ELSEVIER

The eigenvalue problem of a specially updated matrix

Jiu Ding ${ }^{\text {a,* }}$, Guangming Yao ${ }^{\text {b,1 }}$
${ }^{\text {a }}$ Department of Mathematics, The University of Southern Mississippi, Hattiesburg, MS 39406-5045, USA
${ }^{\mathrm{b}}$ School of Mathematics and Computation, Harbin University, Harbin, China

Abstract

We study the eigenvalue problem for a specially structured rank- k updated matrix, based on the Sherman-MorrisonWoodbury formula. © 2006 Elsevier Inc. All rights reserved.

Keywords: Rank- k updated matrix; Sherman-Morrison-Woodbury

1. Introduction

In a recent paper [2], the eigenvalue problem of a special rank-one updated matrix was studied and the result therein provided an alternative proof of the eigenvalue theorem [3-6] for the Google matrix whose eigenvector associated with eigenvalue 1 is the so-called PageRank for the Google web search engine $[1,7,8]$. The main result of [2] is the following theorem.
Theorem 1.1. Let A be an $n \times n$ real matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ counting algebraic multiplicities, and let u and v be two n-dimensional real column vectors such that v is a left eigenvector of A associated with eigenvalue λ_{1}. Then, the eigenvalues of the matrix

$$
B=A+u v^{\mathrm{T}}
$$

are

$$
\left\{\lambda_{1}+u^{\mathrm{T}} v, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{n}\right\} .
$$

In this paper, we generalize Theorem 1.1 by considering the eigenvalue problem of the matrix

$$
B=A+u_{1} v_{1}^{\mathrm{T}}+u_{2} v_{2}^{\mathrm{T}}+\cdots+u_{k} v_{k}^{\mathrm{T}}
$$

with $2 \leqslant k \leqslant n$, where u_{1}, \ldots, u_{k} and v_{1}, \ldots, v_{k} are real column vectors such that v_{1}, \ldots, v_{k} are left eigenvectors of A.

[^0]Instead of the Sherman-Morrison formula used in [2] for the inverse of a rank-one updated matrix, we need the following Sherman-Morrison-Woodbury formula for the inverse of a rank- k updated matrix for our purpose.
Lemma 1.1. If A is an invertible $n \times n$ real matrix, and U, V are two $n \times k$ real matrices, then the $n \times n$ matrix $A+U V^{\mathrm{T}}$ is invertible if and only if the $k \times k$ matrix $I+V^{\mathrm{T}} A^{-1} U$ is invertible, and then

$$
\begin{equation*}
\left(A+U V^{\mathrm{T}}\right)^{-1}=A^{-1}-A^{-1} U\left(I+V^{\mathrm{T}} A^{-1} U\right)^{-1} V^{\mathrm{T}} A^{-1} \tag{1}
\end{equation*}
$$

Although the proof of our main result Theorem 3.1 works for any $k \leqslant n$, in the next section we prove the special case $k=2$ first to illustrate the basic idea of our approach. Then we give the general result in Section 3 .

2. Eigenvalues of rank-2 updated matrices

We first consider the special case $k=2$ in this section. Let A be an $n \times n$ real matrix and let $u_{1}, u_{2}, v_{1}, v_{2}$ be n dimensional real column vectors. We consider the eigenvalue problem for the matrix

$$
B=A+u_{1} v_{1}^{\mathrm{T}}+u_{2} v_{2}^{\mathrm{T}} .
$$

In the proof of our theorems below, we use the standard notation in matrix theory. For example, $N(A)$ denotes the null space of A and M^{\perp} is the orthogonal complement of a subset M in R^{n}.
Theorem 2.1. Let A be an $n \times n$ real matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ counting algebraic multiplicities, and let $u_{1}, u_{2}, v_{1}, v_{2}$ be real column vectors such that v_{1} and v_{2} are linearly independent left eigenvectors of A corresponding to eigenvalues λ_{1} and λ_{2}, respectively. Then the eigenvalues of the matrix $B=A+u_{1} v_{1}^{\mathrm{T}}+u_{2} v_{2}^{\mathrm{T}}$ are

