Required Courses

The Master of Science in Energy Systems requires a total of 11 courses. Each student’s program will include at least 5 to 9 energy related mechanical or electrical engineering courses, 2 to 3 non-technical Mechanical or Electrical energy-related and/or Business of Energy courses, and 0 to 4 fundamental technical Mechanical or Electrical engineering courses.

  • Energy Systems Courses (Choose 5-9)
    • Fuel Cell Science and Hydrogen Engineering (EE640)
    • Photovoltaic Engineering (EE643)
    • Linear Control Systems (EE657)
    • Turbine Engineering (EE683)
    • Wind Energy Engineering (EE684)
    • Solar Energy Engineering (EE685)
    • Synchronous Electrical Generators (EE686)
    • Nuclear Engineering (EE687)
    • Electronic Power Conversion (EE642)
    • Modeling and Control of Energy Conversion (EE653)
    • Digital Control Systems (EE658)
    • Power Systems Analysis I (EE680)
    • Power Systems Analysis II (EE681)
    • Electromechanical Energy Conversion (EE682)
    • Thermal Energy Processes (ME568)
    • Superconductivity (ME570)
    • Principles of Thermal Systems (ME584)
  • Non-technical Energy Systems Courses (Choose 2-3)
    • Disruptive Technology (EE600)
    • Sustainability (EE601)
    • Fundamentals of the Business of Energy (BOE610)
    • Planning and Operations of Power Systems (BOE611)
    • Power Markets (BOE612)
    • Deregulation and Restructuring (BOE613)
    • Electric Power Industry Economics and Finance (BOE614)
    • Challenges to Upgrading Aging Infrastructure (BOE615)
  • Other Fundamental Technical Courses (Choose 0-4)
    • Engineering Statistics (EE602)
    • Motor Acoustics (EE606)
    • Solid State Electronics (EE644)
    • Elasticity (ME500)
    • Transport Phenomena (ME501)
    • Engineering Analysis (ME502)
    • Mechanical Behavior of Materials (ME506)
    • Fracture Mechanics (ME508)
    • Current Approaches to Fatigue in Design (ME509)
    • Advanced Dynamics (ME510)
    • Vibrations of Discrete Systems (ME512)
    • Processing and Selection of Engineering Materials (ME513)
    • Finite Element Methods in Engineering (ME516)
    • Engineering Optimization (ME561)
    • Composites (ME562)
    • Dynamics of a Viscous Fluid (ME563)
    • Compressible Fluid Flow (ME564)
    • Combustion Fundamentals (ME565)
    • Fluid Dynamics of Turbo Machinery (ME566)
    • Thermodynamic Analysis (ME567)
    • Conduction Heat Transfer (ME569)
    • Convection Heat Transfer (ME571)
    • Advanced Fluid Dynamics (ME572)
    • Flow/Heat Transfer in Multiphase Systems (ME573)
    • Computational Fluid Dynamics (ME574)
    • System Modeling and Optimization (ME576)
    • Welding (ME586)