield College, Oxford University
PhD University of Kentucky
Professor of Humanities and Social Sciences
Professor of the Honors Program and Head of The Clarkson School

GRIMBERG, Stefan
Diplomingenieur, Technical University Munich, Germany
MS, PhD, University of North Carolina at Chapel Hill
Professor of Civil and Environmental Engineering

HELENBROOK, Brian
BS, University of Notre Dame
PhD, Princeton University
Paynter-Krigman Professor in Engineering Science Simulation of Mechanical and Aeronautical Engineering

HOLSEN, Thomas
BS, MS, PhD, University of California at Berkeley
Jean S. Newell Distinguished Professor of Engineering/Director of CARES

HOPKE, Philip
BS, Trinity College
M.A., PhD, Princeton University
Bayard D. Clarkson Distinguished Professor Emeritus/Institute for a Sustainable Environment

JANOYAN, Kerop
BS, PhD, University of California, Los Angeles
Interim Dean of The Graduate School/ Director of Distance Learning

JEMISON, William
BS, Lafayette College
MS, Penn State University
PhD, Drexel University
Dean of the Wallace H. Coulter School of Engineering

JOHNSON-EILOLA, Johndan
BS, MS, PhD, Michigan Technological University
Professor of Communication and Media

JUKIC, Boris
BS, University of Zagreb
M.B.A., Grand Valley State University
PhD, University of Texas at Austin
Professor of Operations and Information Systems / Director of MBA Programs

KATZ, Evgeny
BS, MS, Mendeleyev Chemical Engineering University, Moscow
PhD, Frumkin Institute of Electrochemistry, Moscow
Professor of Chemistry and Biomolecular Science / Milton Kerker Chair in Colloid Science

KE, Weiling
B.A., Xiamen University
MS, National University of Singapore
PhD, National University of Singapore
Professor of Operations and Information Systems

LADO, Augustine
BS, University of Khartoum (Sudan)
M.B.A., Arkansas State University
PhD, University of Memphis
Professor of Consumer and Organizational Studies / Richard ’55 and Joy Dorf Chair in Innovation & Entrepreneurism

LANGEN, Tom
BS, Purdue University
PhD, University of California, San Diego
Professor and Chair of Biology

LIN, Feng-Bor
BS, National Taiwan University
MS, University of Pittsburgh
PhD, Carnegie-Mellon University
Professor of Civil and Environmental Engineering

LUFKIN, Thomas
BS, University of California at Berkeley
PhD, Cornell University Medical College
Professor of Biology/Bayard and Virginia Clarkson Endowed Chair in Biology

LYNCH, Christopher
BS, Syracuse University
M.A., State University of New York at Binghamton
PhD, Boston University
Professor of Computer Science / Chair of Computer Science

MAHMOODI, Farzad
BS, MS, PhD, University of Minnesota
Professor of Operations and Information Systems / Director of Supply Chain Management

MCLAUGHLIN, John
S.B., Massachusetts Institute of Technology
A.M., PhD, Harvard University
Professor of Chemical and Biomolecular Engineering

MINNETYAN, Levon
BS, Robert College
MS, PhD, Duke University
Professor of Civil and Environmental Engineering

MITLIN, David
BS, Rensselaer Polytechnic Institute
MS, The Pennsylvania State University
PhD, University of California at Berkeley
Professor and GE Chair in Oil and Gas Systems,
Chemical and Biomolecular Engineering

MOOSBRUGGER, John
BS, Wright State University
MS, PhD, Georgia Institute of Technology
Professor of Mechanical and Aeronautical
Engineering / Associate Dean for Academic
Programs, Coulter School of Engineering

ORTMEYER, Thomas
BS, MS, PhD, Iowa State University
Professor of Electrical and Computer Engineering

PARTCH, Richard
A.B., Pomona College
PhD, University of Rochester
Senior University Professor

POWERS, Susan
BS, MS, Clarkson University
PhD, University of Rochester
Professor of Civil and Environmental Engineering
/ Jean ‘79 and Robert ‘79 Spence Professor in
Sustainable Environmental Systems / Associate
Director for Sustainability, Institute for a
Sustainable Environment

PRIVMAN, Vladimir
BS, MS, D.Sc., Technion, Haifa, Israel
Robert A. Plane Professor of Physics, Chemistry
and Biomolecular Science, and Electrical &
Computer Engineering / Director of Center for
Innovative Device Technologies

Research Professor of Chemical and
Biomolecular Engineering

REGEL, Liya
Candidate (PhD) Institute of Semiconductors,
Novosibirsk
Doctorate, Ioffe-Physical-Technical Institute, St.
Petersburg
Distinguished Research Professor of Engineering,
Electrical and Computer Engineering, and
Mechanical & Aeronautical Engineering /
Director, International Center for Gravity
Materials Science & Applications

ROBINSON, Charles
BS, College of Steubenville
MS, Ohio State University, Columbus
D.Sc., Washington University
Shulman Chair and Professor of Electrical and
Computer Engineering / Director of
Rehabilitation Engineering Science and
Technology/Interim Chair for Occupational
Therapy

ROGERS, Robert
B.A., Dartmouth College
M.D., McGill University Medical School
Medical Director of Physician Assistant Studies

ROY, Dipankar
BS, MS, Calcutta University
PhD, Rensselaer Polytechnic Institute
Professor and Chair of Physics

SCHILLING, Robert
BEE., University of Minnesota
MS, PhD, University of California, Berkeley
Professor Emeritus

SATYRO, Marco Aurelio
BS, Polytechnic School of the University of Sao
Paulo, Brazil
PhD, University of Calgary, Canada
Professor of Chemical and Biomolecular
Engineering

SCHUCKERS, Stephanie
BSE., University of Iowa
MSE., PhD, The University of Michigan
Professor of Electrical and Computer Engineering

SCHULMAN, Lawrence
B.A., Yeshiva University
PhD, Princeton University
Professor of Physics / Director, Institute for Statistical Physics

SETHI, Rajesh
B.E., Delhi College of Engineering
M.B.A., Indian Institute of Management
PhD, University of Pittsburgh
Professor of Consumer and Organizational Studies

SHEN, Hayley
BS, National Taiwan University
MS, PhD, University of Iowa
PhD, Clarkson University
Research Professor of Civil and Environmental Engineering

SHEN, Hung Tao
BS, Chung Yuan College of Science and Engineering
ME, Asian Institute of Technology
PhD, University of Iowa
Distinguished Professor in Hydraulic Engineering, Civil and Environmental Engineering

SHIPP, Devon
BS, PhD, University of Melbourne
Professor and Chair of Chemistry and Biomolecular Science

SKUFCA, Joseph
BS, United States Naval Academy
MS, University of Maryland
PhD, University of Maryland
Professor and Chair of Mathematics

SUBRAMANIAN, R
B. Tech., Madras University, India
MS, PhD, Clarkson University
Professor of Chemical and Biomolecular Engineering Emeritus

SMITH, Dayle
PhD, M.A., University of Southern California
B.A., University of Texas at Arlington
Dean, School of Business