$$
\left\{\mu, v, \lambda_{3}, \ldots, \lambda_{n}\right\}
$$

where μ and v are the eigenvalues of the 2×2 matrix

$$
W=\left[\begin{array}{cc}
\lambda_{1}+u_{1}^{\mathrm{T}} v_{1} & u_{1}^{\mathrm{T}} v_{2} \tag{2}\\
u_{2}^{\mathrm{T}} v_{1} & \lambda_{2}+u_{2}^{\mathrm{T}} v_{2}
\end{array}\right]=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)+U^{\mathrm{T}} V
$$

with U and V denoting the $n \times 2$ matrices

$$
U=\left[u_{1}, u_{2}\right], \quad V=\left[v_{1}, v_{2}\right] .
$$

Proof. For any complex number λ,

$$
\begin{equation*}
B-\lambda I=A-\lambda I+U V^{\mathrm{T}} . \tag{3}
\end{equation*}
$$

We first show that μ and v are eigenvalues of B. Since $v_{1}^{\mathrm{T}} A=\lambda_{1} v_{1}^{\mathrm{T}}$ and $v_{2}^{\mathrm{T}} A=\lambda_{2} v_{2}^{\mathrm{T}}$, we have

$$
v_{1}^{\mathrm{T}} B=v_{1}^{\mathrm{T}} A+v_{1}^{\mathrm{T}} u_{1} v_{1}^{\mathrm{T}}+v_{1}^{\mathrm{T}} u_{2} v_{2}^{\mathrm{T}}=\left(\lambda_{1}+u_{1}^{\mathrm{T}} v_{1}\right) v_{1}^{\mathrm{T}}+\left(u_{2}^{\mathrm{T}} v_{1}\right) v_{2}^{\mathrm{T}}
$$

and

$$
v_{2}^{\mathrm{T}} B=v_{2}^{\mathrm{T}} A+v_{2}^{\mathrm{T}} u_{1} v_{1}^{\mathrm{T}}+v_{2}^{\mathrm{T}} u_{2} v_{2}^{\mathrm{T}}=\left(u_{1}^{\mathrm{T}} v_{2}\right) v_{1}^{\mathrm{T}}+\left(\lambda_{2}+u_{2}^{\mathrm{T}} v_{2}\right) v_{2}^{\mathrm{T}} .
$$

That is,

$$
\begin{equation*}
V^{\mathrm{T}} B=W^{\mathrm{T}} V^{\mathrm{T}}, \tag{4}
\end{equation*}
$$

where W is the 2×2 matrix as defined by (2). Suppose λ is an eigenvalue of W. Then there is a nonzero 2-dimensional column vector η such that $\eta^{\mathrm{T}}\left(W^{\mathrm{T}}-\lambda I\right)=0$, which and (4) imply that

$$
\eta^{\mathrm{T}} V^{\mathrm{T}}(B-\lambda I)=\eta^{\mathrm{T}}\left(W^{\mathrm{T}}-\lambda I\right) V^{\mathrm{T}}=0 .
$$

Since v_{1}, v_{2} are linearly independent, $V \eta$ is a left eigenvector of B associated with eigenvalue λ. Therefore, both μ and v are eigenvalues of B.

Next we show that a complex number λ is an eigenvalue of B if and only if $\lambda \in\left\{\mu, \nu, \lambda_{3}, \ldots, \lambda_{n}\right\}$. We consider four cases separately.
(i) Assume $\lambda \neq \lambda_{i}$ for all $i=1, \ldots, n$. Then the inverse matrix $(A-\lambda I)^{-1}$ exists. If λ is an eigenvalue of B, then
$\operatorname{det}\left[I+V^{\mathrm{T}}(A-\lambda I)^{-1} U\right]=0$
by the Sherman-Morrison-Woodbury formula applied to (3). Since $V^{\mathrm{T}} A=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right) V^{\mathrm{T}}$,
$V^{\mathrm{T}}(A-\lambda I)=\operatorname{diag}\left(\lambda_{1}-\lambda, \lambda_{2}-\lambda\right) V^{\mathrm{T}}$,
which implies that
$V^{\mathrm{T}}(A-\lambda I)^{-1}=\operatorname{diag}\left(\frac{1}{\lambda_{1}-\lambda}, \frac{1}{\lambda_{2}-\lambda}\right) V^{\mathrm{T}}$.
It follows that