SUGRUE, Timothy
BS, U.S. Military Academy
PhD, University of Massachusetts, Amherst
President and CEO of the Beacon Institute for Rivers and Estuaries Emeritus

SUNI, Ian
BS, The University of Michigan
PhD, Harvard University
Professor of Chemical and Biomolecular Engineering

TAYLOR, Ross
BS, MS, PhD, University of Manchester, England
Kodak Distinguished Professor of Chemical and Biomolecular Engineering

THEW, Spencer
Distinguished Service Professor of Civil and Environmental Engineering

THORPE, Charles
B.A., North Park College
PhD, Carnegie Mellon
Sr Vice President and Provost of Clarkson University

TURNER, Peter
B.Sc., PhD, University of Sheffield
Professor of Mathematics & Computer Science / Dean, School of Arts and Sciences

TWISS, Michael
BS, Trent University
PhD, Université du Québec
Professor of Biology

VALENTINE, Daniel T.
BS, MS, Rutgers University
PhD, The Catholic University of America
Professor and Chair of Mechanical and Aeronautical Engineering

VITEK, William
B.A., Union College, Schenectady
M.A., PhD, CUNY Graduate Center
Professor of Philosophy / Chair of Humanities and Social Sciences
WEISS, Sheila
B.A., Northwestern University
M.A., PhD, The John Hopkins University
Professor of History

WELLS, David John
BS, MS Clarkson University
Ph.D, Clarkson University
PE Wyoming (active)
Dean Emeritus – SUNY Canton
Adjunct Professor, MAE Department

WILCOX, William
BE, University of Southern California
PhD, University of California at Berkeley
P.E., New York
Clarkson Distinguished Professor of Chemical Engineering

WILLMERT, Kenneth
BS, Iowa State University
MS, PhD, Case Western Reserve University
Professor of Mechanical and Aeronautical Engineering

WOODWORTH, Craig
B.A., PhD, University of Vermont
MS, North Carolina State University
Professor and Chair of Biology

WU, Weiming
BS, MS, PhD, Wuhan University, China
Professor of Civil and Environmental Engineering

YAPA, Poojitha
BS, University of Moratuwa
ME, Asian Institute of Technology
PhD, Clarkson University
Professor of Civil and Environmental Engineering

ZANDER, Amy
BS, MS, PhD, University of Minnesota
P.E., Minnesota
Professor and Director of Engineering and Management

ZEIGLER, Stacey
BS, SUNY Upstate
MS, California College for Health Sciences

D.P.T., Simmons College
Clinical Professor of Physical Therapy

ZUMAN, Petr
BS, RNDr (PhD), Charles University
D.Sc., Czechoslovak Academy of Sciences
Distinguished Emeritus Professor of Chemistry

ASSOCIATE PROFESSORS

ACHUTHAN, Ajit
B.Tech., Calicut University, Kerala, India
MS, Indian Institute of Technology, Madras, India
ME, National University of Singapore, Singapore
PhD, Purdue University
Associate Professor of Mechanical and Aeronautical Engineering

BIRD, Stephen
B.A., Berklee College of Music
PhD, Boston University
Associate Professor of Political Science

BOHL, Douglas
BS, University of Connecticut
MS, PhD, Michigan State University
Associate Professor of Mechanical and Aeronautical Engineering

CALDWELL, Ellen
B.A., Guilford College
M.A., PhD, Univ. of North Carolina at Chapel Hill
Associate Professor of Humanities

CARROLL, James
BS, Syracuse University
MS, Georgia Institute of Technology
PhD, Clemson University
Associate Professor of Electrical and Computer Engineering

CASPER, Stephen
BS, University of Minnesota
PhD, University College of London
Associate Professor of History

CHRISTIANSEN, Phillip
BS, University of Utah
PhD, University of California, Santa Barbara
Associate Professor and Chair of Chemistry and Biomolecular Science / Director of Biomolecular Science

CRIMI, Michelle
BS, Clarkson University
MS, Colorado State University
PhD, University of California
Associate Professor of Environmental Health Science and Environmental Science & Policy Programs

DARIE, Costel
BS, MS, Al.I. Cuza University, Isai, Romania
PhD, University of Freiburg, Germany
Associate Professor of Chemistry and Biomolecular Science

ECHAZU, Luciana
B.A., Universidad del Salvador
M.B.A., East Carolina University
M.A., PhD, University of Memphis
Associate Professor of Economics and Financial Studies

ETTINGER, Laura
B.A., Vassar College
M.A., PhD, University of Rochester

FISHER, Sandra
BS, Valparaiso University
M.A., PhD, Michigan State University
Associate Professor of Consumer and Organizational Studies

FITI, Kevin
BE, MS, PhD, Vanderbilt University
Associate Professor and Executive Officer of Mechanical and Aeronautical Engineering

FULK, George
B.A., Brandeis University
MS, University of Massachusetts, Lowell
PhD, Nova Southeastern University
Associate Professor and Chair of Physical Therapy

GARCIA, Michael

B.A., University of Nebraska
M.A., PhD, Cornell University
Associate Professor of Literature of Humanities and Social Sciences

GRACHEVA, Maria
MS, PhD, Moscow State Engineering Physics Institute (MEPhI)
Associate Professor of Physics

GRAVANDER, Jerry
BS, Illinois Institute of Technology
A.B., University of Tennessee
PhD, University of Texas at Austin
Associate Professor of Humanities / Associate Dean, School of Arts & Sciences

HEINTZELMAN, Martin
BS, Duke University
M.A., MS, PhD, University of Michigan
Associate Professor of Economics and Financial Studies / Fred C. Menz Scholar

HORN, William
B.A., M.A., University of California, Santa Barbara
PhD, University of California, Los Angeles
Associate Professor of Communication and Media / Director, Master’s Program in Information Technology

HOU, Daqing
BS, MS, Peking University
PhD, University of Alberta
Associate Professor of Electrical and Computer Engineering

ISSEN, Kathleen
BS, University of Illinois
MS, PhD, Northwestern University
P.E., Illinois
Associate Professor of Mechanical and Aeronautical Engineering

JIA, Xinli
Research Associate Professor of Chemical and Biomolecular Engineering

KARIS, Bill
B.A., St. Bonaventure University
M.A., SUNY at Binghamton
PhD, Kent State University
Associate Professor and Chair of Communication and Media

KHONDKER, Abul
BS, MS, Bangladesh University of Engineering and Technology
PhD, Rice University
Associate Professor of Electrical and Computer Engineering

KHOPLOWITZ, Jack
BEE., City College of New York
ME., Stanford University
PhD, University of Colorado
Associate Professor of Electrical and Computer Engineering

KRISHNAN, Sitaraman
B.Chem. Eng., University Institute of Chemical Technology, Mumbai
PhD, Lehigh University
Associate Professor of Chemical and Biomolecular Engineering

KUXHAUS, Laurel
BS, Michigan State University
MS, Cornell University
PhD, University of Pittsburgh
Associate Professor of Mechanical and Aeronautical Engineering

LAFLEUR, Ronald
BS, MS, PhD, University of Connecticut
Associate Professor of Mechanical and Aeronautical Engineering

MACIEL, Alexis
BS, PhD, McGill University
Associate Professor of Computer Science

MAHAPATRA, Santosh
BS, Sambalpur University, India
M.T., Indian Institute of Technology
PhD, Michigan State University
Associate Professor of Operations and Information Systems

MARTINEZ, Marcias
BS, MS, PhD Carleton University
Associate Professor of Mechanical and Aeronautical Engineering

MATTHEWS, Jeanna
BS, Ohio State University
MS, PhD, University of California at Berkeley
Associate Professor of Computer Science

MCCLUSKEY, Richard
B.Ch.E., University of Delaware
PhD, University of Minnesota
Associate Professor of Chemical and Biomolecular Engineering / Executive Officer

MELMAN, Artem
BS, MS, Mendeleev Chemical Technological Institute
PhD, Weizmann Institute of Science
Associate Professor and Executive Officer of Chemistry and Biomolecular Science

MELVILLE, Sarah
A.B., Smith College
M.A., Univ. of Missouri at Columbia
PhD, Yale University
Associate Professor of History

MONDAL, Sumona
BS, MS, University of Calcutta
MS, PhD, University of Louisiana
Associate Professor of Mathematics

NAKATA, Narutoshi
PhD, 2007, Civil and Environmental Engineering, University of Illinois at Urbana-Champaign
MS, 2001, Civil Engineering, Kyoto University
BS, 1999, Civil Engineering, Kyoto University
Associate Professor of Civil & Environmental Engineering

NOCETTI, Diego
B.A., Universidad del Salvador
M.B.A., East Carolina University
PhD, University of Memphis
Associate Professor of Economics and Financial Studies
ONG, Sara
BS, Georgia Institute of Technology
M.B.A., Webster University
Associate Professor and Operations Officer of Military Science

PANT, Somendra
BS, University of Indore, India
MS, Rensselaer Polytechnic Institute
Associate Professor of Operations and Information Systems

PEETHAMPARAN, Sulapha
MS, Indian Institute of Technology Madras
ME, National University of Singapore
PhD, Purdue University
Assistant Professor of Civil and Environmental Engineering

PEPLOSKI, James
BS, PhD, Clarkson University
Associate Professor and Executive Officer of Chemistry and Biomolecular Science / Director of Freshman Chemistry

PIPERNI, Pat
B. Eng., McGill University
M.A.Sc, University of Toronto
PhD, University of Montreal
Associate Professor of Mechanical and Aeronautical Engineering

ROBINSON, Christopher
B.A., Siena College
M.A., PhD, SUNY Albany
Associate Professor of Political Science

ROGERS, Shane
BS, MS, PhD, Iowa State University
Assistant Professor of Civil and Environmental Engineering

ROSSNER, Alan
B. S., Clarkson College
MS, University of Washington
PhD, McGill University, Canada
Associate Director of the Institute for a Sustainable Environment of Biology / Director of Environmental Health Science and Environmental Science & Policy progs

RUSSEK, Leslie
B.A., Harvard University
BS, University of Vermont
PhD, -The Johns Hopkins School of Medicine
D.P.T., Simmons College
Associate Professor of Physical Therapy

SAUER, Stephen
BS, Rensselaer Polytechnic Institute
M.B.A., Cornell University
Associate Professor of Consumer and Organizational Studies

SCHMITT, Jason
B.A., University of Michigan-Dearborn
M.A., Eastern Michigan University
PhD, Bowling Green State University
Associate Professor of Communication & Media

STAIGER, Annegret
Vordiplom Biology, Georg August Universität, Göttingen, Germany
M.A., PhD, University of California, Santa Barbara
Associate Professor of Anthropology

SVOBODA, James
BSE.E., General Motors Institute
MSE.E., PhD, University of Wisconsin
Associate Professor and Associate Chair of Electrical and Computer Engineering / Executive Officer Emeritus

TAMON, Christino
BS, University of Calgary
M.Sc., University of Toronto
PhD, University of Calgary
Associate Professor of Computer Science

TURNBULL, Alasdair
BS, Mount Allison University
M.B.A., PhD, University of Western Ontario
Associate Professor of Economics and Financial Studies

VISSEYER, Kenneth
BS, University of Calgary
MS, PhD, University of Notre Dame
Associate Professor of Mechanical and
Aeronautical Engineering

WALLACE, Kenneth
BS, University of Rochester
PhD, Ohio State University
Associate Professor of Biology

Wilton, M. Lori
BS, Andrews University
MS, Andrews University
DPT, Creighton University
PhD, Nova Southeastern University
Associate Professor of Physical Therapy

WASHBURN, Brooks
B.A. Princeton University
M.A. Harvard University

WASSERMAN, Michael
B.A., University of Michigan
PhD, Michigan State University
Associate Professor of Consumer and
Organizational Studies

WILKE, Andreas
M.A., PhD, Free University of Berlin, Germany
Associate Professor of Psychology

WOJTKIEWICZ, Steven
Associate Professor of Civil & Environmental
Engineering

WU, Lei
BS, MS, Xi’an Jiao tong University, Xi’an, Shaanxi,
China
PhD, Illinois Institute of Technology, Chicago
Associate Professor of Electrical and Computer
Engineering

YU, Zhenxin
BE, Xi’an Jiao tong University, China
PhD, Hong Kong Polytechnic University
MS, PhD Washington University in St. Louis
Associate Professor of Operations and
Information Systems

YURGARTIS, Steven
BS, Clarkson University
MS, Stanford University
PhD, Rensselaer Polytechnic Institute
Associate Professor of Mechanical and
Aeronautical Engineering

ZEBEDEE, Allan
B.A., Colby College
M.A., PhD, University of California at San Diego
Associate Professor of Economics and Financial
Studies

ASSISTANT PROFESSORS

AHMED, Usman
BS, Georgie Institute of Technology, Atlanta
M.B.A., Lahore University, Pakistan
PhD, York University, Canada
Assistant Professor of Engineering and
Management

AIDUN, Rashid
Adjunct Associate Professor
Mechanical & Aeronautical Engineering

ALMOMANI, Ahmad Rasheed
Visiting Assistant Professor of Mathematics

ANDRIANO, Joseph
Assistant Professor of Economics and Financial
Studies

ATEMS, Bebonchu
B.A., University of Maryland at College Park
M.A., PhD, Kansas State University
Assistant Professor of Economics and Financial
Studies

BALL, Jennifer
B.A., Saint Vincent College
M.A., PhD, Purdue University
Assistant Professor of History

BAILEY, Susan
BS, McMaster University
MS, University of Calgary
PhD, University of Ottawa
Assistant Professor of Biology
BANAVAR, Mahesh Krishna
Assistant Professor of Electrical and Computer Engineering

BANERJEE, Natasha
BS, MS, Rochester Institute of Technology
PhD, Carnegie Mellon University
Assistant Professor of Computer Science

BANERJEE, Sanjib
BS, MS, PhD, West Virginia University
Assistant Professor of Electrical and Computer Engineering

BELLONA, Christopher
BS, Western Washington University
MS, PhD, Colorado School of Mines
Assistant Professor of Civil and Environmental Engineering