$$
\begin{aligned}
\operatorname{det}\left[I+V^{\mathrm{T}}(A-\lambda I)^{-1} U\right] & =\operatorname{det}\left[I+\operatorname{diag}\left(\frac{1}{\lambda_{1}-\lambda}, \frac{1}{\lambda_{2}-\lambda}\right) V^{\mathrm{T}} U\right] \\
& =\operatorname{det}\left[\operatorname{diag}\left(\frac{1}{\lambda_{1}-\lambda}, \frac{1}{\lambda_{2}-\lambda}\right)\right] \cdot \operatorname{det}\left[\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)+U^{\mathrm{T}} V-\lambda I\right] \\
& =\frac{1}{\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right)} \cdot \operatorname{det}(W-\lambda I) .
\end{aligned}
$$

So, equality (5) implies that $\operatorname{det}(W-\lambda I)=0$. That is, λ is an eigenvalue of the 2×2 matrix W. Therefore $\lambda=\mu$ or v. This proves that all the other eigenvalues of B are inside the eigenvalue set $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ of A.
(ii) Suppose $\lambda=\lambda_{i}$ for some $i=3, \ldots, n$. Then the matrix $A-\lambda I$ is singular. Since
$A-\lambda I=B-\lambda I-U V^{\mathrm{T}}$,
if λ_{i} is not an eigenvalue of B, then the Sherman-Morrison-Woodbury formula applied to (6) implies that
$\operatorname{det}\left[I-V^{\mathrm{T}}(B-\lambda I)^{-1} U\right]=0$.
Since $V^{\mathrm{T}}(B-\lambda I)=\left(W^{\mathrm{T}}-\lambda I\right) V^{\mathrm{T}}$ from (4),
$V^{\mathrm{T}}(B-\lambda I)^{-1}=\left(W^{\mathrm{T}}-\lambda I\right)^{-1} V^{\mathrm{T}}$.
Thus,

$$
\begin{aligned}
\operatorname{det}\left[I-V^{\mathrm{T}}(B-\lambda I)^{-1} U\right] & =\operatorname{det}\left[I-\left(W^{\mathrm{T}}-\lambda I\right)^{-1} V^{\mathrm{T}} U\right]=\operatorname{det}\left[\left(W^{\mathrm{T}}-\lambda I\right)^{-1}\right] \cdot \operatorname{det}\left[\operatorname{diag}\left(\lambda_{1}-\lambda, \lambda_{2}-\lambda\right)\right] \\
& =\frac{\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right)}{\operatorname{det}(W-\lambda I)}
\end{aligned}
$$

It follows from (7) that $\lambda=\lambda_{1}$ or λ_{2}, which is a contradiction if $\lambda_{i} \neq \lambda_{1}, \lambda_{2}$. This says that λ_{i} is an eigenvalue of B under the additional assumption that $\lambda_{i} \neq \lambda_{1}, \lambda_{2}$.
(iii) Now suppose $\lambda=\lambda_{i}=\lambda_{1}$ for some $i=3, \ldots, n$. Then the algebraic multiplicity of the eigenvalue λ for A is at least two. First assume that $\operatorname{dim} N(A-\lambda I)<\operatorname{dim} N\left[(A-\lambda I)^{2}\right]$. Then there is a nonzero vector $u \in N\left[(A-\lambda I)^{2}\right]$ such that $v \equiv(A-\lambda I) u \neq 0$. Since $\left(\lambda_{2}-\lambda_{1}\right)^{2} v_{2}^{\mathrm{T}} u=v_{2}^{\mathrm{T}}(A-\lambda I)^{2} u=0$, there holds $\left(\lambda_{2}-\lambda_{1}\right) v_{2}^{\mathrm{T}} u=0$. Therefore, by (3),

$$
\begin{aligned}
(B-\lambda I) v & =(B-\lambda I)(A-\lambda I) u=\left[(A-\lambda I)^{2}+U V^{\mathrm{T}}(A-\lambda I)\right] u=(A-\lambda I)^{2} u+\left(\lambda_{2}-\lambda_{1}\right) u_{2} v_{2}^{\mathrm{T}} u \\
& =\left(\lambda_{2}-\lambda_{1}\right) v_{2}^{\mathrm{T}} u \cdot u_{2}=0 .
\end{aligned}
$$