Bogolyubova, Olga
BS Saint-Petersburg State University, Russia
PhD Saint-Petersburg State University, Russia
Visiting Assistant Professor, Psychology

BOOLANI, Ali
B.A., Tulane University, New Orleans, LA
M.A., Tulane University, New Orleans, LA
M.Ed., University of New Orleans, LA
Ph.D, Oklahoma State University
Post-doctoral, University of Georgia, Athens, GA
Assistant Professor of Physical Therapy

BUDISIC, Marko
BS, University of Zagreb, Croatia
PhD, University of California, Santa Barbara
Assistant Professor of Mathematics

CHO, Na-Eun
BS, University of Washington
MBA, Yonsei University
Ph.D, University of Michigan
Assistant Professor Consumer & Organizational Studies

CIANI, Mario
BS, SUNY University of Albany
MS, University of Bridgeport

D.C., New York Chiropractic College
Assistant Professor of Occupational Therapy

DAVID, Andrew
BS, St. Johns University
MS, Hofstra University
PhD, Stellenbosch University
Assistant Professor of Biology

DONG, He
BS, MS, Tsinghua-University, Beijing China,
PhD, Rice University
Assistant Professor of Chemistry and Biomolecular Science

DU, Yuncheng
Assistant Professor Chemical & Biomolecular Engineering

ERATH, Byron
BS, Brigham Young University
MS, Purdue University
PhD, Purdue University
Assistant Professor of Mechanical and Aeronautical Engineering

FADDA, Roberto
D.D.S., University of Ferrara
M.D., University of Ferrara
Assistant Professor of Physician Assistant Studies

GIBERT, James
BS, MS, PhD, Clemson University
Assistant Professor of Mechanical and Aeronautical Engineering

Giffin, Adom
BS, Lawrence Technological University
MS, PhD, SUNY Albany
Assistant Professor of Mathematics

GOSHKO, Laura
BS Pharmacy, University of Connecticut
MS, University of Connecticut
Clinical Assistant Professor of Physician Assistant Studies
GOULET, Paul
BS, PhD, University of Windsor, Ontario
Assistant Professor of Chemistry and Biomolecular Science

HAUSER, Brian
B.A., M.A., PhD, Ohio State University
Assistant Professor of Film

HE, Ying
B.A. Wuhan University
MS Bowling Green State University
PhD University of Florida
Assistant Professor of Mathematics

HEALEY, Gregory
Adjunct Clinical Assistant Professor
Physician Assistant Studies

HOFFMANN, Claudia
B.A., University of Hamburg
M.A., Purdue University
PhD, University of Florida
Assistant Professor of Film

HONGAY, Cintia
BS, Suffolk University
PhD, Harvard University
Assistant Professor of Biology

JOYCE, Terri
BS, Hahnemann University
M.P.A.S., University of Nebraska Medical Center
Clinical Assistant Professor of Physician Assistant Studies

KANTARCI, Burak
BSc Istanbul Technical University
MSc, Istanbul Technical University
Ph.D, University of Ottawa, Canada
Ph.D, Istanbul Technical University
Assistant Professor of Electrical and Computer Engineering

KNACK, Ian
BS, Clarkson University, Potsdam
MS, Clarkson University, Potsdam
PhD, Clarkson University, Potsdam

KNACK, Jennifer
BS, St. Bonaventure University
MS, PhD, University of Texas at Arlington
Assistant Professor of Psychology

KRAUS, Petra
Assistant Professor of Biology
PhD University of Ulm, Germany (Molecular Genetics & Human Biology)

KRING, Stefanie
BS, SUNY Potsdam
BS, MS, PhD, Clarkson University
Assistant Professor of Biology

KRYSOTOF, Leo
CPT., U.S. Army
BS West Point Military Academy
Assistant Professor of Military Science

LAFAY, Vicki
BS, Ithaca College
DPT, SUNY Upstate Medical University
Director of Clinical Education /Clinical Assistant Professor of Physical Therapy

LEE, Alex
B.F.A., M.F.A., School of Art Institute in Chicago
Assistant Professor of Digital Arts & Sciences Communication and Media

LEGAULT, Lisa
PhD, University of Ottawa
Assistant Professor of Psychology

LEWIS, Zachary
BS Clarkson University
Assistant Professor of Military Science

LI, Jie
BS, XI’AN JIAOTONG University, China
MS, XI’AN JIAOTONG University, China
Ph.D, Illinois Institute of Technology, Chicago, IL
Assistant Professor Electrical and Computer Engineering
LIN, Jr-Shiuan
BS, PhD, National Taiwan University
Adjunct Assistant Professor of Biology

LIU, Chen
BS, MS, Tongji University
PhD, Vanderbilt University
Assistant Professor of Electrical and Computer Engineering

LIU, Yaoqing
BS, Dalian Maritime University, China
MS, PhD, University of Memphis
Assistant Professor of Computer Science

MACKINNON, William
B.P.S., MS, Clarkson University
PhD, Carleton University
Assistant Professor of Operation and Information Systems

MACVITTIE, Kevin L.
BS, Clarkson University
PhD, Clarkson University
Adjunct Assistant Professor of Chemistry / Cofounder of RTVision Labs LLC

MANIERRE, Matt
B.A., Eastern Connecticut State University
M.A., University of Delaware, 2012
Ph.D, University of Delaware, 2016
Assistant Professor of Sociology

MARKO, Moshe
BPT, University of Tel-Aviv, Israel
MHS, Washington University
DPT, Massachusetts General Hospital Institute of Health Professions
PhD, Syracuse University
Assistant Professor of Physical Therapy

MARQUEZ-ILLESCAS, Gilberto
B.Sc., Universidad de las Americas-Puebla
M.A., Universidad Carlos III de Madrid
Msc., Universidad Carlos III de Madrid
PhD, Universidad Carlos III de Madrid
Assistant Professor Economics & Financial

MARTIN, Rebecca
BS, Misericordia University, Dallas, PA
MS, Misericordia University, Dallas, PA
DPT, Massachusetts General Hospital’s Institute of Health Professions, Boston, MA
Clinical Assistant Professor of Physical Therapy

MARTINEZ LEON, Hilda
BS, Tecnologico de Monterrey
M.S, Tecnologico de Monterrey
D.Sc. Tecnologico de Monterrey
Ph.D, Texas Tech University
Assistant Professor of Engineering and Management

MARTINEZ, Richard
CPT., U.S. Army B.B.A., Texas A&M International
Assistant Professor of Military Science

MASTORAKOS, Ioannis
BS, Aristotle Universitity of Thessaloniki, Greece
PhD, Aristotle University of Thessaloniki, Greece
Assistant Professor of Mechanical and Aeronautical Engineering

MATTHIS, Katharine
BS, St. Frances College
Clinical Assistant Professor of Physician Assistant Studies

MCCAFFREY, Lewis
BS University of Wales
MS Imperial College
PhD University of the Witwatersrand
Visiting Assistant Professor Inst for a Sustainable Environment

MEDEDOVIC THAGARD, Selma
BS, University of Zagreb, Zagreb, Croatia
PhD, Florida State University
Assistant Professor of Chemical and Biomolecular Engineering

MEKHAIMER, Mohamed A Gamil
B.S, University of Mansoura
MS, University of Plymouth
PhD, University of Memphis
Assistant Professor of Economics and Financial Studies
MELMAN, Galina
BS, D. Mendeleev University of Chemical Technology, Russia
MS, D. Mendeleev University of Chemical Technology, Russia
PhD, Weizmann Institute of Science, Israel
Assistant Professor of Chemistry and Biomolecular Science

MELNIKOV, Dmitriy
BS, MS, Moscow Engineering-Physics Institute
PhD, Lehigh University
Assistant Professor of Physics

MERETT, Craig
BE, Carlton University
MS and PhD, University of Illinois at Urbana-Champaign
Assistant Professor of Mechanical and Aeronautical Engineering

MICHALEK, Arthur
BS, Clarkson University
MS, Clarkson University
PhD, University of Vermont
Assistant Professor of Mechanical and Aeronautical Engineering

MILNE, R. John
BS, M.Eng., Cornell University
PhD, Rensselaer Polytechnic Institute
Neil '64 and Karen Bonke Assistant Professor of Engineering Management

MIRBOD, Parisa
BS, Isfahan University of Technology, Iran
MS, Univ. of Sistan & Baluchestan, Iran
PhD, City University of New York-Graduate Center
Assistant Professor of Mechanical and Aeronautical Engineering

MORRIS, Christopher Keller
B.A., M.A., Ph.D, University of Colorado at Boulder
Assistant Professor of Anthropology

MOUSA VIAN, Seyedamirabbas
Assistant Professor Engineering and Management

NAKAO, Shunsuke
BE, Keio University, Japan
PhD, University of California, Riverside
Assistant Professor of Chemical & Biomolecular Engineering

NYECK, S.N.
B.A., Swarthmore
PhD University of California at Los Angeles
Assistant Professor of Political Science

OHL, Alisha
Assistant Professor Occupational Therapy

ORMSBEE, Floyd
BS, SUNY Potsdam
MS, Clarkson University
PhD Carlton University
Assistant Professor of Consumer and Organizational Studies

PAEK, Eunsu
Assistant Professor of Chemical and Biomolecular Engineering

PARSHAD, Rana
B.A., New York University
MS, University of Maryland
MS, PhD., Florida State University
Assistant Professor of Mathematics

PEDERSEN, Steven
B.A., Goldsmiths College, University of London
M.F.A., Alfred University
Assistant Professor of Digital Arts & Sciences

PROPST, Lisa
BS, McGill University
M.Phil., D.Phil., Oxford University
Assistant Professor of Literature

RAMSDELL, Michael
BS, MS, PhD, Clarkson University
Assistant Professor of Physics

REILEY, William
BS, PhD Rochester Institute of Technology

ROGERS, JoAnn
BS, MS, PhD, Iowa State University
Visiting Assistant Professor of Humanities and Social Sciences

SAMWAYS, Damien
BS, University of Southampton, UK
PhD, University of Bristol
Assistant Professor of Biology

SCRIMEGEOUR, Jan
M. Phys., Heriot-Watt University
D. Phil., University of Oxford
Assistant Professor of Physics

SEMNANI-AZAD, Zhaleh
B.A., M.A., PhD, University of Waterloo in Ontario
Assistant Professor of Consumer & Organizational Studies

SETHI, Anju
B.A., M.A., University of Delhi, India
M.B.A., Clarkson University
PhD Carlton University
Assistant Professor of Consumer and Organizational Studies
Instructor of Consumer and Organizational Studies

SEYMOUR, Tonya
B.A., SUNY Potsdam
MSP.A.S., Clarkson University
Clinical Assistant Professor of Physician Assistant Studies

SCHELLY, David
Assistant Professor Occupational Therapy

SMITH, Tyler
BS, MS, PhD, Montana State University
Assistant Professor of Civil and Environmental Engineering

SONG, Guohui
BS, Wuhan University, China
MS, PhD, Syracuse University
Assistant Professor of Mathematics of Mathematics

SUN, Jie
BS, Shanghai Jiao Tong University, China
MS, PhD, Clarkson University
Assistant Professor of Mathematics

SUR, Shantanu
BS MBBS, N.R.S. Medical College
University of Calcutta, India
MS Indian Institute of Technology, Kharag-pur, India
Ph.D, IIT, Kharag-pur, India with BSI Riken, Japan
Assistant Professor of Biology

TEBO, Lisa
BS Colorado St. University
MS, Bowling Green State University
Doctorate in Occupational Therapy, Thomas Jefferson University. Clinical Assistant Professor of Occupational Therapy

TAN, Chee-Keong
Assistant Professor Electrical & Computer Engineering

THOMAS, Joshua
BS, MS, PhD, University of Toledo
Assistant Professor of Physics

TOTH, Scott
BS, Shippensburg University
Assistant Professor of Military Science

TOWLER, Christopher
BS, Clarkson University
DPT, Clarkson University
Clinical Assistant Professor of Physical Therapy

TRAN, Khiem
BS, National University of Civil Engineering, Hanoi, Vietnam
MS, PhD, University of Florida
Assistant Professor of Civil and Environmental Engineering

TUMANOV, Alexei
M.D. Russian State Medical University
PhD Engelhardt Institute of Molecular Biology
VEGA, Jose
BSBA, University of Denver
MBA, Colorado State University – Pueblo
PhD, University of Texas at San Antonio
Assistant Professor of Accounting

WHITE, Dawn
B.A., Nazareth College
M.P.A.S., University of Nebraska
D.H.Sc., A.T. Still University
Clinical Assistant Professor of Physician Assistant Studies

WHITE, Diana
BS, Memorial University of Newfoundland
MS, University of Alberta, Canada
PhD, University of Alberta, Canada
Assistant Professor of Mathematics

WOODS, Alisa
Research Assistant Professor

WRIEDT, Mario
BS, PhD Christian Albrechts University, Kiel, Germany
Assistant Professor of Chemistry and Biomolecular Science

Xiang, Chen
BS, Tsinghua University
MS, PhD, Carnegie Mellon University
Assistant Professor of Operations and Information Systems

XYDIAS, Christina
B.A., Brown University
M.A., PhD, Ohio State University
Assistant Professor of Humanities and Social Political Science

YAN, Zijie
Assistant Professor of Chemical and Biomolecular Engineering

YAO, Guangming
BS, MS, Harbin Normal University, China
PhD, University of Southern Mississippi
Assistant Professor of Mathematics

YORK, Eric
B.A., M.A., University of Maine
PhD, Iowa State University
Assistant Professor of Communication & Media

YOUNG, Keith
BS, Empire State College
M.P.A.S., University of Nebraska
D.H.Sc., A.T. Still University
Clinical Assistant Professor/Chair of Physician Assistant Studies

YUYA, Philip
BS, MS, PhD University of Nairobi, Kenya
Assistant Professor of Mechanical and Aeronautical Engineering

ZHOU, Linying
BS, University of Science and Technology Of China
MS, Northwest University, China
PhD, University of Texas at Arlington

ZROKA, Ryan
B.A., University of California at Los Angeles
M.A., PhD, University of California at San Diego
Assistant Professor of History