That is, λ is an eigenvalue of B with eigenvector v. Next assume that $\operatorname{dim} N(A-\lambda I)=\operatorname{dim} N[(A-$ $\left.\lambda I)^{2}\right] \geqslant 2$. If $\lambda_{1}=\lambda_{2}$, then $\operatorname{dim} N(A-\lambda I) \geqslant 3$. Since $\operatorname{dim}\left\{v_{1}, v_{2}\right\}^{\perp}=n-2$, $\operatorname{dim} N(B-\lambda I) \geqslant 1$ by (3). In other words, λ is an eigenvalue of B. If $\lambda_{1} \neq \lambda_{2}$, then there is $u \neq 0$ such that $(A-\lambda I) u=0$ and $v_{1}^{\mathrm{T}} u=0$ since $\operatorname{dim}\left\{v_{1}\right\}^{\perp}=n-1$. Since $\left(\lambda_{2}-\lambda_{1}\right) v_{2}^{\mathrm{T}} u=v_{2}^{\mathrm{T}}(A-\lambda I) u=0$, we also have $v_{2}^{\mathrm{T}} u=0$. Hence, $(B-\lambda I) u=(A-\lambda I) u+U V^{\mathrm{T}} u=0$.
That is, λ is an eigenvalue of B with eigenvector u. By the same token, if $\lambda_{i}=\lambda_{2}$ for some $i=3, \ldots, n$, then λ_{i} is an eigenvalue of B.
(iv) Finally, we show that for $\lambda=\lambda_{1}$ or λ_{2}, if $\lambda \neq \lambda_{i}$ for all $i=3, \ldots, n$, and if λ is not an eigenvalue of W, then λ is not an eigenvalue of B. We prove the claim for $\lambda=\lambda_{1}$ only since the proof for the other case is exactly the same. What we need to show is that the matrix $B-\lambda I$ is nonsingular. Let $w \in R^{n}$ be a nonzero vector. First assume that $w=V \eta$ for some nonzero vector $\eta \in R^{2}$. Since $\lambda \neq \mu, v$, the 2×2 matrix $W-\lambda I$ is nonsingular, so $\eta^{\mathrm{T}}\left(W^{\mathrm{T}}-\lambda I\right) \neq 0$. Since the rank of V is 2 , equality (4) gives
$w^{\mathrm{T}}(B-\lambda I)=\eta^{\mathrm{T}} V^{\mathrm{T}}(B-\lambda I)=\eta^{\mathrm{T}}\left(W^{\mathrm{T}}-\lambda I\right) V^{\mathrm{T}} \neq 0$.
Now assume that $w \notin \operatorname{span}\left\{v_{1}, v_{2}\right\}$. Suppose $\quad w^{\mathrm{T}}(B-\lambda I)=w^{\mathrm{T}}(A-\lambda I)+w^{\mathrm{T}} U V^{\mathrm{T}}=0$. Then $w^{\mathrm{T}}\left(A-\lambda_{1} I\right)=-w^{\mathrm{T}} U V^{\mathrm{T}}$, so
$w^{\mathrm{T}}\left(A-\lambda_{2} I\right)\left(A-\lambda_{1} I\right)^{2}=-w^{\mathrm{T}} U V^{\mathrm{T}}\left(A-\lambda_{1} I\right)\left(A-\lambda_{2} I\right)=0$
since $V^{\mathrm{T}}\left(A-\lambda_{1} I\right)\left(A-\lambda_{2} I\right)=0$. Eq. (8) and the fact that the algebraic multiplicity of the eigenvalue λ_{1} of A is at most 2 imply that $w^{\mathrm{T}}\left(A-\lambda_{2} I\right)=\eta^{\mathrm{T}} V^{\mathrm{T}}$ for some $\eta \in R^{2}$. Therefore,
$\eta^{\mathrm{T}} V^{\mathrm{T}}=w^{\mathrm{T}}\left(A-\lambda_{2} I\right)=w^{\mathrm{T}}\left(A-\lambda_{1} I\right)+\left(\lambda_{1}-\lambda_{2}\right) w^{\mathrm{T}}=-w^{\mathrm{T}} U V^{\mathrm{T}}+\left(\lambda_{1}-\lambda_{2}\right) w^{\mathrm{T}}$.
If $\lambda_{1}=\lambda_{2}$, then $w^{\mathrm{T}}\left(A-\lambda_{1} I\right)^{2}=0$ by (9), which contradicts the fact that $\operatorname{dim} N\left[\left(A-\lambda_{1} I\right)^{2}\right]=2$. If $\lambda_{1} \neq \lambda_{2}$, then (9) gives
$w=\frac{V\left(\eta+U^{\mathrm{T}} w\right)}{\lambda_{1}-\lambda_{2}}$,
which contradicts the assumption that $w \notin \operatorname{span}\left\{v_{1}, v_{2}\right\}$. This concludes the proof of the theorem.