INSTRUCTORS

ANDREESCU, Daniel
BS, University of Bucharest, Romania
MS, University of Bucharest, Romania
PhD, University of Bucharest, Romania
Instructor and Instrument Manager of Chemistry and Biomolecular Science

BACKUS, Eric C.
BS Clarkson University
MS University of Missouri – Rolla
Instructor of Civil and Environmental Engineering/Director of CEM

BUCKINGHAM, Ronald
Instructor in Mechanical and Aeronautical Engineering
<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Department/Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUCKLE, Karen</td>
<td>Instructor of School of Engineering</td>
<td></td>
</tr>
<tr>
<td>BURDICK, Karen</td>
<td>Instructor of Biology</td>
<td></td>
</tr>
<tr>
<td>CHAPMAN, Edward</td>
<td>Senior Military Instructor of Military Science</td>
<td></td>
</tr>
<tr>
<td>CHAPMAN, Elisabeth</td>
<td>Instructor of School of Engineering</td>
<td></td>
</tr>
<tr>
<td>COLBERT, Chad</td>
<td>Adjunct Instructor</td>
<td>School of Business</td>
</tr>
<tr>
<td>COMPEAU, Marc</td>
<td>BS, SUNY Potsdam</td>
<td>MS, Clarkson University</td>
</tr>
<tr>
<td></td>
<td>Assistant Professor of Consumer and Organizational Studies</td>
<td></td>
</tr>
<tr>
<td>CONLON, Tyler</td>
<td>Instructor and Director of Projects and IT</td>
<td>Infrastructure</td>
</tr>
<tr>
<td></td>
<td>Data Analytics</td>
<td></td>
</tr>
<tr>
<td>DEWATERS, Jan</td>
<td>Instructor of School of Engineering</td>
<td></td>
</tr>
<tr>
<td>DULLEA, Daniel</td>
<td>BS, MS, SUNY - Syracuse</td>
<td>Director of Communication and Media / Director of Media Creation and Production</td>
</tr>
<tr>
<td>FELLAND, Michael</td>
<td>A.B., University of California, Berkeley</td>
<td>S.M., University of Chicago</td>
</tr>
<tr>
<td></td>
<td>MS, University of Chicago</td>
<td>Senior Military Science Instructor</td>
</tr>
<tr>
<td>HAMMECKER-MCLEAN, Cindy</td>
<td>Clinical Assistant Professor</td>
<td>Occupational Therapy</td>
</tr>
<tr>
<td>HEINL, Jared</td>
<td>Adjunct Instructor of Civil and Environmental Engineering</td>
<td></td>
</tr>
<tr>
<td>HOPKINS, John</td>
<td>Adjunct Instructor</td>
<td>Humanities and Social Sciences</td>
</tr>
<tr>
<td>HUDAK, Bryan</td>
<td>Adjunct Instructor</td>
<td>Humanities and Social Sciences</td>
</tr>
<tr>
<td>ISSEN, Marshall</td>
<td>BS, University of Illinois, Urbana</td>
<td>MS, Roosevelt University</td>
</tr>
<tr>
<td></td>
<td>P.E., Illinois</td>
<td>Instructor of Engineering and Management</td>
</tr>
<tr>
<td>JOHNS, Danielle</td>
<td>Instructor of Digital Arts & Sciences</td>
<td>Communication & Media</td>
</tr>
<tr>
<td>JOHNSON-WOODS, Courtney</td>
<td>B.A., SUNY Buffalo</td>
<td>MS, ABD, SUNY ESF</td>
</tr>
<tr>
<td></td>
<td>Instructor of Communication and Media / Director of the Writing Center</td>
<td></td>
</tr>
<tr>
<td>KELLY, Gary</td>
<td>Adjunct Instructor</td>
<td>Honors Program</td>
</tr>
<tr>
<td>MARTIN, Christopher</td>
<td>BS, Clarkson University</td>
<td>MS, SUNY Potsdam</td>
</tr>
<tr>
<td></td>
<td>Instructor of Mathematics</td>
<td>Instructor of Mathematics</td>
</tr>
<tr>
<td>MORRISON, Sara</td>
<td>BS, St. Lawrence University</td>
<td>MS, University of Vermont</td>
</tr>
<tr>
<td></td>
<td>Instructor of Mathematics</td>
<td>Instructor of Civil & Environmental Engineering</td>
</tr>
<tr>
<td>OLSEN, William</td>
<td>Instructor of Civil & Environmental Engineering</td>
<td></td>
</tr>
<tr>
<td>PIERCE, Duane</td>
<td>Adjunct Instructor</td>
<td>School of Engineering</td>
</tr>
<tr>
<td>RICE, Dale</td>
<td>Adjunct Instructor of Consumer & Organizational Studies</td>
<td>School of Business</td>
</tr>
</tbody>
</table>
RILEY, Charles
Adjunct Instructor
Beacon Institute

SEKELJ, Gasper
BS, M.B.A., Clarkson University
Instructor of Economics and Financial Studies

SHATTUCK, Heather
BS, D'Youville College
MS, D'Youville College
Clinical Instructor of Physical Therapy

SHERMAN, Jesse
BS, MS, Clarkson University
Instructor of Economics & Financial Studies

SIMON, Judith
Instructor of ESL

SMITH, Brad
B.A., SUNY Potsdam
M.A., SUNY Potsdam
Instructor of Mathematics

SUMANASOORIYA, Milani
Instructor of Civil and Environmental Engineering

SZARKA, Andrew
Adjunct Instructor
Humanities & Social Sciences

TIGHE, Michael
Assistant Instructor of Biology

TIRION, Monique
Adjunct Research Associate Professor

WEST, Summar
Visiting Assistant Professor
Humanities & Social Sciences

WIGGINS, Arderrick
Instructor of Military Science

WULTSCH, Elisabeth
Instructor of School of Engineering

ZROKA, Amy
Adjunct Instructor
Humanities & Social Sciences
ACADEMIC CALENDARS

Semester Programs

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester Events</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate Residential Business Program</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classes Begin</td>
<td>22 Aug M</td>
<td>21 Aug M</td>
<td>20 Aug M</td>
</tr>
<tr>
<td>New Student Check-In</td>
<td>26 Aug F</td>
<td>25 Aug F</td>
<td>24 Aug F</td>
</tr>
<tr>
<td>Returning Student Check-In</td>
<td>28 Aug SU</td>
<td>27 Aug SU</td>
<td>26 Aug SU</td>
</tr>
<tr>
<td>Classes Begin</td>
<td>29 Aug M</td>
<td>28 Aug M</td>
<td>27 Aug M</td>
</tr>
<tr>
<td>Fall Recess Begins*</td>
<td>7 Oct F</td>
<td>6 Oct F</td>
<td>5 Oct F</td>
</tr>
<tr>
<td>Classes Resume</td>
<td>12 Oct W</td>
<td>11 Oct W</td>
<td>10 Oct W</td>
</tr>
<tr>
<td>Parent's/Family Weekend Begins</td>
<td>28 Oct F</td>
<td>TBA</td>
<td>TBA</td>
</tr>
<tr>
<td>Enrollment For Spring Classes Begin</td>
<td>9 Nov W</td>
<td>8 Nov W</td>
<td>7 Nov W</td>
</tr>
<tr>
<td>Thanksgiving Recess Begins*</td>
<td>22 Nov TU</td>
<td>21 Nov TU</td>
<td>20 Nov TU</td>
</tr>
<tr>
<td>Classes Resume</td>
<td>28 Nov M</td>
<td>27 Nov M</td>
<td>26 Nov M</td>
</tr>
<tr>
<td>Last Day of Class</td>
<td>9 Dec F</td>
<td>8 Dec F</td>
<td>7 Dec F</td>
</tr>
<tr>
<td>Exams Begin</td>
<td>12 Dec M</td>
<td>11 Dec M</td>
<td>10 Dec M</td>
</tr>
<tr>
<td>Exams End</td>
<td>16 Dec F</td>
<td>15 Dec F</td>
<td>14 Dec F</td>
</tr>
<tr>
<td>December Graduates Recognition Ceremony</td>
<td>17 Dec SA</td>
<td>16 Dec SA</td>
<td>15 Dec SA</td>
</tr>
<tr>
<td>Final Grades Due to SAS — Noon</td>
<td>19 Dec M</td>
<td>18 Dec M</td>
<td>17 Dec M</td>
</tr>
<tr>
<td>Spring Semester Events</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate Residential Business Program</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classes Begin</td>
<td>9 Jan M</td>
<td>8 Jan M</td>
<td>7 Jan M</td>
</tr>
<tr>
<td>New Student Check-In</td>
<td>10 Jan TU</td>
<td>9 Jan T</td>
<td>8 Jan TU</td>
</tr>
<tr>
<td>Returning Student Check-In</td>
<td>11 Jan W</td>
<td>10 Jan W</td>
<td>9 Jan W</td>
</tr>
<tr>
<td>Classes Begin</td>
<td>12 Jan TH</td>
<td>11 Jan TH</td>
<td>10 Jan TH</td>
</tr>
<tr>
<td>February Break Begins*</td>
<td>22 Feb W</td>
<td>21 Feb W</td>
<td>20 Feb W</td>
</tr>
<tr>
<td>Classes Resume</td>
<td>27 Feb M</td>
<td>26 Feb M</td>
<td>25 Feb M</td>
</tr>
<tr>
<td>Midterm Grades Due to SAS — Noon</td>
<td>20 Mar M</td>
<td>12 Mar M</td>
<td>11 Mar M</td>
</tr>
<tr>
<td>Graduate Residential Business Program</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring Recess Begins*</td>
<td>3 Mar F</td>
<td>9 Mar F</td>
<td>8 Mar F</td>
</tr>
<tr>
<td>Spring Recess Begins*</td>
<td>17 Mar F</td>
<td>16 Mar F</td>
<td>15 Mar F</td>
</tr>
<tr>
<td>All Classes Resume</td>
<td>27 Mar M</td>
<td>26 Mar M</td>
<td>25 Mar M</td>
</tr>
<tr>
<td>Enrollment For Fall Classes Begin</td>
<td>5 Apr W</td>
<td>4 Apr W</td>
<td>3 Apr W</td>
</tr>
<tr>
<td>Last Day of Class</td>
<td>28 Apr F</td>
<td>27 Apr F</td>
<td>26 Apr F</td>
</tr>
</tbody>
</table>
Reading Days

- **1-2 May**: M, TU
- **30 Apr - 1 May**: M, TU
- **29-30 Apr**: M, TU

Exams Begin

- **3 May**: W
- **2 May**: W
- **1 May**: W

Exams End

- **9 May**: TU
- **8 May**: TU
- **7 May**: TU

Final Grades Due to SAS 5 p.m.**

- **12 May**: F
- **11 May**: F
- **10 May**: F

Commencement

- **13 May**: SA
- **12 May**: SA
- **11 May**: SA

Summer Sessions

<table>
<thead>
<tr>
<th>Summer 2017</th>
<th>Summer 2018</th>
<th>Summer 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session 1 Begins</td>
<td>22 May M</td>
<td>21 May M</td>
</tr>
<tr>
<td>Session 1 Ends</td>
<td>24 June SA</td>
<td>23 June SA</td>
</tr>
<tr>
<td>Session 2 Begins</td>
<td>3 July M</td>
<td>2 July M</td>
</tr>
<tr>
<td>Session 2 Ends</td>
<td>5 Aug SA</td>
<td>4 Aug SA</td>
</tr>
</tbody>
</table>

Alumni Reunion Dates

- **7/13-7/16**
- **7/12-7/15**
- **7/11-7/14**

Quarter Programs

Summer Quarter Events

<table>
<thead>
<tr>
<th>2016-2017</th>
<th>2017-2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classes begin</td>
<td>Summer 2016</td>
</tr>
<tr>
<td>Check-in deadline</td>
<td>13 June M</td>
</tr>
<tr>
<td>Enrollment for Fall classes begins</td>
<td>16 June TH</td>
</tr>
<tr>
<td>Classes end</td>
<td>22 July F</td>
</tr>
<tr>
<td>Final grades due to SAS by 12:00 noon</td>
<td>26 Aug F</td>
</tr>
</tbody>
</table>

Fall Quarter Events

<table>
<thead>
<tr>
<th>Fall 2016</th>
<th>Fall 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classes begin</td>
<td>7 Sept W</td>
</tr>
<tr>
<td>Check-in deadline</td>
<td>12 Sept M</td>
</tr>
<tr>
<td>Enrollment for Winter classes begins</td>
<td>14 Oct F</td>
</tr>
<tr>
<td>Classes end</td>
<td>22 Nov T</td>
</tr>
<tr>
<td>December graduates recognition ceremony</td>
<td>17 Dec SA</td>
</tr>
<tr>
<td>Final grades due to SAS by 12:00 noon</td>
<td>25 Nov F</td>
</tr>
</tbody>
</table>

Winter Quarter Events

<table>
<thead>
<tr>
<th>Winter 2017</th>
<th>Winter 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classes begin</td>
<td>2 Jan M*</td>
</tr>
<tr>
<td>Check-in deadline</td>
<td>5 Jan TH</td>
</tr>
<tr>
<td>Enrollment for Spring classes begins</td>
<td>10 Feb F</td>
</tr>
<tr>
<td>Classes end</td>
<td>17 Mar F</td>
</tr>
<tr>
<td>Final grades due to SAS by 12:00 noon</td>
<td>22 Mar W</td>
</tr>
<tr>
<td>Event</td>
<td>Spring 2017</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>Commencement</td>
<td>13 May SA</td>
</tr>
<tr>
<td>Spring Quarter Events</td>
<td>Spring 2017</td>
</tr>
<tr>
<td>Classes begin</td>
<td>27 Mar M</td>
</tr>
<tr>
<td>Check-in deadline</td>
<td>30 Mar TH</td>
</tr>
<tr>
<td>Enrollment for Summer classes begins</td>
<td>5 May F</td>
</tr>
<tr>
<td>Classes end</td>
<td>9 June F</td>
</tr>
<tr>
<td>Final grades due to SAS by 12:00 noon</td>
<td>14 June W</td>
</tr>
</tbody>
</table>
POLICIES

Equal Opportunity Policy
Clarkson University does not discriminate on the basis of race, gender, color, creed, religion, national origin, age, disability, sexual orientation, veteran or marital status in provision of educational or employment opportunities. Clarkson University does not discriminate on the basis of sex or disability in its educational programs and activities, pursuant to the requirements of Title IX of the Educational Amendments of 1972, and Section 504 of the Rehabilitation Act of 1973, and the American Disabilities Act of 1990 respectively.