Remark 2.1. Actually, in case (iv) of the above proof, since the algebraic multiplicity of λ_{1} is at most 2 , by the theory of Jordan forms for matrices, if $w \notin \operatorname{span}\left\{v_{1}, v_{2}\right\}$, then (8) implies that $w^{\mathrm{T}}\left(A-\lambda_{2} I\right)\left(A-\lambda_{1} I\right)^{2} \neq 0$. This observation will be used later to shorten the proof of Theorem 3.1.

An immediate consequence of Theorem 2.1 is
Corollary 2.1. Suppose in addition that $u_{1}^{\mathrm{T}} v_{2}=0$ and $u_{2}^{\mathrm{T}} v_{1}=0$. Then the eigenvalues of B are

$$
\left\{\lambda_{1}+u_{1}^{\mathrm{T}} v_{1}, \lambda_{2}+u_{2}^{\mathrm{T}} v_{2}, \lambda_{3}, \ldots, \lambda_{n}\right\} .
$$

3. Eigenvalues of rank-k updated matrices

The same idea as used in the proof of Theorem 2.1 can be applied to establishing the following general result.

Theorem 3.1. Let A be an $n \times n$ real matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ counting algebraic multiplicities, and for $1 \leqslant k \leqslant n$ let u_{1}, \ldots, u_{k} and v_{1}, \ldots, v_{k} be real column vectors such that v_{1}, \ldots, v_{k} are linearly independent left eigenvectors of A corresponding to the eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$, respectively. Then the eigenvalues of the matrix $B=A+\sum_{i=1}^{k} u_{i} v_{i}^{\mathrm{T}}$ are

$$
\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{k}, \lambda_{k+1}, \ldots, \lambda_{n}\right\}
$$

where μ_{1}, \ldots, μ_{k} are the eigenvalues of the $k \times k$ matrix

$$
\begin{equation*}
W=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k}\right)+U^{\mathrm{T}} V \tag{10}
\end{equation*}
$$

and

$$
U=\left[u_{1}, \ldots, u_{k}\right], \quad V=\left[v_{1}, \ldots, v_{k}\right] .
$$

Proof. The special cases $k=1$ and $k=2$ have been covered by Theorems 1.1 and 2.1, respectively, so we assume $k \geqslant 2$. Exactly the same process in the proof of Theorem 2.1 can be used again to show that
(i) μ_{1}, \ldots, μ_{k} are eigenvalues of B,
(ii) if $\lambda \notin\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$, then λ is not an eigenvalue of B except for $\lambda=\mu_{j}$ for some $j=1, \ldots, k$, and
(iii) λ_{i} is an eigenvalue of B for $i=k+1, \ldots, n$ if $\lambda_{i} \neq \lambda_{j}$ for all $j=1, \ldots, k$.

Now suppose $\lambda_{i}=\lambda_{j}$ for some $k+1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant k$. We show that λ_{j} is an eigenvalue of B. We just prove the case $j=1$ since the proof for $j=2, \ldots, k$ is exactly the same. Without loss of generality, we may assume that $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{l}$ and $\lambda_{1} \neq \lambda_{j}$ for all $j=l+1, \ldots, k$. Then, since $\lambda_{1}=\lambda_{i}$, the algebraic multiplicity of the eigenvalue λ_{1} for A is at least $l+1$. Let $u \in N\left[\left(A-\lambda_{1} I\right)^{2}\right]$. Since $v_{j}^{\mathrm{T}}\left(A-\lambda_{1} I\right)^{2}=\left(\lambda_{j}-\lambda_{1}\right)^{2} v_{j}^{\mathrm{T}}$,

$$
\begin{equation*}
v_{j}^{\mathrm{T}} u=\frac{1}{\left(\lambda_{j}-\lambda_{1}\right)^{2}} v_{j}^{\mathrm{T}}\left(A-\lambda_{1} I\right)^{2} u=0, \quad j=l+1, \ldots, k \tag{11}
\end{equation*}
$$

Suppose first that $\operatorname{dim} N\left(A-\lambda_{1} I\right)<\operatorname{dim} N\left[\left(A-\lambda_{1} I\right)^{2}\right]$. Then there is $u \in N\left[\left(A-\lambda_{1} I\right)^{2}\right]$ such that $v \equiv\left(A-\lambda_{1} I\right) u \neq 0$. Since $v_{j}^{\mathrm{T}}\left(A-\lambda_{1} I\right)=0$ for $j=1, \ldots, l$ and $v_{j}^{\mathrm{T}}\left(A-\lambda_{1} I\right)=\left(\lambda_{j}-\lambda_{1}\right) v_{j}^{\mathrm{T}}$ for $j=l+1, \ldots, k$, we have

$$
\left(B-\lambda_{1} I\right)\left(A-\lambda_{1} I\right)=\left(A-\lambda_{1} I\right)^{2}+U V^{\mathrm{T}}\left(A-\lambda_{1} I\right)=\left(A-\lambda_{1} I\right)^{2}+\sum_{j=l+1}^{k}\left(\lambda_{j}-\lambda_{1}\right) u_{j} v_{j}^{\mathrm{T}}
$$

The above equality and (11) imply that $\left(B-\lambda_{1} I\right) v=0$. That is, λ_{1} is an eigenvalue of B with eigenvector v.
Now suppose $\operatorname{dim} N\left(A-\lambda_{1} I\right)=\operatorname{dim} N\left[\left(A-\lambda_{1} I\right)^{2}\right]$. Then $N\left(A-\lambda_{1} I\right)=N\left[\left(A-\lambda_{1} I\right)^{2}\right]$ with dimension at least $l+1$. Since $\operatorname{dim}\left\{v_{1}, \ldots, v_{l}\right\}^{\perp}=n-l$, there is a nonzero vector $u \in N\left(A-\lambda_{1} I\right)$ such that $u \in\left\{v_{1}, \ldots, v_{l}\right\}^{\perp}$. Moreover, by (11), $u \in\left\{v_{l+1}, \ldots, v_{k}\right\}^{\perp}$. Therefore,

$$
\left(B-\lambda_{1} I\right) u=\left(A-\lambda_{1} I\right) u+U V^{\mathrm{T}} u=0 .
$$

So λ_{1} is an eigenvalue of B with eigenvector u.
Finally we show that if for some $j=1, \ldots, k, \lambda_{j}$ is not an eigenvalue of W defined by (10) and $\lambda_{j} \neq \lambda_{i}$ for all $i=k+1, \ldots, n$, then λ_{j} is not an eigenvalue of B. We assume $j=1$ for the sake of simplicity of notation.