This policy extends to both employment by and admission to the University. Inquiries concerning Section 504, and the Americans with Disabilities Act of 1990, should be directed to Loren Nowak, Section 504/ADA Coordinator, Director of Accommodative Services, 1400 Educational Resource Center, Clarkson University, Box 5635, Potsdam, NY 13699; or telephone 315-268-7643. Information on the processing of grievances and charges relating to the above policies can be obtained from the Affirmative Action Officer, Clarkson University, Box 5542, Potsdam, NY 13699, or telephone 315-268-6497.

Inquiries concerning Title IX, the Age Discrimination Act, or other discrimination concerns should be directed to Jennifer Ball, Title IX Coordinator, Clarkson University, Box 5750, Potsdam, NY 13699; or telephone 315-268-4208 or jball@Clarkson.edu

Clarkson University is making a special effort to identify a broad spectrum of candidates in both employment and educational programs, including women, minorities, and people with disabilities.

Student Complaint Process (HEOA)
In compliance with the Higher Education Opportunity Act of 2008 and the state complaint processes as prescribed for under 34 CFR 600.9, the following resources are provided:

Filing a Grievance with NY State
New York State Education Department
Office of College and University Evaluation
EBA Room 969
89 Washington Avenue
Albany, New York 12234

Filing a Grievance with Appropriate State Education Departments/Agencies/Officials - All States

Campus Crime Statistics
The Advisory Committee on Campus Safety will provide upon request all campus crime statistics as reported to the United States Department of Education. Contact the Director of Campus Safety & Security, 315-268-6666, or visit www.clarkson.edu/campussafety.

Protection of Privacy
Clarkson University abides by the provisions of the Family Educational Rights and Privacy Act of 1974 (Buckley Amendment). The University will release or withhold information under these provisions, which are published annually in the Clarkson Regulations.

Nonimmigrant Alien Students
Clarkson is authorized under federal law to enroll nonimmigrant alien students.
LIST OF GRADUATE PROGRAMS/CERTIFICATES & HEGIS CODES

The number following the degree program is the Higher Education General Information Survey (HEGIS) code for classifying academic areas designated by the New York State Education Department. Enrollment in other than registered or otherwise approved programs may jeopardize a student’s eligibility for certain student aid awards.

<table>
<thead>
<tr>
<th>Program</th>
<th>Degree(s)</th>
<th>HEGIS Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adolescence Education 7-12</td>
<td>MAT</td>
<td>17-12 0803</td>
</tr>
<tr>
<td>Basic Science</td>
<td>MS</td>
<td>4902</td>
</tr>
<tr>
<td>Bioethics</td>
<td>MS</td>
<td>0499</td>
</tr>
<tr>
<td>Business Administration</td>
<td>MBA</td>
<td>0506</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>MS, ME, PhD</td>
<td>0906</td>
</tr>
<tr>
<td>Chemistry</td>
<td>MS, PhD</td>
<td>1905</td>
</tr>
<tr>
<td>Civil and Environmental Engineering</td>
<td>MS, ME, PhD</td>
<td>0908</td>
</tr>
<tr>
<td>Clinical Leadership in Healthcare Management</td>
<td>MS</td>
<td>1202</td>
</tr>
<tr>
<td>Computer Science (Interdisciplinary)</td>
<td>MS, PhD</td>
<td>0701</td>
</tr>
<tr>
<td>Data Analytics (Interdisciplinary)</td>
<td>MS</td>
<td>0702</td>
</tr>
<tr>
<td>Electrical and Computer Engineering PhD</td>
<td>PhD</td>
<td>0909</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>ME, MS</td>
<td>0909</td>
</tr>
<tr>
<td>Energy Systems</td>
<td>MS</td>
<td>4904</td>
</tr>
<tr>
<td>Engineering and Management Systems</td>
<td>MS</td>
<td>4904</td>
</tr>
<tr>
<td>Engineering Management (Interdisciplinary)</td>
<td>MS</td>
<td>0913</td>
</tr>
<tr>
<td>Engineering Science</td>
<td>MS, PhD</td>
<td>0901</td>
</tr>
<tr>
<td>Environmental Politics & Governance (Interdisciplinary)</td>
<td>MS</td>
<td>0420</td>
</tr>
<tr>
<td>Environmental Science & Engineering (Interdisciplinary)</td>
<td>MS, PhD</td>
<td>0922</td>
</tr>
<tr>
<td>Healthcare Management- 8 Year Leadership in Medicine</td>
<td>MBA</td>
<td>1202</td>
</tr>
<tr>
<td>Healthcare Data Analytics</td>
<td>MS</td>
<td>1202</td>
</tr>
<tr>
<td>Information Technology (Interdisciplinary)</td>
<td>MS</td>
<td>0702</td>
</tr>
<tr>
<td>Interdisciplinary Bioscience & Biotechnology</td>
<td>PhD</td>
<td>0499</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MS, PhD</td>
<td>1701</td>
</tr>
<tr>
<td>Material Science and Engineering</td>
<td>PhD</td>
<td>0915</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>ME, MS, PhD</td>
<td>0910</td>
</tr>
<tr>
<td>Occupational Therapy</td>
<td>MS</td>
<td>1208</td>
</tr>
<tr>
<td>Physical Therapy</td>
<td>DPT</td>
<td>1212</td>
</tr>
<tr>
<td>Physician Assistant Studies</td>
<td>MS</td>
<td>1299.10</td>
</tr>
<tr>
<td>Physics</td>
<td>MS, PhD</td>
<td>1902</td>
</tr>
<tr>
<td>Technology Education K-12</td>
<td>MAT</td>
<td>0839.02</td>
</tr>
<tr>
<td>Certificate Program</td>
<td>Degree(s)</td>
<td>HEGIS Code</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Bioethics</td>
<td>Advanced Certificate</td>
<td>0499</td>
</tr>
<tr>
<td>Business of Energy</td>
<td>Advanced Certificate</td>
<td>4904</td>
</tr>
<tr>
<td>Global Supply Chain Management</td>
<td>Advanced Certificate</td>
<td>0501</td>
</tr>
<tr>
<td>Human Resource Management</td>
<td>Advanced Certificate</td>
<td>0515</td>
</tr>
<tr>
<td>Management and Leadership</td>
<td>Advanced Certificate</td>
<td>0506</td>
</tr>
<tr>
<td>Healthcare Management</td>
<td>Advanced Certificate</td>
<td>1202</td>
</tr>
<tr>
<td>Business Fundamentals</td>
<td>Advanced Certificate</td>
<td>0506</td>
</tr>
</tbody>
</table>