First let $w=V \eta$ for some nonzero vector $\eta \in R^{k}$. Since $W-\lambda_{1} I$ is nonsingular, $\eta^{\mathrm{T}}\left(W^{\mathrm{T}}-\lambda_{1} I\right) \neq 0$. The assumption that the rank of V is k and equality (10) give

$$
w^{\mathrm{T}}\left(B-\lambda_{1} I\right)=\eta^{\mathrm{T}} V^{\mathrm{T}}\left(B-\lambda_{1} I\right)=\eta^{\mathrm{T}}\left(W^{\mathrm{T}}-\lambda_{1} I\right) V^{\mathrm{T}} \neq 0 .
$$

Next assume $w \notin \operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$. Suppose $w^{\mathrm{T}}\left(B-\lambda_{1} I\right)=w^{\mathrm{T}}\left(A-\lambda_{1} I\right)+w^{\mathrm{T}} U V^{\mathrm{T}}=0$. Then $w^{\mathrm{T}}\left(A-\lambda_{1} I\right)=$ $-w^{\mathrm{T}} U V^{\mathrm{T}}$, so

$$
\begin{equation*}
w^{\mathrm{T}} \prod_{j=2}^{k}\left(A-\lambda_{j} I\right) \cdot\left(A-\lambda_{1} I\right)^{2}=-w^{\mathrm{T}} U V^{\mathrm{T}} \prod_{j=1}^{k}\left(A-\lambda_{j} I\right)=0 \tag{12}
\end{equation*}
$$

since $V^{\mathrm{T}} \prod_{j=1}^{k}\left(A-\lambda_{j} I\right)=0$. On the other hand, since $\lambda_{1} \neq \lambda_{i}$ for all $i=k+1, \ldots, n$, the condition $w \notin \operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$ implies that $w^{\mathrm{T}} \prod_{j=2}^{k}\left(A-\lambda_{j} I\right) \cdot\left(A-\lambda_{1} I\right)^{2} \neq 0$. This gives a contradiction to (12).

In particular, we have
Corollary 3.1. Let A be an $n \times n$ real matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ counting algebraic multiplicities. For $i=1,2, \ldots, k$ let u_{i} and v_{i} be n-dimensional real column vectors such that v_{i} 's are linearly independent left eigenvectors of A associated with eigenvalues λ_{i} respectively. If $u_{i}^{\mathrm{T}} v_{j}=0$ for all $i \neq j$, then the eigenvalues of the matrix

$$
A+\sum_{i=1}^{k} u_{i} v_{i}^{\mathrm{T}}
$$

are

$$
\left\{\lambda_{1}+u_{1}^{\mathrm{T}} v_{1}, \ldots, \lambda_{k}+u_{k}^{\mathrm{T}} v_{k}, \lambda_{k+1}, \ldots, \lambda_{n}\right\}
$$

Remark 3.1. We point out that the assumption that v_{1}, \ldots, v_{k} are linearly independent is not necessary and can be removed from the fact that eigenvalues of a matrix are continuous functions of its entries and any square matrix is a limit of a sequence of matrices with all distinct eigenvalues so that their corresponding eigenvectors are linearly independent.

References

[1] S. Brin, L. Page, The anatomy of a large-scale hypertextual Web search engine, Computer Networks and ISDN Systems 30 (1-7) (1998) 107-117.
[2] J. Ding, A. Zhou, Eigenvalues of rank-one updated matrices and an application to Google matrices, submitted for publication.
[3] L. Eldén, A note on the eigenvalues of the Google matrix, Report LiTH-MAT-R-04-01, 2003.
[4] T.H. Haveliwala, S.D. Kamvar, The second eigenvalue of the Google matrix, Technical Report, Computer Science Department, Stanford University, 2003.
[5] A.N. Langville, C.D. Meyer, Fiddling with pagerank, Technical Report, Department of Mathematics, North Carolina State University, 2003.
[6] A.N. Langville, C.D. Meyer, Deeper inside PageRank, Internet Mathematics 1 (2004) 335-380.
[7] A.N. Langville, C.D. Meyer, A survey of eigenvector methods for web information retrieval, SIAM Review 47 (2005) $135-161$.
[8] L. Page, S. Brin, R. Motwani, T. Winograd, The PageRank citation ranking: bringing order to the Web, Stanford Digital Library Working Papers, 1998.

[^0]: * Corresponding author.

 E-mail address: Jiu.Ding@usm.edu (J. Ding).
 ${ }^{1}$ Present address: Department of Mathematics and Computation, Harbin University, Harbin, China.

